
This paper was accepted to the Intelligent Vehicles Symposium (IV), 2021, Nagoya, Japan.
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Multivariate Time Series Analysis for Driving Style Classification using
Neural Networks and Hyperdimensional Computing

Kenny Schlegel1, Florian Mirus2, Peer Neubert1, and Peter Protzel1

Abstract— In this paper, we present a novel approach for
driving style classification based on time series data. Instead of
automatically learning the embedding vector for temporal rep-
resentation of the input data with Recurrent Neural Networks,
we propose a combination of Hyperdimensional Computing
(HDC) for data representation in high-dimensional vectors and
much simpler feed-forward neural networks. This approach
provides three key advantages: first, instead of having a “black
box” of Recurrent Neural Networks learning the temporal
representation of the data, our approach allows to encode this
temporal structure in high-dimensional vectors in a human-
comprehensible way using the algebraic operations of HDC
while only relying on feed-forward neural networks for the
classification task. Second, we show that this combination is
able to achieve at least similar and even slightly superior classi-
fication accuracy compared to state-of-the-art Long Short-Term
Memory (LSTM)-based networks while significantly reducing
training time and the necessary amount of data for successful
learning. Third, our HDC-based data representation as well
as the feed-forward neural network, allow implementation in
the substrate of Spiking Neural Networks (SNNs). SNNs show
promise to be orders of magnitude more energy-efficient than
their rate-based counterparts while maintaining comparable
prediction accuracy when being deployed on dedicated neu-
romorphic computing hardware, which could be an energy-
efficient addition in future intelligent vehicles with tight re-
strictions regarding on-board computing and energy resources.
We present a thorough analysis of our approach on a publicly
available data set including a comparison with state-of-the-art
reference models.

I. INTRODUCTION

Assistance systems in modern series cars are becoming
increasingly complex on the road to future intelligent vehi-
cles. Particularly, reliable classification of driving styles, such
as aggressive, inattentive or drowsy driving, in automotive
context is a research area of growing interest for both,
academic and industrial scientists. Potential applications
for such classification systems span from Advanced Driver
Assistance Systems (ADAS) such as driver distraction or
drowsiness detection to increase driving safety over appli-
cations improving ride comfort and assessing the perfor-
mance of the driver (e.g., economical driving) to insurance
applications [1]. The majority of driving style classification
systems uses the dynamics of the vehicle to detect the current
driving style either relying on internal sensors available
from the vehicle’s CAN-bus [2] or from external devices
such as smartphones [3]. Irrespective of the concrete input
data, modern machine learning approaches such as Artificial
Neural Networks (ANNs) offer an appealing tool set to tackle

1Kenny Schlegel, Peer Neubert, and Peter Protzel are with Chemnitz Uni-
versity of Technology name.surname@etit.tu-chemnitz.de

2Florian Mirus is with the department Research, New Technologies,
Innovations at BMW Group, Munich, Germany

Sensory data

Input: Real-valued
sensor streams

Temporal representation and classification

Recurrent Neural Network

Vectorization
Temporal

representation
Classification

Feed-forward
Neural Network

HDC algebraic
operations

HDC preprocessing

v1,t

v2,t

vn,t

Output: Driving
style class
predictions

normal
drowsy

aggresive
...

Sensory data normal
drowsy

aggresive
...

State of the art

Proposed HDC approach

Fig. 1. Schematic visualization of the flow of information in a driving style
classification system comparing our proposed approach (boxes highlighted
through dark blue borders) with decoupled temporal representation and
classification modules to an end-to-end learning approach employing RNNs.

the complexity of classification problems such as driving
style classification, especially since the number of available
sensing modalities in future intelligent vehicles is likely to
increase. Instead of using hand-crafted features of the input
data fed into a prediction model (e.g., a neural network)
classifying the driving style, Saleh et al [4], for instance,
consider driving style classification a problem based on time
series sensory input and therefore use an end-to-end learning
approach employing Recurrent Neural Networks (RNNs),
particularly LSTMs [5], to detect the current driving style.
This approach is appealing since it avoids the necessity to
manually design features, which is prone to human bias, and
rather let the neural network extract those features into a
temporal representation directly from the input data. On the
other hand, this temporal representation of the input data
results in an embedding in the form of an internal high-
dimensional vector learned by the RNN, which is not com-
prehensible for human users anymore. Furthermore, LSTMs
are rather complex learning models, which typically require
long times as well as large amounts of data for successful
training and additionally could be, due to their complexity,
prohibitive in terms of in-vehicle deployment with respect to
limited on-board resources.

To tackle some of the aforementioned issues, we propose
a novel approach for driving style classification based on
HDC [6], which refers to a family of modelling approaches
representing entities of interest in high-dimensional vectors.
One of the strengths of this approach is the ability to combine
symbolic and numeric information in a common represen-
tational substrate while it also allows to impose structure
by manipulating the representational vectors through alge-
braic operations. In contrast to [4], our modular approach
employs HDC to encapsulate the time series input data into
an embedding vector and thus decouples this step from
the actual classification (see Fig. 1), which allows us to

explore a plethora of (much simpler) prediction models
such as feed-forward neural networks for the actual driving
style classification. We evaluate our approach with several
prediction models for classification on the publicly available
UAH-DriveSet data set [3] and compare it to state-of-the-art
models employing LSTMs [4] not only regarding prediction
accuracy, but also in terms of training time, data efficiency
and model complexity. Finally, we show that our simple
feed-forward classification network as well as our HDC-
based data representation can be translated into a SNN while
maintaining similar results in terms of prediction accuracy
compared to the rate-based ANN [7], [8]. Spiking neurons
as computational substrate offer the opportunity to deploy
our model on neuromorphic hardware, which could be an
interesting addition to future intelligent vehicles promising to
be orders or magnitude more energy-efficient than traditional
CPU/GPU architectures [9].

To the best of our knowledge, this is the first time
that these two worlds, Hyperdimensional Computing and
Artificial Neural Networks, are combined in this or a similar
way for multivariate time series analysis. We demonstrate
the application to driving style classification. However, the
presented approach is potentially applicable to many other
prediction tasks with similar structure. To enable other re-
searchers to reproduce and extend our results, we make the
source code of our implementation publicly available1.

II. RELATED WORK

A. Driving style classification

With the increasing focus on ADAS, driving style classifi-
cation becomes more important in terms of safety and energy
efficiency. The survey from [10] gives a broad overview
of this research field, discusses the relevance of influencing
factors (mainly divided by environmental or human factors)
and the role of used sensors. Typical sensors are inertial
measurement units (IMUs) or global navigation satellite
systems (GNSS) [11]. Smartphones are well suited for data
collection due to their low cost, multiple built-in sensors,
and high processing capabilities [12]–[14]. The smartphone-
based dataset from [13] is available, in addition, [15] pre-
sented a similar data recording only using an IMU. Romera
et al. [3] provide a basis for further, more complex work
in the field of driving style recognition by introducing a
publicly available data set consisting of smartphone data and
information about other vehicles and lane changes obtained
from pre-processed camera images.

For supervised learning for driving style classification,
Vaitkus et al. [2] use a simple hand-crafted statistical feature
extraction (mean, median, etc.) from time series data in
combination with a k-nearest neighbors (kNN) classifier. [16]
uses a combination of K-means and Support Vector Machine
(SVM) to explore the relevance of manoeuvres and recognize
the driving style. Especially when the number of sensor
modalities increases, the usage of Artificial Neural Networks

1https://github.com/TUC-ProAut/HDC_driving_style_
classification

(ANNs) can improve the driving style classification perfor-
mance [10]. For instance, Zhang et al. [15] proposed an ANN
with multiple convolutional layers to exploit the spatial-
temporal context for classification. Beside such feed-forward
networks, recurrent LSTM networks can be used to capture
temporal features of multivariate time series [17]. A similar
implementation of LSTMs for driving style classification was
shown by [4], which classifies driving style based not only on
IMU and GPS, but also on more diverse data such as number
of vehicles or distance to the vehicle in front. However,
recurrent LSTM models tend to suffer from high learning
effort compared to feed-forward ANNs. Unfortunately, the
convolutional model [15] without recurrent units requires
even more training time than the LSTM models.

B. Hyperdimensional Computing (HDC)

Hyperdimensional Computing (HDC) (also known as
Vector Symbolic Architectures) is an established class of
approaches to solve numeric and symbolic computational
problems using mathematical operations on large numerical
vectors with thousands of dimensions [6], [18]–[20]. We
provide a short introduction to HDC working principles in
Sec. III-A. HDC has been applied in various fields including
addressing catastrophic forgetting in deep neural networks
[21], medical diagnosis [22], robotics [23], fault detection
[24], analogy mapping [25], reinforcement learning [26],
long-short term memory [27], text classification [28], and
synthesis of finite state automata [29]. High-dimensional
vectors are also the core representational element in most
ANNs and a combination with HDC is straightforward. For
example, [23] used HDC in combination with deep-learned
descriptors for sequence encoding for localization or [30],
[31] build semantic and spatial representations for visual
place recognition based on HDC.

The usage of HDC or vector computation in general is
still rather unusual in intelligent vehicles. One example of an
abstract vector representation in an automotive context called
Drive2Vec is presented in [32]: similar to word embedding
approaches in natural language processing [33], Drive2Vec
learns an embedding from a high-dimensional vector space
(i.e., language or in this case several sensor streams) to a
vector representation of comparably low dimension (rep-
resentational space), which is subsequently used to make
predictions about the vehicle’s state. HDCs as representa-
tional substrate employing fractional binding [34] have been
applied in automotive context to tasks such as driving context
classification [35], vehicle trajectory prediction [36], [37],
and anomaly detection [38]. There are several HDC imple-
mentations available, e.g., [18]–[20], [39]. A comparison is
available in [6], a theoretical analysis is provided in [40].

III. APPROACH

Fig. 1 illustrates the structure of our proposed approach.
Instead of performing all computations in a single recur-
rent neural network, we decouple the creation of vector
representations of sensor values and the temporal encoding
from the classification task. This allows to incorporate model

https://github.com/TUC-ProAut/HDC_driving_style_classification
https://github.com/TUC-ProAut/HDC_driving_style_classification

knowledge and to use simpler classifiers (e.g., a feed-forward
network instead of a recurrent network). To avoid bias and
limitations by manually created intermediate representations,
we use high-dimensional distributed vector representations
at all stages, very similar to the internal representations in
artificial neural networks. To perform systematic computa-
tions on these vectors, we use Hyperdimensional Computing
(HDC) [18] [19]. Sec. III-A will provide a short introduction
to the relevant concepts and operations, i.e., bundling and
(fractional) binding from this field. Fig. 3 illustrates how
we use them for encoding multivariate time series data in
a single vector representation (Sec. III-B). Finally, Sec. III-
C provides details on the combination with classifiers for
driving style recognition.

A. Hyperdimensional Computing and Fractional Binding

In this work, we adopt Holographic Reduced Represen-
tation in the Frequency Domain (FHRR) [19], which is one
special case of HDC, a family of modeling approaches based
on high-dimensional vector representations. This decision
is based on the experimental comparison from [6] and the
compatibility of FHRR vectors with fractional binding [34]
for systematically encoding scalar sensor values to vectors.
The resulting complex-valued high-dimensional vectors are
one example of distributed representations in the sense that
information is captured over all dimensions of the vector
instead of one single number, which allows to encode both,
symbol-like and numerical structures in a unified repre-
sentational substrate. Although it is sometimes desirable to
encode some sort of similarity when mapping entities to the
representational vector space, it is also common to simply
use random vectors to represent unrelated entities [18]. The
enabling feature of high-dimensional vector spaces allowing
random vectors as representational substrate is that two ran-
dom vectors have a high probability (only depending on the
dimension of the vector space) of being almost orthogonal
and thus the chance of unintentionally confusing vectors
representing different entities (such as different sensor types
in Sec. III-B) is very low. Additionally, the algebraic op-
erations of FHRR allow manipulation and combination of
represented entities into structured representations. Those
algebraic operations are bundling ⊕ and binding ⊗:

• Bundling ⊕ is used to store multiple input vectors in a
set-like representation, where the result is a vector that
is similar to each input vector. The implementation of
the bundling ⊕ operator is an element-wise addition of
the complex vector-values.

• Binding ⊗ is used to store variable-value pairs. The
result of binding is dissimilar to each input vector,
but each of the input vectors can be (approximately)
restored. In case of the complex FHRR, the binding ⊗
operation is implemented as an element-wise multipli-
cation of the complex values.

Komer et al. [34] define a fractional binding mechanism,
which is originally implemented for real valued vectors v ∈

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

difference of scalar values

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
in

e
 s

im
ila

ri
ty

 o
f

e
n

c
o

d
in

g
 v

e
c
to

rs

Similarity of vector encodings with fractional binding

scaling = 2

scaling = 4

scaling = 6

scaling = 8

Fig. 2. Encoding similar scalar values with fractional binding results in
high-dimensional vectors with high cosine similarity. A scaling parameter
s can be used to influence the decay of the vector similarities.

RD with dimensionality D as their power

vp := IDFT
(
(DFTj (v)

p
)
D−1
j=0

)
. (1)

where DFT and IDFT denote the Discrete Fourier Transform
and Inverse Discrete Fourier Transform respectively. This
can be used to systematically encode a scalar p into a
high-dimensional vector. “Systematically” means that similar
scalar values (small euclidean distance) are encoded to simi-
lar vectors (small cosine distance). Fig. 2 shows the resulting
vector similarities for varying differences of encoded scalar
values. Since we use complex-valued vectors in the FHRR, it
is not necessary to apply the Fourier Transform and Eq.(1)
can be simplified to an element-wise exponentiation of a
random complex-valued vector c ∈ CD by exponent p:

encoding(p) = cs·p (2)

A scaling value s can be used to set the similarity curve
slope – the larger the scaling, the less similar the neighboring
scalar-encoded vector is to the output vector (cf. Fig. 2).
The visible oscillation is a result of the periodic behavior
of exponentiation in the complex domain, see [34] for more
details.

For efficient implementation, [19] suggests to restrict the
vector space to complex numbers of magnitude 1. With this
assumption of only selecting complex numbers on the unit
circle, it is sufficient to use values in the range of (−π,
π] to define the angles of the complex values. Therefore,
the complex vector c = (c1, · · · , cD) with cj ∈ C can
be stored by using only the real vector of angles θj with
cj = ei·θj . Calculating with angles instead of the whole
complex number has the effect of simplifying the binding
operation to element-wise addition and the fractional binding
to element-wise multiplication instead of exponentiation. For
bundling, however, the angles need to be converted into a
complex number before addition.

B. Vector representation of time series sensor signals

Fig. 3 visualizes our approach of encoding a time series
of sensor signal in the substrate of high-dimensional vectors
using fractional binding. In the first step, we represent each

sensor B

fractional
binding

sensor
 value

Vector encoding
of sensor value

binding

Fixed random
vector that
encodes the
sensor type

sensor A

...

Individual sensor
values bound to
sensor type

bundling

All sensor values
(at one timestep t)

Fixed random
vector that
encodes the
timestamp t

time t

time t+1

...

bundling

Each vector encodes
all sensor value
encodings of one
timestep bound to
the corresponding
timestamp

Output A single vector C that encodes
all sensor values at all timesteps

(this is relative time in the local sequence)

Input

binding

S
E
N
S
O
R

A

T
I

M
E

t

Mt

C
vi,t BASE

s vi,t
 .

Fig. 3. Schema of context encoding with HDC operations. Inputs are
(scalar) sensor values from different sensors at different time-steps. The
blue part shows the encoding across multiple sensors, the red part across
multiple time-steps. All shown vectors are from the same vector space. The
output is a single vector that encodes all information and can, e.g, be fed
to a (feed-forward neural network) classifier.

sensor type by a randomly chosen vector SENSORi. Given
values vi,t measured by sensor SENSORi for i = 1, · · · , n
at time-step t, we use fractional binding to encode all sensor
measurements into one representational vector by

Mt =

n⊕
i=1

SENSORi ⊗BASEs·vi,t , (3)

where BASE is the initial base vector for the scalar-value
encoding, which is also randomly chosen and the same for all
sensor-types. The parameter s is the aforementioned scaling
factor. In the second step, we again assign a randomly chosen
vector TIMEt to represent each step t of the time series
to be encoded. To encode the temporal context in high-
dimensional vectors, we bind each measurement vector Mt

with the time stamp vector TIMEt representing the time-
step t, i.e., Mt⊗TIMEt. Ultimately, bundling or summation
of all vectors representing the sensor values at each time-step
yield our final context vector, i.e.,

C =
⊕
t∈I

Mt ⊗TIMEt (4)

=
⊕
t∈I

(
n⊕
i=1

SENSORi ⊗BASEs·vi,t

)
⊗TIMEt,

where I denotes the time interval, i.e., all time-steps t of
the current sliding window. The result is a high-dimensional
vector C containing all sensor values combined with the
corresponding sensor type for every time-step in the current
sliding window I . Finally, we standardize the resulting
vectors per dimension by their mean and standard devia-
tion, since [41] showed promising results in applying this
approach.

C. Prediction Models

This section describes two prediction models, a simple
feed-forward Artificial Neural Network and a Spiking Neural
Network, that can be used to predict the driving style class

using the high-dimensional vector C from the previous
Sec. III-B.

1) Artificial Neural Networks (ANNs): We use an ANN
in a supervised training setup to map the high-dimensional
vector C to a driving style class. Since the different sensor
types and the temporal context are already encoded in the
input vector, a simple fully-connected feed-forward network
with one hidden layer is sufficient. Although we work in the
space of complex numbers, it should be noted that the vector
C only stores the angles of the complex numbers on the unit
circle. Therefore, it is a vector of real numbers, that can be
processed by standard neural networks. Sec. IV-A provides
implementation details.

2) Spiking Neural Networks (SNNs): In contrast to rate-
based ANNs used in “traditional” machine learning, Spiking
Neural Network (SNN) employ discrete spikes rather than
average firing rates to encode information and are therefore
often referred to as the third generation of neural networks.
In theory [42], SNNs have at least the same computational
power as traditional neural networks of similar size. One
major hindrance for the widespread adoption of SNNs how-
ever, is that, due to the binary output of the spiking neurons,
the neural network is not differentiable and thus standard
training procedures such as backpropagation are not directly
applicable. One option to circumvent this problem is to
train the network with a differentiable approximation of
the spiking neurons and replace this approximation with
the actual spiking neurons during inference [7]. Spiking
neurons as algorithmic substrate are appealing for tasks with
tight restrictions regarding power consumption, particularly
automotive applications, since they promise to be more
energy-efficient when deployed on neuromorphic hardware.
For our SNN in this paper, we adopt the ANN’s architecture
with some alterations in terms of hyper-parameters.

IV. EXPERIMENTS

We will first present the experimental setup including
datasets, compared algorithms, as well as training and pa-
rameter settings. This is followed by evaluation of driving
style classification performance, data efficiency, parameter
influences, and runtime.

A. Experimental setup

1) UAH-DriveSet data set: Since we primarily compare
our proposed method with the LSTM approach from [4], we
use the same data set for experimental evaluation: Romera et
al. [3] introduced a data set with more than 8 h driving scenes
for driving behavior analysis and classification. The sensor
values are collected using a smartphone with a monitoring
application (shown in Fig. 4). Six different drivers generate
data for two types of roads: secondary and motorway. All
recorded sequences are labeled with one of three classes:
normal, aggressive, or drowsy driving style.

The provided data contains raw sensor values from GPS
and IMU, but also additional pre-processed data such as road
lanes and vehicle detections from the smartphone camera.
We use the same 9 different sensor values as [4]: IMU data

Fig. 4. Screenshot from the UAH-DriveSafe reader tool, which recorded
the data with a smartphone. Image source [3].

for acceleration AccX , AccY , AccZ , Roll, Pitch, and Y aw;
Speed from GPS; as well as Distance to ahead vehicle and
number of detected vehicles obtained from the camera.
We also use the same data preprocessing [4]: resampling
to constant frequency followed by per-dimension standard-
ization to mean 0 and standard deviation 1. To generate the
sequence samples, Saleh et al. [4] used rolling windows with
a size of 64 time-steps and 50% overlap. The resulting total
number of sequence samples is 9499. For training of the
prediction models (HDC does not require training) we use
the same random training and test split with a ratio of 2:1.

2) Parameters and training setup: The default setup for
the HDC encoding uses 2048 dimensional vectors and scal-
ing s = 6 in fractional binding. The ANN classifier uses
40 neurons in the hidden layer and 75% dropout between
the input and the hidden layer. These parameters result
in a very similar number of parameters for ANN training
compared to the LSTM [4] (cf. Table IV). An evaluation of
these parameters will be topic of Sec. IV-D. The ANN was
implemented in Keras and Tensorflow and was trained with
a learning rate of 0.001, a cross-entropy-loss-function, the
adam optimizer, and a batch size of 1500 for 2000 epochs.

Similar to our ANN model, the SNN’s architecture em-
bodies one hidden layer of neurons. In this work, we use the
simple Leaky-Integrate-and-Fire (LIF) spiking neuron model
[43]. Since networks of spiking neurons are not differen-
tiable, we train the network with the rate approximation of
the LIF neuron using back-propagation for 200 epochs with a
batch size of 500, a drop-out rate of 50%, the cross-entropy-
loss function and the RMSprop optimizer with a learning
rate of 0.001. We implemented our SNN in the Nengo
simulator [44] and its extension Nengo-DL [8] integrating
deep learning approaches from Tensorflow and replace the
rate approximation with the actual LIF spiking neuron model
during inference. Empirical evaluations similar to those of
Table III showed that the SNN achieved its best performance
with 1000 neurons in the hidden layer.

3) Evaluated approaches: The most related approach
from the literature is the LSTM from [4] that directly
operates on the raw sensor data (that is pre-processed as
described in Sec. IV-A.1, but is still in the raw form of
multivariate time series data). Fig. 5 provides an overview

Vector-Encodings Prediction Models
Multivariate

time series data LSTM

FF-ANN

SVM

k-NN

SNN

HDC encoding

Concatenate input
sequences

Spectral input
vectors

Fig. 5. This is an overview of the different evaluated combinations of
vector-encodings with prediction models.

of all evaluated methods, which are different combinations
of vector encodings and prediction models.

Encodings: We compare our HDC encoding approach with
two alternative approaches to generate vector representations
from multivariate time series data: Concatenate Input Se-
quences contain the raw input data from [4] but all sensor
sequences are concatenated together (similar to time series
processing in [45]) – hence, the outcome is a 64 × 9 =
576 dimensional vector; Spectral feature vectors are built
with a discrete Fourier-transformation for each sequence and
sensor-type, and the resulting magnitude of each frequency
is concatenated to a final spectral feature vector.

Prediction models: Each of these vector encodings can
be combined with different prediction models. Besides the
FF-ANN and SNN described in Sec. III-C, we evaluate the
following baseline models: SVM is a Support Vector Machine
classifier. We use the standard Matlab implementation with
an error-correcting output code for multi-class classification.
k-NN is a simple k nearest neighbour classifier using a stored
lookup table of all training sample data that outputs the most
frequently occurring class of the k neighbours (similar to
[2]).

4) Metric: We use a standard evaluation procedure based
on ground-truth information (labels) about the corresponding
class to a given sequence. The evaluation metric is weighted
F1-Score for multiple classes computed by Python Scikit-
learn’s report function.

B. Driving style classification results

The main result of this paper is presented in Table I
that shows driving style classification results on the UAH
dataset. To account for randomness within ANNs, we repeat
each experiment 10 times and report means and standard
deviations. We observe that the combination of HDC with the
simple ANN prediction model achieves the best results. The
results are almost preserved when using a smaller number
of HDC dimensions (reduction from 2048 to 1024) which
also leads to significantly smaller number of parameters in
the ANN (reduction from 82,083 to 41,123, cf. Table IV).

Note, that the performance of the SNN with the same
number of neurons (40) in the hidden layer drops to 0.85
after conversion to spikes compared to the rate-based net-
work. By increasing the number of neurons in the hidden
layer to 1000 neurons, we are able to reach a compara-
ble performance of 0.92, hence the SNN requires a much

TABLE I
DRIVING STYLE CLASSIFICATION RESULTS OF ALL MODELS (F1 SCORE

ON THE UAH TEST SET). BEST RESULTS ARE IN BOLD FONT. ALL

LEARNED MODELS WERE RUN 10 TIMES - RESULTS ARE MEAN AND

STANDARD DEVIATION.

vector prediction HDC UAH-DriveSet [3]
encod. model dim. Secondary Motorway Full
HDC ANN 2048 0.99 ±0.00 0.94 ±0.00 0.94 ±0.00
(ours) (ours) 1024 0.98 0.90 0.90

576 0.97 ±0.00 0.90 ±0.00 0.89 ±0.00
SNN 2048 0.99 ±0.01 0.94 ±0.00 0.92 ±0.02
(ours) 1024 0.93 0.88 0.91
SVM 576 0.84 0.72 0.71
kNN 576 0.93 0.91 0.90

(none) LSTM [4] 0.91 ±0.05 0.82 ±0.03 0.88 ±0.04
Concat ANN 0.77 ±0.01 0.62 ±0.01 0.61 ±0.01

SVM 0.51 0.35 0.30
kNN 0.89 0.82 0.84

Spect ANN 0.67 ±0.04 0.67 ±0.02 0.64 ±0.03
SVM 0.70 0.71 0.61
kNN 0.88 0.75 0.81

larger number of hidden neurons to achieve similar results.
However, we expect that our SNN will provide significant
improvements in terms of energy-efficiency on dedicated
neuromorphic hardware such as Intel’s Loihi system [46],
where one chip is able to process up to 130, 000 spiking
neurons with significantly lower power consumption than
traditional computing hardware [9]

The Concat and Spect vector encodings each create a 576
dimensional vector. For a fair comparison, we also report
the performance of the HDC approach when using the same
number of dimensions in combination with the SVM and
kNN prediction models. The results demonstrate the general
potential of HDC encodings of multivariate time series data
beyond the combination with neural networks.

The results from Table I were obtained using the exact
same training and evaluation procedure as in [4]. In addition
to the random train-test split from [4], we also evaluated
a 3-fold cross-validation with three independent blocks of
data. These three blocks contain the consecutive ordered
driver records (one block contains at least one complete
driver record). During cross-validation, we used two blocks
for training and one for testing. Using these blocks ensures
that there are previously unseen drivers in the test data.
Results are reported in Table II. Although the HDC encoded
vectors with the ANN achieves better classification results
than the LSTM network, the overall results show that this
is a considerably more challenging task than the random
split from [4] since all models show a significant decrease
in performance compared to the random splits from Table I.
This indicates that the recorded sessions are either relatively
dissimilar to each other or the number of training samples is
too small to generalize to completely unseen sessions, e.g.,
an unknown driver.

C. Data efficiency

To evaluate the required amount of training data, we
analyzed the data efficiency of the LSTM [4] model and
our proposed HDC approach. We varied the training volume

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

training volume

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

Data efficiency

LSTM-ANN

HDC-ANN

Fig. 6. Data efficiency of the original LSTM-ANN and the HDC-ANN
(with 2048 dimensions, scaling of 6 and 40 neurons in the ANN hidden
layer).

TABLE II
F1-SCORES WITH 3-FOLD-CROSS VALIDATION ON THE UAH-DRIVESET

[3].

vector prediction HDC Split Split Split
encod. model Dim 1 2 3
HDC ANN 2048 0.46 ±0.01 0.54 ±0.01 0.41 ±0.01
(ours) SNN 2048 0.46 ±0.01 0.54 ±0.05 0.40 ±0.02

kNN 576 0.45 0.45 0.41
(none) LSTM [4] 0.43 ±0.02 0.48 ±0.04 0.41 ±0.03
Spect kNN 0.42 0.41 0.40

between 20% and 100% of the full training set, the test set
is unaltered. The results in Fig.6 show that the HDC-ANN is
considerably more data efficient than the LSTM. This means
that learning the internal time representation in this recurrent
LSTM requires more training examples than generating the
temporal structure through systematic application of HDC
(that does not require training) and then using a simple feed-
forward ANN.

D. Parameter Evaluation

The previous experiments used the default parameters as
described in Sec. IV-A.2. Table III shows the influence on
the classification performance when varying the number of
dimensions, the scaling parameter in the fractional binding,
and the number of neurons in the hidden layer of the ANN.
The results indicate that the scale parameter of the fractional
binding is the only parameter which is potentially hard
to choose. Fortunately, the performance degrades smoothly
when moving away from the sweet-spot of the default value
6. For the two other parameters (numbers of dimensions
and neurons), increasing their values tends to improve the
performance. However, this also changes the number of
weights in the ANN as provided in Table IV. For the default
setup of 2,048 dimensions and 40 neurons the number of
weights is comparable to the LSTM [4].

E. Complexity and runtime

Table V shows runtime measures of the original LSTM
model from [4] and the HDC models using a Nvidia GTX
1080Ti GPU. For the HDC approaches, we separately report
runtime of the prediction model and of the HDC encoding
during training process. In particular the training of the
HDC model is significantly faster than that of the LSTM
(more than factor 30). During inference, we build the HDC
encoding and prediction model into one tensorflow graph to

TABLE III
RESULTS OF OUR HDC APPROACH WITH ANN PREDICTION MODEL AND DIFFERENT PARAMETER RANGES. DATA SET IS THE UAH-DRIVESET [3].

BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Dimensions = 512 # Dimensions = 1024 # Dimensions = 2048
hidden neurons 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
scale = 2 0.83 0.84 0.85 0.85 0.86 0.84 0.87 0.87 0.88 0.88 0.88 0.9 0.9 0.9 0.9
scale = 4 0.85 0.88 0.88 0.88 0.88 0.89 0.91 0.9 0.91 0.91 0.91 0.93 0.93 0.93 0.92
scale = 6 0.86 0.89 0.89 0.89 0.89 0.9 0.91 0.93 0.92 0.93 0.93 0.94 0.94 0.94 0.94
scale = 8 0.85 0.87 0.88 0.88 0.88 0.9 0.91 0.92 0.93 0.92 0.93 0.93 0.94 0.94 0.94

TABLE IV
NUMBER OF TRAINABLE PARAMETERS FOR OUR HDC MODEL.

ORIGINAL LSTM MODEL HAS 81,703 TRAINABLE PARAMETER.

hidden Dim 20 40 60 80 100
Dim. = 512 10,323 20,643 30,963 41,283 51,603
Dim. = 1024 20,563 41,123 61,683 82,243 102,803
Dim. = 2048 41,043 82,083 123,123 164,163 205,203

be as fast as possible. Dependent on the setup, we come
to two qualitatively different conclusions: (1) if we need to
create the tensorflow session for each inference set, the HDC
approach is twice as fast as the LSTM model, and (2) if
we create the tensorflow session once and run it for each
inference, the LSTM model is twice as fast as the HDC.
The relevance of these two insights depends on a possible
application: if a GPU is only dedicated to this specific
classification task, the second strategy can be applied. If
a GPU is used for multiple tasks, the first one becomes
relevant and the HDC is faster than the LSTM. A straight
forward way to further decrease the HDC-ANN runtime
for strategy (2) is to use a smaller number of dimensions
since this linearly scales the runtime complexity of the HDC
encoding (the encoding runtime can be halved by using 1024-
dimensional vectors at a small loss in accuracy, see Table I).

The SNN prediction model in combination with the HDC
vectors requires less training time than the ANN (due to the
smaller number of training epochs), but requires more time
for inference. This is due to the spiking behaviour of the
neurons: we simulate the neurons for some time to allow
the network to converge to its result, which is why we put
the measured inference times in Table V in parentheses.
However, we expect the network to run much faster and
more energy-efficient when being deployed on dedicated
neuromorphic hardware [9].

V. CONCLUSIONS

This paper proposed a novel approach for driving style
classification based on multivariate time series. We demon-
strated that a recurrent neural network (LSTM) can be
replaced by a feed-forward network through representing
the temporal context within high-dimensional vectors based
on HDC. The HDC approach not only achieved similar or
slightly better classification results, but also significantly
reduced training time and increased data efficiency. In ad-
dition, the proposed HDC model allows implementation in
neuromorphic hardware based on SNNs, which promises

TABLE V
COMPUTING TIME ON PC WITH NVIDIA GEFORCE GTX 1080 TI ON

THE UAH-DRIVESET. SECOND TERM IN HDC TRAINING REPRESENTS

THE ENCODING TIME FOR THE CONTEXT VECTOR. INFERENCE TIMES

FOR SNN ARE IN PARENTHESES SINCE THEY ARE COMPUTED BY

SIMULATION ON A CONVENTIONAL GPU. (1) AND (2) MEANS

DIFFERENT INFERENCE METHODS – SEE TEXT.

Model Training on Inference on Overall Inference one
Train set [s] Test set [s] [s] sequence [ms]

LSTM [4] 2,166 0.455 2,166.455 0.145(1)

2,166 0.039 2,166.039 0.013(2)

HDC-ANN 69 + 0.276 0.202 69.478 0.065(1)

69 + 0.202 0.092 69.294 0.029(2)

HDC-SNN 16 + 0.276 (1.279) (17.555) (0.408)(2)

high energy efficiency compared to traditional computer-
hardware. We also observed that the standard data split on
the UAH dataset used in [4] leads to significantly better
results for all evaluated approaches compared to a split
that ensures data of unknown drivers during test. Therefore,
future work should include a more extensive evaluation on
more diverse and larger datasets, including variations of
sensor information and non-uniform sample rates. Testing
an actual practical value of the compatibility of the HDC-
SNN approach with actual neuromorphic hardware is also
left for future work. We applied the proposed HDC encoding
of multivariate time series data to driving style classification.
However, in principle, this type of HDC encoding could
potentially be applied to many other types of sensor streams
and tasks. Particularly promising are applications where the
input sensor data is already high dimensional, e.g., images
(very likely pre-processed by a CNN, similar to the HDC
localization approach in [23]).

REFERENCES

[1] G. A. M. Meiring and H. C. Myburgh, “A Review of Intelligent
Driving Style Analysis Systems and Related Artificial Intelligence
Algorithms,” Sensors, vol. 15, no. 12, pp. 30 653–30 682, 2015.

[2] V. Vaitkus, P. Lengvenis, and G. Žylius, “Driving style classification
using long-term accelerometer information,” 2014 19th International
Conference on Methods and Models in Automation and Robotics,
MMAR 2014, pp. 641–644, 2014.

[3] E. Romera, L. M. Bergasa, and R. Arroyo, “Need data for driver
behaviour analysis? presenting the public UAH-DriveSet.” in ITSC.
IEEE, 2016, pp. 387–392.

[4] K. Saleh, M. Hossny, and S. Nahavandi, “Driving behavior classi-
fication based on sensor data fusion using LSTM recurrent neural
networks,” in International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2017.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] K. Schlegel, P. Neubert, and P. Protzel, “A comparison of
Vector Symbolic Architectures,” Computing Research Repository
(CoRR), vol. abs/2001.11797, 2020. [Online]. Available: https:
//arxiv.org/abs/2001.11797

[7] E. Hunsberger and C. Eliasmith, “Training Spiking Deep Networks
for Neuromorphic Hardware,” Computing Research Repository
(CoRR), vol. abs/1611.05141, 2016. [Online]. Available: http:
//arxiv.org/abs/1611.05141

[8] D. Rasmussen, “NengoDL: Combining Deep Learning and
Neuromorphic Modelling Methods,” Neuroinformatics, Apr 2019.
[Online]. Available: https://doi.org/10.1007/s12021-019-09424-z

[9] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, “Benchmarking
Keyword Spotting Efficiency on Neuromorphic Hardware,” arXiv e-
prints, p. arXiv:1812.01739, 2018.

[10] C. Marina Martinez, M. Heucke, F. Y. Wang, B. Gao, and D. Cao,
“Driving Style Recognition for Intelligent Vehicle Control and Ad-
vanced Driver Assistance: A Survey,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 3, pp. 666–676, 2018.

[11] V. Manzoni, A. Corti, P. De Luca, and S. M. Savaresi, “Driving style
estimation via inertial measurements,” IEEE Conference on Intelligent
Transportation Systems, Proceedings, ITSC, pp. 777–782, 2010.

[12] M. M. Bejani and M. Ghatee, “Convolutional Neural Network with
Adaptive Regularization to Classify Driving Styles on Smartphones,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21,
no. 2, pp. 543–552, 2020.

[13] ——, “A context aware system for driving style evaluation by an en-
semble learning on smartphone sensors data,” Transportation Research
Part C: Emerging Technologies, vol. 89, pp. 303–320, apr 2018.

[14] T. K. Chan, C. S. Chin, H. Chen, and X. Zhong, “A comprehensive
review of driver behavior analysis utilizing smartphones.” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 10, pp. 4444–4475, 2020.

[15] Y. Zhang, J. Li, Y. Guo, C. Xu, J. Bao, and Y. Song, “Vehicle
Driving Behavior Recognition Based on Multi-View Convolutional
Neural Network with Joint Data Augmentation,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 5, pp. 4223–4234, 2019.

[16] M. Van Ly, S. Martin, and M. M. Trivedi, “Driver classification
and driving style recognition using inertial sensors,” IEEE Intelligent
Vehicles Symposium, Proceedings, no. Iv, pp. 1040–1045, 2013.

[17] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate
LSTM-FCNs for time series classification,” Neural Networks, vol. 116,
pp. 237–245, 2019.

[18] P. Kanerva, “Hyperdimensional Computing: An Introduction to Com-
puting in Distributed Representation with High-Dimensional Random
Vectors.” Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[19] T. A. Plate, “Distributed representations and nested compositional
structure,” Ph.D. dissertation, University of Toronto, Toronto, Ont.,
Canada, Canada, 1994.

[20] R. W. Gayler, “Vector Symbolic Architectures answer Jackendoff’s
challenges for cognitive neuroscience,” in Int. Conf. on Cognitive
Science, 2003.

[21] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. A. Olshausen,
“Superposition of many models into one.” in NeurIPS, 2019.

[22] D. Widdows and T. Cohen, “Reasoning with Vectors: A Continuous
Model for Fast Robust Inference,” Logic journal of the IGPL / Interest
Group in Pure and Applied Logics, no. 2, p. 141–173, 2015.

[23] P. Neubert, S. Schubert, and P. Protzel, “An introduction to hyperdi-
mensional computing for robotics.” Künstliche Intell., vol. 33, no. 4,
pp. 319–330, 2019.

[24] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin, and
A. Mousavi, “Fault detection in the hyperspace: Towards intelligent
automation systems,” in International Conference on Industrial Infor-
matics (INDIN), 2015.

[25] D. A. Rachkovskij and S. V. Slipchenko, “Similarity-based retrieval
with structure-sensitive sparse binary distributed representations,”
Computational Intelligence, vol. 28, no. 1, pp. 106–129, 2012.

[26] D. Kleyko, E. Osipov, R. W. Gayler, A. I. Khan, and A. G. Dyer,
“Imitation of honey bees’ concept learning processes using Vector
Symbolic Architectures,” Biologically Inspired Cognitive Architec-
tures, vol. 14, pp. 57 – 72, 2015.

[27] I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves,
“Associative long short-term memory,” CoRR, vol. abs/1602.03032,
2016. [Online]. Available: http://arxiv.org/abs/1602.03032

[28] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M.
Rabaey, “Classification and Recall With Binary Hyperdimensional
Computing: Tradeoffs in Choice of Density and Mapping Characteris-

tics,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 12, pp. 5880–5898, 2018.

[29] E. Osipov, D. Kleyko, and A. Legalov, “Associative synthesis of finite
state automata model of a controlled object with hyperdimensional
computing,” in Conference of the IEEE Industrial Electronics Society
(IECON), 2017.

[30] P. Neubert and S. Schubert, “Hyperdimensional computing as a
framework for systematic aggregation of image descriptors,” in Proc.
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[31] P. Neubert, S. Schubert, K. Schlegel, and P. Protzel, “Vector semantic
representations as descriptors for visual place recognition,” in Proc.
of Robotics: Science and Systems (RSS), 2021.

[32] D. Hallac, S. Bhooshan, M. Chen, K. Abida, R. Sosic, and J. Leskovec,
“Drive2Vec: Multiscale State-Space Embedding of Vehicular Sensor
Data,” in 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 3233–3238.

[33] J. Camacho-Collados and M. T. Pilehvar, “From word to sense
embeddings: A survey on vector representations of meaning.” J. Artif.
Intell. Res., vol. 63, pp. 743–788, 2018.

[34] B. Komer, T. C. Stewart, A. R. Voelker, and C. Eliasmith, “A neural
representation of continuous space using fractional binding,” in 41st
Annual Meeting of the Cognitive Science Society. Montreal, QC:
Cognitive Science Society, 2019.

[35] F. Mirus, T. C. Stewart, and J. Conradt, “Towards cognitive automotive
environment modelling: reasoning based on vector representations,”
in 26th European Symposium on Artificial Neural Networks, ESANN
2018, Bruges, Belgium, 2018, pp. 55–60.

[36] F. Mirus, P. Blouw, T. C. Stewart, and J. Conradt, “An investigation
of vehicle behavior prediction using a vector power representation
to encode spatial positions of multiple objects and neural networks,”
Frontiers in Neurorobotics, vol. 13, p. 84, oct 2019.

[37] F. Mirus, T. C. Stewart, and J. Conradt, “The importance of balanced
data sets: Analyzing a vehicle trajectory prediction model based on
neural networks and distributed representations,” in 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE, jul 2020, pp.
1–8.

[38] ——, “Detection of abnormal driving situations using distributed rep-
resentations and unsupervised learning,” in 28th European Symposium
on Artificial Neural Networks, ESANN 2020, Bruges, Belgium, 2020.

[39] C. Eliasmith, “How to build a brain: from function to implementation.”
Synthese, vol. 159, no. 3, pp. 373–388, 2007.

[40] E. P. Frady, D. Kleyko, and F. T. Sommer, “A theory of sequence
indexing and working memory in recurrent neural networks.” Neural
Comput., vol. 30, no. 6, 2018.

[41] S. Schubert, P. Neubert, and P. Protzel, “Unsupervised Learning
Methods for Visual Place Recognition in Discretely and Continuously
Changing Environments,” in Proceedings - IEEE International Con-
ference on Robotics and Automation, 2020, pp. 4372–4378.

[42] W. Maass, “Networks of Spiking Neurons: The Third Generation of
Neural Network Models,” Neural Networks, vol. 14, no. 4, pp. 1659–
1671, 1997.

[43] E. M. Izhikevich, “Which Model to Use for Cortical Spiking Neu-
rons?” IEEE Transactions on Neural Networks, vol. 15, no. 5, pp.
1063–1070, 2004.

[44] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: A
Python tool for building large-scale functional brain models,” Frontiers
in Neuroinformatics, vol. 7, no. 48, 2014.

[45] J. Langner, J. Bach, L. Ries, S. Otten, M. Holzäpfel, and E. Sax,
“Estimating the Uniqueness of Test Scenarios derived from Recorded
Real-World-Driving-Data using Autoencoders,” in 2018 IEEE Intelli-
gent Vehicles Symposium (IV), 2018, pp. 1860–1866.

[46] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y. H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

https://arxiv.org/abs/2001.11797
https://arxiv.org/abs/2001.11797
http://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1611.05141
https://doi.org/10.1007/s12021-019-09424-z
http://arxiv.org/abs/1602.03032

	INTRODUCTION
	RELATED WORK
	Driving style classification
	HDC

	APPROACH
	Hyperdimensional Computing and Fractional Binding
	Vector representation of time series sensor signals
	Prediction Models
	ANNs
	SNNs

	EXPERIMENTS
	Experimental setup
	UAH-DriveSet data set
	Parameters and training setup
	Evaluated approaches
	Metric

	Driving style classification results
	Data efficiency
	Parameter Evaluation
	Complexity and runtime

	CONCLUSIONS
	References

