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Towards combining a neocortex model with entorhinal grid cells
for mobile robot localization

Stefan Schubert1, Peer Neubert and Peter Protzel

Abstract— Motion and navigation are fundamental abilities
of all terrestrial animals. It is essential for foraging, reproduc-
tion, and more generally for survival. There are a couple of
strategies to conduct navigation from simpler visual homing in
ants to more complex and cognitive demanding techniques in
mammals. Many species of mammals use several specialized
cell types in the hippocampus and the entorhinal cortex to
represent space in the brain like head direction cells to encode
their orientation and grid cells to keep track of their position.

In our recent work, we presented MCN – an algorithm that
is inspired by working principles of the human neocortex for
the navigational subtask visual place recognition. MCN makes
decisions based merely on camera data without odometry about
whether or not a currently visited place has been seen in the
past. In this work, we intend to answer the question if we can
combine our neocortex-inspired model with entorhinal cortex
cells for space representation to exploit additional metric data
like odometry in our system. We believe that the combination
of bio-inspired techniques could help someday to create a
biologically plausible and more robust navigation system like
in animals. In this paper, we give an introduction to our
neocortex-inspired algorithm MCN and to two cell types of
the entorhinal cortex, answer how these concepts can be
combined to perform visual place recognition, and provide
proof-of-concept experiments with a mobile robot to show the
performance of the proposed system.

I. INTRODUCTION
Navigation is an essential skill for mobile robots to

perform exploration and to maneuver in an environment.
To address complex aspects of this task and to potentially
understand how animals do this, bio-inspired techniques may
be used for learning. The subtask visual place recognition
tries to answer the question if a currently seen place has
already been visited in the past within a changing environ-
ment. Visual place recognition is essential for relocalization
after position loss or loop closure detection for mapping.

In our recent work [1], [2], we presented MCN (Mini-
Column Network): MCN is an adaption of Hierarchical
Temporal Memory (HTM), which is a biologically plausible
model for aspects of the human neocortex, so that ideas from
HTM can be used for place recognition. We have shown that
MCN performs well on real world datasets in comparison to
multiple state-of-the-art algorithms. Further, we ran MCN
online on a real mobile robot to perform place recognition
in two challenging indoor environments.

MCN currently uses only visual input that limits its po-
tential capabilities. In this paper, we want to make one more
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How can we combine MCN with 
grid cells to exploit odometry?

Fig. 1. How can MCN be combined with a grid cell network (GCN)
to exploit odometry information? The top shows an MCN with predictive
lateral connections (PLCs) whereas the bottom proposes an architecture with
predictive sensory input connections (PSICs) to a grid cell network.

step with MCN in the direction of mobile robot navigation.
Metric information like odometry data is required to perform
tasks like Simultaneous Localization and Mapping (SLAM)
in order to build a metric map and to localize within this
map. Grid cells represent a structure in the medial entorhinal
cortex in the rodent brain that represents the position of
an individual in space. Since MCN and grid cells are bio-
inspired models, it seems reasonable to use both jointly;
however, we make no claim to biological plausibility for this
combination. In this work we want to answer the question:
How can MCN be combined with entorhinal grid cells to
additionally exploit odometry for place recognition?

To answer this question, we first give a short introduction
to MCN in Sec. III and to cell types in the entorhinal
cortex in Sec. IV. As the main contribution of this paper,
we show in Sec. V how MCN can be combined with grid
cells. Subsequently, we provide results in Sec. VI for proof-
of-concept experiments with two datasets recorded with a
mobile robot to show that (1) a combination of MCN with
grid cells basically works and (2) the combination actually
benefits from additional odometry data. Finally, we discuss
potential future steps in Sec. VII to push our ideas further
to a full navigation system.
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II. RELATED WORK

This paper extends a camera-based place recognition ap-
proach with odometry information. Visual place recognition
is a well studied problem. Lowry et al. [3] provide a recent
survey. Usually, basis for visual place recognition is the
image similarity based on local landmarks [4], [5] or global
descriptors [6], [7]. For place recognition in changing envi-
ronments, descriptors from early convolutional layers (e.g.
conv3) from off-the-shelve CNNs like AlexNet [8] showed
impressive results [9]. More recently, CNN descriptors were
also particularly designed and trained for place recognition,
e.g. NetVLAD [10]. We will use this NetVLAD descriptor
in our experiments.

Based on such image processing front-ends, a variety of
approaches exists to compare and match images. Beyond
simple pairwise comparison and using statistics of feature
appearances (e.g. FAB-MAP [11]), the benefit of exploiting
sequence information is well accepted in the literature, e.g.
[12], [13], [14], [15]. To improve the localization perfor-
mance of a place recognition approach, additional odometry
information can be used [3]. For example, CAT-SLAM [16]
uses a particle filter with particle weighting based on local
appearance and odometry information. SMART [17] extends
the sequential image processing approach from SeqSLAM
[12] with additional odometry input. There are various other
approaches to visual localization [3]. In the following, we
want to focus on brain-inspired approaches.

Madl et al. [18] provide a review of existing computation-
ally implemented cognitive models of spatial representations
for navigation. Oess et al. [19] discuss how different refer-
ence frames are used in brains and under what conditions
they might be used for navigation. Möller et al. [20] pre-
sented a biologically inspired navigation algorithm based on
visual homing of dessert ants. A similar approach has also
been used for camera-based localization in 3d maps [21].
RatSLAM [22] is an approach to simultaneous localization
and mapping that builds upon insights about cells in the
rodent’s brain that participate in navigation, in particular
entorhinal grid cells. Recently, Deepmind [23] used grid
cell representations to learn vector based navigation in a
deep reinforcement learning agent. In this present work,
we use a grid cell representation similar to RatSLAM to
encode odometry information. In RatSLAM, grid cells are
implemented in form of a three dimensional continuous
attractor network (CAN) with wrap-around connections; one
dimension for each degree of freedom of the robot. The
activity in the CAN is moved based on proprioceptive clues
of the robot (e.g. wheel encoders) and new energy is injected
by connections from local view cells that encode the current
visual input, as well as from previously created experiences.
The dynamics of the CAN apply a temporal filter on the
sensory data. Only in case of repeated consistent evidence
for recognition of a previously seen place, this matching
is also established in the CAN representation. RatSLAM’s
exploitation of sequence information allowed to demonstrate
impressive navigation results [24]. More details about in-

volved cells will be provided in Sec. IV.
This present work also builds upon our previous work [2]

on using Hierarchical Temporal Memory (HTM) [25] for
place recognition. HTM is a theory on working principles
of the human neocortex. HTM builds upon the assumption
of a single learning algorithm that is deployed all over the
neocortex [26]. It is a continuously evolving theory with the
goal to explain more and more aspects of the neocortex as
well as extending the range of practical demonstrations and
applications. Currently, these applications include anomaly
detection, natural language processing, and object detection
[27]. An implementation is available [28]. An important
evolution is the extension with location information [27].
Recent work [29] combines HTM with a grid-cell encoding
[30] for object recognition. The following Sec. III provides
more details on how we used the HTM algorithm for visual
place recognition in our previous work [2].

III. MCN IN A NUTSHELL: A NEOCORTEX INSPIRED
CELL MODEL FOR PLACE RECOGNITION

In our recent work [2], we introduced the Mini-Column
Network (MCN) that is a simpler, modified version of HTM.
MCN is designed for visual place recognition, and we have
shown that it performs well in simulation, on real world
datasets, and online on a mobile robot. In the following ex-
planation, we will refer for clarification to elements in Fig. 1,
top, that shows a simple MCN. It has its basic architecture
in common with HTM: First, it consists of cells (circles)
which are organized in minicolumns (vertical rectangles
with circles). Minicolumns are activated by a feed forward
connection (lines from barcode to circle), the spatial pooler,
which gets a binary encoded image as input (barcode). The
image is encoded with a deep neural network like NetVLAD
and binarized with sparse locality sensitive binary hashing
(sLSBH) [2]. Further, cells are potentially interconnected
with lateral connections (lines between circles) that predict
the cells’ activations for the subsequent timestep; the cells
with their predictive connections are termed as temporal
memory.

In the following, we give a very short overview about
the cells’ states and state transitions; a more comprehensive
description can be found in our recent work [2]. Every cell
in each minicolumn can have four different states: inactive,
predicted, active, and winner (often in this order). An inactive
cell becomes predicted if at least one of its predictive connec-
tions becomes active. A predicted cell becomes active if the
corresponding minicolumn is activated by the spatial pooler;
in this case all active cells become winner cells within this
minicolumn. In conclusion, predicted cells in a minicolumn
try to predict a potential activation of their minicolumn in
the next timestep, so they try to predict a potential next input
to the MCN; if the minicolumn does not become active, the
corresponding cells simply become inactive. However, if an
activated minicolumn has no predicted cells, the minicolumn
is bursted: all cells become active and one winner cell is
chosen.



Differences between HTM and MCN are mainly how the
feed forward connections and lateral connections are trained:
Basically, all connections in HTM have a permanence prop-
erty; a permanence is a scalar value that defines whether a
connection is used or not, depending on if the permanence
is above a threshold or not. The permanences are learned in
a hebbian way to increase or decrease their value in order to
get potentially active or inactive. Connections with a random
permanence are randomly created in advance to the input
elements for feed forward connections, and in dependence of
active predecessor cells for lateral connections. Full details
on HTM can be found in [25]. In contrast, feed forward
connections and lateral connections in MCN are trained as
one-shot learning and do not have a permanence property: In
case of feed forward connections when a new minicolumn
is created, connections between the input elements and the
minicolumn are established for a random subset of currently
active elements (1s) in the input. Lateral connections are cre-
ated from all winner cells of a previous timestep to all winner
cells of a current timestep. The number of minicolumns in
HTM is fixed, whereas in MCN the number of minicolumns
is increased if not enough minicolumns were activated in a
current timestep. Full details about learning and activation
rules in MCN can be found in [2].

IV. GRID CELL NETWORKS (GCN): AN ENTORHINAL
CORTEX CELL MODEL TO REPRESENT SPACE

Besides MCN, the second essential part of the proposed
system is a grid cell network that is inspired by entorhinal
grid cells.

A. Biological background

In the area of research on biological navigation and
mapping, rodents are one of the most popular and best
understood subjects. Their hippocampus is one of the most
thoroughly investigated mammal brain areas. Rodents do not
build detailed geometric maps of their environment, instead
they rely on learned connections between integrated self-
motion cues and external perception. In the following, a
small subset of cell types that are used to represent space in
the brain are presented; a more comprehensive presentation
of cell types is given by Grieves and Jeffery [31].

In 1948 Tolman [32] showed a kind of latent learning of
spatial references in a cognitive map: rats store navigation
information, even if they are not relevant for the current
tasks. Subsequent researchers identified place cells in the
rodent hippocampus, which respond to spatial locations of
the rodent [33], and later head direction cells [34] which
respond to the orientation of the rodent’s head. The firing
rate of a head direction cell peaks when the rodent’s head
is facing in a specific direction and decreases for all other
directions. They are related to a global reference frame (they
are allocentric), thus they are independent from the orienta-
tion relative to body but they are related to the orientation
in the environment. Head direction cells are influenced by
external spatial clues [35]. For example, the rotation of the
dominant visual cue in the environment cause approximately

the corresponding shift in the head direction cells [36].
However, rats are also able to determine their orientation
to some degree in absence of visual cues [37].

For navigation, a rodent has to encode orientation and
spatial position. For the latter, besides place cells, rodents use
a second type of cells called grid cells. Grid cells have place
cell like properties but with multiple firing fields arranged in
a grid. Grid cells are active when the rodent is at a vertice of
a tessellating hexagonal pattern across the environment [38].
This way, a finite number of cells can be used to represent
pose in potentially infinitely large space. This encoding is
similar to residue number systems in math, which use a finite
set of numbers and modulo operation to encode the infinite
set of all integers. Similar to head direction cells, the grid cell
representation is influenced by external and proprioceptive
clues [31]. The activation patterns of groups of grid cells are
coordinated and remain coordinated in new environments.
They are supposed to form an attractor network that is used
for path integration [39].

B. Grid Cell Network (GCN)

Grid cells and head direction cells represent a specific
property of space in the brain. Another concept are conjunc-
tive cells that do not represent a specific property in space
like orientation, place or location. Rather they respond to a
combination like a specific spatial location with a particular
head direction [40], or there may be grid cells that respond
only in combination with a specific head direction [41]. In
this work, we build upon the latter cell type aligned in a
grid to represent positions together with specific orientations.
Fig. 2 shows this (conjunctive) grid cell network (GCN) that
encodes the space as (x, y, θ) for 2D position and orientation.
Every grid cell has undirected connections or wrap-around
connections to all adjacent grid cells so that they span a
continuous attractor network (CAN); this recurrent dynamic
neural network evolves to stable patterns over time in the
absence of an external input [42]. In large environments,
when self-motion integration causes the activity peak to
move over wrap-around connections, each grid cell corre-
sponds to multiple physical places in the environment. This
behavior is similar to the one of grid cells in rodents medial
entorhinal cortex. There is biological evidence for CAN-like
neural structures for head direction cells and grid cells [39].

In our experiments, we use a grid cell network with 100×
100 × 18 cells and each cell spreads 0.5m × 0.5m × 20◦.
The computations in the GCN are based on three functions:

move(x′, y′, θ′) This function is used to accumulate incre-
mental pose changes (like odometry). Input is the relative
robot motion (x′, y′, θ′) in the local robot reference frame.
Motion can be implemented as activity shift in the GCN.
Since GCN cells represent space in the global reference
frame, the shift direction is different in each GCN layer
(since each layer represents a different global orientation). To
incorporate the input translation (x′, y′) the current activation
of GCN cells within each layer is shifted according to the
orientation θ of this GCN layer. In a second step, whole
layers are shifted according to the input rotation θ′ (they are
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Fig. 2. Grid cell network (GCN) with (conjunctive) grid cells for three
dimensions. Wrap-around connections for one grid cell are illustrated in
red.

moved “vertically” in the GCN in Fig. 2). Both shifts use
the wrap-around structure of the GCN.

injectEnergy(e,m) To promote the activation of a cell
of the GCN from the outside, energy can be injected to
the network at a particular cell. In our implementation, the
injected energy e is added to the activation of the m-th cell.

runAttractorDynamics() The goal of the attractor dy-
namics is to filter current cell activation and injected energy
over time and to form a stable single activation peak (or a
small set of stable activation peaks). Similar to the pose cell
network from [24], we apply a local excitatory kernel and
a larger inhibitory Gaussian kernel. The excitatory kernel
has standard deviations of 0.001 cell in each dimensions,
inhibition has standard deviations (7, 7, 2.5) cells in (x, y, θ)
direction. Additionally, we normalize the total sum of cell
activations in the GCN to 1 and set cells with activation
smaller than 0.001 to activity zero (followed by an additional
normalization to sum 1). Cutting off too small activity values
is beneficial for computational efficiency, since we apply the
Gaussian kernels only to the sparse set of cells with non-zero
activity.

V. COMBINING MCN WITH GCN TO EXPLOIT
ODOMETRY FOR PLACE RECOGNITION

How can we combine grid cells as a concept of the
entorhinal cortex with MCN that uses neocortex-inspired
working principles? The goal of a combination of MCN
with grid cells is to involve metric information or odometry
data into the MCN to make it potentially suited for more
navigation tasks beyond place recognition like localization
or mapping.

Fig. 1 shows the architectures of MCN that uses solely
images as input (top) and of the minicolumn network that
uses images as well as odometry information encoded in the
GCN (bottom). The architectural changes for a combination
of MCN with GCN can be explained in four steps: (1)
We remove the predictive lateral connections (PLCs) in
MCN (the connections between cells or circles in Fig. 1,
top) that maintain a context over a timeseries. (2) Beside
a binary encoded image, we provide the binary encoded
GCN activation pattern (vertical barcode in Fig. 1, bottom)

image

determine active cells, winner
cells and bursted minicolumns

store place descriptor Dt
place

learn new minicolumns and PSICs

energy injection from MCN to GCN

feed forward activation of
minicolumns with spatial pooler

lateral prediction from
GCN to MCN based on PSIC

compute GCN binary encoding IGCN

run GCN attractor dynamics

compute binary descriptor 
using NetVLAD + sLSBH

odometry data (x',y',θ')

move activation pattern in GCN

Sec. III & [2]

Sec. IV.B

Sec. IV.B

Sec. V.A

Sec. V.B

Sec. III & [2]

Sec. III & [2]

Sec. III & [1]

Sec. IV.B & V.C

Sec.V.B & [1]

Fig. 3. Overview of the algorithmic steps with references to the details.

to the minicolumn network. The binary encoding of the
GCN is explained below in Sec. V-A. (3) We introduce a
new type of predictive connections: predictive sensory input
connections (PSICs) that predict cells in minicolumns in
dependence of the binary encoded GCN activation pattern.
These connections are directed from the binary encoded
GCN activation pattern (vertical barcode in Fig. 1, bottom) to
cells in the minicolumn network (circles in Fig. 1, bottom).
Their working principles for inference and learning are
explained below in Sec. V-B. (4) In case of a loop closure,
we want to establish activation peaks in the GCN at the
same location as before when the place has been visited
for the first time; i.e., we always encode the same pose in
the GCN for the same place. Accordingly, our minicolumn
network has to be enabled to inject energy back into the
GCN. We achieve this with directed connections from cells
in minicolumn network (circles in Fig. 1, bottom) to the GCN
(circles in Fig. 1, bottom). Details about these connections
are given below in Sec. V-C.

Fig. 3 gives a high-level algorithmic overview how the
minicolumn network with PSICs interacts with the GCN
starting from incoming odometry and image data.

A. Binary encoding of the GCN activation pattern

As predictive connections to cells in the minicolumn
network require a binary input vector IGCN, the continuous
values of the grid cells in the GCN have to be binary
encoded. As vector length |IGCN| we simply use the number
of cells in the GCN, so that the m-th grid cell corresponds
to the m-th vector element IGCNm

in IGCN. The tGCN% (e.g.,
10%) most active cells of all active grid cells in the GCN
(activation > 0) are set to 1 whereas all remaining cells are



set to 0. This strategy returns a relatively sparse vector that
only encodes the most active regions in the GCN.

B. Prediction through Predictive Sensory Input Connections

The predictive sensory input connections (PSICs) show the
same behavior like predictive lateral connections (PLCs) in
MCN except that the connections now have a vector element
IGCNm

in IGCN as origin rather than another cell in the
minicolumn network. So, if a cell ci,j , which is the i-th cell
in the j − th minicolumn, has any connection to an active
vector element IGCNm (= 1) in IGCN, it gets a predicted cell
pi,j :

pti,j = 1⇔ ∃m : ItGCNm
∧ (IGCNm , ci,j) ∈ P (1)

As described in Sec. III, if then the corresponding minicol-
umn is activated by the feed forward input (incoming image),
the cell gets active and winner.

New PSICs are created to a winner cell wi,j from all active
vector elements IGCNm

(= 1) in ItGCN and added to the set
of predictive connections P iff this winner cell wi,j is part
of a bursted minicolumn bj :

P = P ∪ {(IGCNm
, ci,j) : I

t
GCNm

∧ wt
i,j ∧ btj} (2)

Again, a minicolumn is bursted if it has no predicted cells
but is activated by the spatial pooler. Learning solely in case
of bursting avoids that cells are connected too densely to the
IGCN vector.

C. Energy injection into the GCN

Connections from the cells of the minicolumn network to
grid cells of the GCN are required in case of loop closures:
A (revisited) place should always come along with the same
activation pattern in a specific area of the GCN; this ensures
that if the robot moves from a known place to a adjacent
known place (and the GCN activation pattern is shifted
accordingly), the right cells in the minicolumn network and
the right place are predicted.

These connections for injection of an energy Em to the
m-th grid cell are basically identical to the existing PSICs
in a minicolumn network except that they are directed from
the minicolumn cells directly into the GCN. As the number
of elements in IGCN equals the number of grid cells in the
GCN, a mapping from the IGCN-elements to the GCN-cells
is trivial. The energy Em from the minicolumn network for
the m-th grid cell in the GCN can be computed by:

Em = s ·
∑
i,j

ai,j ∧ (IGCNm , ci,j) ∈ P (3)

s is a scalar value > 0 that scales the energy from the active
cells ai,j . We use s = 1e−4 in our experiments below. To
avoid a self-maintenance of a current place, a newly learned
connection from the minicolumn network to the GCN has
to cool down for tcooldown timesteps (e.g., tcooldown = 5), so
that it is first used after a couple of timesteps. This prevents
the minicolumn network from learning from its own injected
energy.

VI. PROOF-OF-CONCEPT EXPERIMENTS

In the following, two proof-of-concept experiments are
used to demonstrate the feasibility of combining MCN with
grid cells and to show that this system actually benefits from
additional odometry data. We compare the place recognition
performance of the two minicolumn networks with predic-
tive lateral connections (PLCs) and predictive sensory input
connections (PSICs), and show corresponding loop closure
detections.

Experimental setup

A remote-controlled skid-steering mobile robot (Fig. 4,
top) was used to collect two different datasets. The robot is
equipped with a fisheye camera with 250◦ aperture angle to
acquire panoramic images as well as with a 2D LiDAR for
ground truth. ROS (Robot Operating System) was used for
drivers, communication, and data recording. To create quite
accurate ground truth data, we first mapped both environ-
ments with a LiDAR-based SLAM system. Subsequently,
both maps were used during data collection to perform
LiDAR-based localization for ground-truth. Note that LiDAR
data and maps are solely used for ground truth and visual-
izations. To ensure a realistic temporal and spatial distance
between consecutive images, images were collected while
the full data processing pipeline for loop closure detection
with MCN was running; odometry data was recorded with
10Hz and images with approx. 0.5Hz. We used NetVLAD
[10] and sLSBH [2] to encode and binarize images for
the minicolumns’ feed-forward input. A description of the
minicolumn network’s parameters is given in [2]; they were
set to: kmax = 100, kmin = 50, #connections per minicolum
= 800, #cells per minicolumn = 32, θ = 0.55.

We recorded data in two environments: (1) The first envi-
ronment is the foyer of a lecture hall building with passing
students as depicted in Fig. 4 (middle). A distance of around
730m was covered while 561 images were collected. (2) The
second environment is an approx. 160m long corridor with
a very challenging repetitive structure, two almost identical
elevator areas, and a few passing people (Fig. 4, bottom). The
robot recorded 878 images along an approx. 860m trajectory
by driving from one end to the other multiple times. Maps
and scales are shown for the lecture hall building and the
corridor in Fig. 6 and Fig. 7, respectively.

Place Recognition Performance

Both minicolumn networks with PLCs and PSICs return a
binary vector of active winner cells for each timestep which
serves as place descriptor Dplace for the current place. After
collecting all place descriptors, the descriptors Di

place are
compared pairwise with an overlap score

overlap score(D(1)
place, D

(2)
place) = 2 ·

< D
(1)
place, D

(2)
place >∑

D
(1)
place +

∑
D

(2)
place

to receive a similarity matrix S. S is finally used to compute
the precision recall curve. Places with a ground truth distance
≤ 5m are considered as the same place in all experiments.
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Fig. 4. Top: The robot used to collect data. Middle: Example images from
the first test environment, a foyer of a lecture hall building with passing
students. Bottom: Example images from the second test environment, a
corridor with repetitive structure. The upper image shows the area in front
of elevators which is partly confused in the experiments by the algorithms.

Fig. 5 shows the resulting place recognition curves for both
predictive connection types in the two environments. The
curves indicate that the described replacement of predictive
lateral connections (PLCs) in MCN with predictive sensor
input connections (PSICs) based on odometry can work in
principle: the system is able to provide reasonable visual
place recognition results and can benefit from the additional
odometry information.

Fig. 6 and Fig. 7 show corresponding loop closure detec-
tions when we apply a threshold t to the similarity matrices
S of both environments and connection types. Matchings
are only allowed for images with a distance of at least 20
timesteps to avoid matchings between consecutive images.
We used t = 0.42 which was determined from the maximum
F1 score of an earlier recording of the corridor. For the foyer
of the lecture hall building the minicolumn network with
PLCs achieved 892 true and 37 false matchings whereas the
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Fig. 5. Precision recall curves for the place recognition performance of
the minicolumn network with PLCs and PSICs for both environments.

minicolumn network with odometry information and PSICs
achieved 642 true and 0 false matchings. There are no false
matchings with PSICs but the number of true matchings was
reduced, too. To achieve a higher number of true matchings,
we can use a less restrictive threshold, e.g. with t = 1e−10

the MCN with PSICs achieves 1743 true matchings and
still only 8 false matchings. For the challenging corridor
dataset the minicolumn network with PLCs achieved 640 true
and 277 false matchings and the minicolumn network with
PSICs achieved 642 true and 188 false matchings. Again, the
number of false matchings was reduced by using PSICs.

VII. DISCUSSION

In the previous section, we were able to show that a
minicolumn network actually benefits from replacing pre-
dictive lateral connections (PLCs) with predictive sensory
input connections (PSICs). PSICs predict next places in
dependence of the motion of the robot encoded in the GCN
whereas the PLCs forecast places through their temporal
order. Regarding their working principles, presumably, it is
beneficial to combine both prediction types to exploit spatial
and temporal information jointly.

Hawkins et al. [27], [29] and Lewis et al. [30] presented
theoretical ideas about a combination of their HTM-theory
with locality information or grid cells. With our experimental
results on real-world datasets, we could give potential evi-
dence that their theoretical ideas can be transfered to practical
applications.

The presented proof-of-concept experiments were intended
to show the feasibility of a combination of a neocortex-
inspired model with entorhinal grid cells. The parameters of
the minicolumn network were not tuned for both the indoor
environments and the new prediction connection types, and
simply copied from our experiments in [2] with MCN with
PLCs and real-world datasets. A next step is to investigate
the influence of the extensions to the parameters and to
perform a subsequent comparison to related algorithms.
Since RatSLAM [43] is an algorithm that also uses a grid
cell network, a comparison to the minicolumn network with
the GCN is particularly interesting.

For further extensions of our minicolumn network, we
want to consider if we can adopt concepts from HTM like
permanences and hebbian learning, segments, or a fixed
number of minicolumns.
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Fig. 6. Results of the loop closure detection in the lecture hall building with PLCs (left) and PSICs (right). Green lines show true positive matchings,
red lines show false positive matchings. A matching is true if both positions have distance ≤ 5m.
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Fig. 7. Results of the loop closure detection on the corridor with PLCs (top) and PSICs (bottom). Green lines show true positive matchings, red lines
show false positive matchings. A matching is true if both positions have distance ≤ 5m.

In this work, our system uses images from one camera
as well as odometry data, however, as Hawkins et al. pro-
posed in their work [27] additional sensors (or even sensor
modalities) could be used by an introduction of long-range
lateral connections and feedback connections. We are going
to consider this idea in order to potentially use additional
sensor data like more cameras or different modalities like
2D LiDAR data.

Our overall objective in the paper and beyond is to push
MCN as a neocortex-inspired model into the direction of
navigation. Starting from MCN which performs visual place
recognition we now can exploit odometry data as metric
information. A next step would be to build a SLAM system
that builds and optimizes a pose graph to integrate an
explicit metric representation of the world into our system,
potentially building upon ideas from experience mapping in
RatSLAM [43], or ideas from Pose SLAM [44].

VIII. CONCLUSION

In this work, we intended to answer the question if it is
possible to combine MCN that is inspired by the human
neocortex with entorhinal grid cells to exploit odometry
data for visual place recognition. We gave a short overview
of MCN in Sec. III and introduced the grid cell network
(GCN) in Sec. IV that accumulates odometry data and
manages location hypotheses. Subsequently, we proposed
in Sec. V how MCN can be combined with the GCN by
replacing the predictive lateral connections of the original
MCN with predictive sensory input connections between the
minicolumn network and the GCN. In two proof-of-concept
experiments in Sec. VI, we were able to show that the mini-
column network with predictive connections from the grid
cell network works in principle and, as expected, outperforms
the minicolumn network with lateral connections since it can



additionally exploit odometry data. In conclusion, we could
show that it is possible to combine this neocortex-inspired
model with entorhinal grid cells, and that the system actually
exploits the additional odometry data. Sec. VII discussed
potential next steps like architectural extensions and further
experiments.
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