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A blind-spot-aware optimization-based planner for safe robot navigation

Kenny Schlegel1, Peter Weissig1 and Peter Protzel1

Abstract— Safe mobile robot navigation should consider not
only collision avoidance with current obstacles but also include
non-visible areas (to which we refer as blind spots) and
the resulting risk of collision with hidden moving objects
(e.g. people). Such capability is important for mobile robots
operating in environments shared with humans - for instance a
shopping assistant robot in a supermarket. This work aims to
extend an existing motion planner for mobile robots (the Time
Elastic Band planner) by including blind spots. As a result, the
final planner does not only consider static and visible dynamic
obstacles, but handles blind spots, too. To identify such blind
spots, we define and use critical corners that imply them. Hence,
our contributions in this paper are creating a critical corner
detector, which operates on laser scan data, and the extension of
a factor-graph-based path planner. We evaluate the proposed
method standalone and in our simulation environment of a
supermarket. It can be seen that the implementation is capable
of detecting and dealing with blind spots. Finally, we provide
source code for both the detector and the planner extensions.

I. INTRODUCTION

The presence of mobile robots in human environments
requires carefully developed methods and algorithms for
navigation. Particularly important is not only collision-free
navigation but also human-aware motion planning. A sophis-
ticated application scenario of such mobile robots in dynamic
environments is a shopping assistant robot as in [1]. Since
this topic is part of an ongoing research project, we will
concentrate on this domain in the present paper, but the
proposed approach is also transferable to other applications.
Such a shopping assistant robot can make people’s lives
easier - for instance, it works as a guide, gives information or
collects articles. For these tasks, the robot, shown in Fig. 1
as a simulation, needs to satisfy several requirements: (1)
it has to reach its target position as fast as possible, (2) it
must not collide with any object, and (3) it should move as
socially acceptable as possible, which is known as human-
aware motion planning. The first and the second point are
well studied and the literature provides several methods. The
third one is more complex because the attribute socially
acceptable is open to interpretation. An important component
is, for example, the implementation of visible dynamic obsta-
cle avoidance (e.g. moving people). It consists of tracking the
person and predicting their future trajectory, which should
not be crossed. However, a system that attempts to satisfy
all three navigation requirements is described in our previous
work [1], where a major component is the Time Elastic Band
(TEB)-planner from [2] and [3] – this planner incorporates
static and visible dynamic obstacles.
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at Critical Corner

Fig. 1. Visualization of a critical corner within our supermarket simulation.
There is a risk of collision since the robot follows the green and the person
the light-blue path. Through the occlusion by the shelf, they do not see each
other.

One more important aspect of the third navigation require-
ment is the incorporation of non-visible dynamic obstacles.
In an environment with non-visible dynamic objects, there is
the additional risk of collisions at blind spots (also known as
occluded areas). Such danger zones may arise if the sensor’s
field of view is limited and objects occlude some areas where
a hidden dynamic obstacle (person) can suddenly appear
into the robot’s field of view. Especially in a supermarket
environment, there are many occlusions, e.g. at the shelves’
corners. A visualization of such a case can be seen in
Fig. 1: it contains a scene from the simulation presented
in [1] with the shopping assistant robot and some people.
The robot wants to follow the green and the human the
blue path. The shelf creates a blind spot – there may be
a person entering the robot’s visible field – such a surprising
situation can lead to a collision and the human can be
scared off. Avoiding such situations is particularly important
concerning the navigation requirements (2) and (3). To detect
such blind spots, we define a critical corner that implies
a beginning corresponding blind spot. This simplifies the
problem description and solution implementation, because it
reduces the unknown area of a blind spot to a clear point –
the critical corner. We use the measurement principle of raw
sensor data of a laser scanner to detect these critical corners
because it provides a sequence of ordered points.

As in section II, the literature shows either some ap-
proaches for handling blind spots with possible non-visible
dynamic obstacles, or for incorporating visible dynamic
obstacles, like walking people. Hence, with our work, we
are trying to close this gap and describe a solution to
address both navigation situations within one planner. Since
the factor-graph-based TEB-planner for static and visible
dynamic obstacle avoidance performs well in [1], we extend



this approach in the present paper to deal with critical corners
and incorporate possible non-visible dynamic obstacles. Such
a planner that satisfies all necessary navigation requirements
is currently missing in the literature. To sum up, the major
contributions in this paper are:
1.) We describe a concrete and simple algorithm in sec-
tion III-A for detecting critical corners that work directly on
the robot’s laser scans and is based on a ray-tracing approach.
2.) We develop an extension to the factor-graph based TEB-
planner from [3] in section III-B to incorporate critical
corners.

The critical corner detector and the planner are evaluated
within the section IV. Finally, we provide the source code1

of our implementation.

II. RELATED WORK

The literature provides several approaches dealing with
occlusion during navigation. A seminal analysis of human-
aware navigation methods can be found in [4], where some
approaches are discussed that deal with occlusion, hidden
zones and limited visibility. For instance, the authors in [5]
focus on a motion planner dealing with social acceptance.
They used the definition of hidden zones, which means
that the robot is hidden from the human perception by an
obstacle. Such a situation can lead to a surprise of humans
and should be avoided. It is achieved through adapting the
costmap by adding hidden zones as additional costs. An A*
planner was then used to calculate the optimal path to avoid
surprising situations. Our approach differs by switching from
the human perspective to the robot perspective by asking:
Which area is occluded from the robot’s field of view?
An example of such a perspective of the robot is given
in [6]. The approach takes occlusions into account caused
by objects and defines a collision and an emergency zone.
The former zone enables it to distinguish between obstacles
and other objects, and the latter defines the zone whose size
corresponds to the stopping distance. If the detector finds an
occlusion, the speed is reduced to decrease the size of the
emergency zone. However, the path is always fixed during
navigation – this prevents, for example, changing the path
to increase speed and reducing the time to reach the target.
Additionally, the planner is not able to incorporate visible
dynamic obstacles (adapt the path according to the predicted
obstacle’s trajectory in the future).

Another approach, which additionally modifies the path, is
described in [7]. In this paper, the authors define shadowing
corners (similar to our critical corners), which represent the
outer bounds of an object causing a shadow (occlusion). The
visibility polygon algorithm from [8] calculates these shad-
owing corners. Based on the shadowing corners and an initial
trajectory, a maximum velocity profile is computed. The
initial trajectory is randomly deformed and evaluated with
the newly calculated maximum speed to modify the speed
and trajectory near occluded areas. After a few iterations,

1Source code and supplemental material can be found on our website
https://www.tu-chemnitz.de/etit/proaut/cc

the time-optimal path is found. However, this approach is
also not able to take into account visible dynamic obstacles,
which is particularly important for a shopping robot, for
example.

Chung et al. [9] provide a method for navigation in
environments with occluded regions caused by a limited field
of view. Similar to [7], they also deal with path planning and
speed control. All occluded areas are calculated with a ray-
tracing method and are transformed into risky regions mainly
located around corners. The combination with additional
calculated speed constraints (depending on the distance to
the risk corners) results in a map with the safe speed in
risk areas. A gradient-based route planning method and the
DWA (Dynamic Windows Approach) algorithm for reactive
planning were used based on this map. This approach takes
into account non-visible dynamic obstacles but not visible
dynamic obstacles in path adaptation with respect to their
predicted paths.

In addition to mobile robotics, there are also contributions
in the field of autonomous driving. For instance [10], [11]
and [12], which describe approaches to occlusion-aware risk
assessment. Since these methods are more adapted to urban
scenarios and road geometry (with streets and lanes), they
do not fit well with our problem at hand. Furthermore, these
approaches are rather an evaluation of risky occluded areas
than a motion planner. Only the approach of [13] from the
field of autonomous driving is more related to our problem.
There, the authors explained a method of maximizing the
visibility (reduce blind spots) of sensors while overtaking
a car. They also incorporate dynamic obstacles (e.g., a car
on the opposite lane) with a conditional state machine that
decides to wait until the car disappears. However, such hard-
decided handling of visible dynamic obstacles does not fit
our requirements of adapting the path concerning moving
obstacles.

Finally, some of the listed methods, such as [6], [7] or
[9], offer a solution for dealing with critical corners, but
they are specifically adapted to their task and not open to
solving additional problems such as visible dynamic obstacle
avoidance (the TEB-planner can solve this part as in [1]).
Such functionality is important in terms of human-aware
navigation. That is why we extend the existing TEB local
planner to a closed solution that solves the problem of visible
and non-visible dynamic obstacles avoidance (at critical
corners). Currently, the TEB planner can incorporate visible
dynamic obstacles by their poses and velocity but does not
consider potential risks at critical corners.

III. METHOD

The following section is divided into two parts, the detec-
tor and the trajectory planning.



A. Critical-Corner-Detector

1) Problem Definition:
The desired behavior of a detector is that it finds possible

critical corners and has a simple logic to reduce false
positives. For the former, we are interested in an approach
that does not require a special pre-processed representation
and works directly on raw laser scan data. The latter means
that critical corners which create blind spots outside the area
of interest (e.g. behind the robot’s direction of movement)
should not be considered and neglected – this is important
for better navigation behavior. Such false positives depending
on the robot’s geometry and sensor positions.

As shown in the Fig. 1, our robot is equipped with 2D
laser scanners to provide a 360 degrees laser scan (a more
detailed hardware setup can be found in [1]). We use this
kind of sensors to detect critical corners for two reasons:
(1) A laser scanner has a high measuring accuracy and a
manageable data size, which is beneficial in terms of real-
time capability. (2) Based on the measurement principle
of a laser scanner (ordered sequence of beams), possible
occlusions can be easily detected. The idea behind point (2)
can be seen in the laser scan visualizations in Fig. 2: Since
the point measurements within the 2D plane have the same
coordinate frame and the laser beams are equally distributed,
jumps between neighboring scans indicate a blind spot. Such
blind spots are closely related to critical corners, which may
imply a risk of collision.

As mentioned in Section II, the authors from [7] use the
visible polygon algorithm from [8] to detect such critical
corners. However, this method requires a polygon or line
description of the objects as input and then starts a ray-
tracing method. Since we would have to convert the current
environmental perception into polygons or lines and then
calculate the visible polygon, we instead used a method that
works completely with the robot’s raw input data based on a
ray-tracing method similar to [14]. There, the authors define
an occlusion as a point where the consecutive range values
are discontinuous.

obstacle
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l
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A
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δ-
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Fig. 2. Visualization of the definition of a critical corner C. The blue
line represents the contour that caused the blind spot A. δ+ and δ− define
the positive and the negative jump between two neighboring scan points.
The dotted lines represent the laser beams that are evaluated clockwise. The
green area shows the field of attention corresponding to the velocity vector
to reduce false-positive detection.

For further explanations and more clarity, we define a
critical corner in the 2D laser-scanner domain as follows:

Definition 3.1 (Critical Corner): A critical corner is a
point C in the robot’s 2D environment that indicates the
start of a blind spot A. The size of this area A is roughly
related to the size of the closed contour l, which consists
of consecutive points with small distances to each other,
connected to the point C. A necessary condition of the point
C is that there must be a jump δ between neighboring
measurements (consecutive points of the laser scan). The
sufficient condition of the point C is a minimal occlusion
by the contour l.

Fig. 2 illustrates definition 3.1 with a given obstacle and
the corresponding contour l, two critical corners C, the
approximate blind spot area A and the laser beams (dotted
lines), which have the same origin. It can be seen that there
are two possible types of jumps that correspond to critical
corners: a positive (δ+) and negative (δ−). This definition
of positive and negative jumps is based on the clockwise
evaluation of the beams and corresponds to going from near
to far and vice versa.

The green area in Fig. 2 represents the simple logic to
reduce false positives. It corresponds to the velocity vector
(green arrow) of the robot. If there is a critical corner (e.g.,
C2 in Fig. 2) that is outside the area of interest (colored in
green), it will be deleted and not be considered for future
path planning, because the robot does not move towards the
blind spot.

2) Possible Solution:
Based on the previous section, it is possible to implement

a detector – algorithm 1 provides pseudo-code. The input
is a sequence of clockwise-ordered laser scan points. Ad-
ditionally, some parameters are important for adjusting the
algorithm:

δth the threshold of a jump between neighboring
scans (a distance greater than δth between two
points indicates a critical corner)

δtol distance tolerance of neighboring points corre-
sponding to a contour (a distance greater than
δtol indicates a break of the contour)

lmin minimum contour length causing occlusion in
combination with a jump – it correlates with an
area that is large enough to hide an obstacle

Using these parameters and the described detection prin-
ciple, the proposed method may also have some limitations
depending on the particular application: (1) If we consider
only the occlusion length lmin with a contour, a special case of
false-positive detection may occur. This means that an obsta-
cle may have a small blind spot but its contour is considered
long enough, e.g. because its surface is highly sloped. (2)
Gaps within long contours can produce two critical corners if
enough occlusion is before and after the gap. There is no test
to distinguish between a huge (real) and small (neglectable)
gab. The latter is also equal to false positives. Additional case
discrimination for (1) and (2) increase the complexity and
can be neglected due to the very rare occurrence. In the worst
case, depending on the parameterization, the algorithm adds



false-positive detections whereby the robot moves slower
than necessary. False-negative results do not occur in the
example presented, but this also depends on the application
and parameterization of the detector.

However, for each laser scan measurement, the distance
to the neighboring point is calculated (compare to line 4 in
algorithm 1 – the angle of the laser scanner αscan between
the measurements is used). Next, positive and negative jumps
must be detected. Particularly important is detecting the jump
with the minimum occlusion length lmin. This minimum oc-
clusion length will be computed in lines 8-13, accumulating
the distances of neighboring points if they are not greater
than δtol . Combining the jumps with the occlusion length
requires different cases for both positive and negative jumps.
A positive jump (according to Fig. 2) must take into account
the contour, which creates the occlusion and occurs before
it (lines 5-7). Conversely, the same applies to the negative
jump - it evaluates the contour after the jump appears (lines
14-21). Finally, line 24 filters the critical corners, if they do
not appear within the area of interest.

Algorithm 1 Detection Algorithm for critical corners.
Input: Laser-Scan of size n with distances Di, angle between scanning

points αscan, jump threshold parameter δth, tolerance parameter δtol ,
minimum occlusion length lmin, robot’s velocity vector −→v

Output: Critical corners point cloud CC
1: occlusion← 0
2: negativFlag← f alse
3: for i = 2 : n do
4: inbetweenDist←

√
D2

i +D2
i−1−2 ·Di ·Di−1 ·αscan . distance

between laser points
5: if (Di−Di−1)> δth and occlusion > lmin then . positiv jump
6: CC.append(Pi−1)
7: end if
8: if inbetweenDist < δtol then . accumulate occlusion
9: occlusion+= inbetweenDist

10: else
11: occlusion← 0
12: negativFlag← f alse
13: end if
14: if (Di−1−Di)> δth then . negativ jump
15: negativFlag← true
16: tempPoint← Pi
17: end if
18: if negativFlag and occlusion > lmin then
19: CC.append(tempPoint)
20: negativFlag← f alse
21: end if
22: end for
23: for c in CC do . delete CC outside area of interest
24: if |](−→v ,c)|> 90◦ then
25: CC.delete(c)
26: end if
27: end for
28: return CC

To use the described method and implement it on a
real robot, we used ROS (Robotic Operating System). We
created a node that uses laser scans as input and outputs the
corresponding critical corners of the current scene. Since we
operate within a simulation as in [1] and did a measurement
of a real supermarket with another robot [15], we can quickly
test the described method with simulated and real data. Fig. 3
provides some visualized results of the implemented detector
with simulated laser scans. It shows the tested scenario

within the simulation environment on the left side and the
corresponding critical corners on the right side. It can be
seen that the algorithm can detect all possible critical corners
(corners of shelves), even if there is a person (left side of the
center corridor) which also produces jumps in the laser scan.
The prevention of such false positives (caused by people
or other small obstacles) is achieved through the defined
minimum occlusion length. Since the robot stands still, no
critical corners are deleted to prevent false positives.

The Fig. 4 shows the detector’s output with real-world
laser scans. It can be recognized that the detector can find
the critical corners (shown as red spheres) correctly, even
if there is a person or are some cluttered contours – for
instance caused by pallets.

Fig. 3. Scenario within the simulated supermarket. Left: The simulation
environment. Right: Visualization of the detected critical corners in red and
the corresponding laser scans in green.

Fig. 4. Visualization of the detection node output with real laser scan
data in a supermarket. For a better visibility, we added the appropriate 3D
laser-scan as dark shaded points, which indicates the shelves and corridor.
Detected critical corners are shown as red spheres. The 2D laser scan is
colored in green.

B. Planner

1) Basic TEB Planner:
The TEB-planner [2], [3] is mainly a local planner2,

optimizing an initial (rough) plan, which might come from
a global planner (e.g., an A* planner). In its core, the TEB-
planner creates a factor graph where the robot poses are rep-
resented as nodes (variables) – the trajectory results from the
consecutive poses. Therefore, all constraints – like maximum
velocity, minimum distance to obstacles or holonomy – are
formulated as edges (also called factors) within the factor
graph. To get an optimal trajectory, the whole graph will be

2For completeness it should be mentioned that the TEB-planner can be
used standalone, only passing a start and a goal pose to it [16].
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Fig. 5. Left: A possible factor graph without critical corners (based on
Fig. 2b of [3]). Right: Example usage of our new multi-edge factor. Both:
Rectangles represent edges (factors) and circles represent nodes (variables).
Double circles are used for constant variables. For easier comparison basic
nodes, which correspond to the trajectory, are colored in blue.

optimized regarding the minimum penalty of all constraints
and the minimum total travel time or distance. The g2o
framework [17] is used to solve this optimization problem.

The left part of Fig. 5 gives an overview of the factor
graph used in the TEB planner. Circles like sn represent
the planned poses, pn the path waypoints (given from a
global planner) and on the obstacle position. Some common
factors (rectangles) are visualized in Fig. 5 and represent
the constraints like velocity, distance to obstacles, etc. All
factors are mainly based on a general penalty function given
in equation 1 that penalizes violation of a constraint. There,
xr denotes the penalty-bound, S represents a scaling factor,
n the polynomial order and ε a small translation value.

eΓ (x,xr,ε,S,n)'

{ (
x−(xr−ε)

S

)n
if x > xr− ε

0 otherwise
(1)

Currently, the TEB planner [2], [3] has implemented
constraints such as minimum distance to an obstacle or
a fixed maximum velocity. A specific velocity constraint
correlated with the distance to a critical corner (can be seen
as a point obstacle) is missing. Therefore we need to define
a new bound for the penalty function in equation 1, which
leads to a new edge fcc in the factor graph (right part of
Fig. 5) – the critical corner edge.

2) Proposed Extension:
The new critical corner edge should slow down the robot

if it is close to a critical corner. For this, it needs the distance
between the robot and the critical corner. Thus, the new edge
connects the position of the selected critical corner CC j and
the related pose of the robot xi. Additionally, it needs to know
the current velocity, which will be indirectly done by also
including the next robot pose xi+1 and the time difference
between both poses ∆Ti. The right part of Fig. 5 shows two
applied factors of this new edge type.

With the basic idea of the edge functionality, we can
define the exact relation between the velocity limit vlimit (the
bound of the penalty function) and the distance to the critical
corner dCC in equation 2. Intuitively, vlimit is set equal to the
given robot velocity ccvel , if dCC is equal predefined distance
ccdist – it can be seen as a minimum distance to a critical
corner passed at maximum speed. The parameters ccvel and
ccdist are indirectly relate to a worst-case time, in which

Fig. 6. Example of the allowed velocity limit where the critical corner is
at (0,0). The blue circle corresponds to the critical distance ccdist where
the velocity limit is equal to the critical velocity ccvel . Within the blue
circle, the critical corner is in full effect – limiting the velocity linear to
the distance from the critical corner. Between the blue and the red circle,
the critical corner will have some effect and the velocity limit will increase
quadratically with the distance. At the red circle, the allowed velocity is
equal to the global maximum velocity.

the robot might crash into something unseen. Based on this
assumption, the robot can get closer to the critical corner
if the worst-case time is guaranteed not to decrease. Hence,
within the range of ccdist , the edge limits the velocity linear
based on the distance dCC. To avoid that the robot is going
full speed just a bit outside the range, a power function with a
steeper slope is applied. For simplicity, we choose the square
function, but others like the cubic do the same trick. The
described velocity constraint vlimit depending on the distance
to the critical corner dCC can be visualized as seen in Fig. 6.

vlimit (dCC) = ccvel ·
(

dCC

ccdist

)κ

,κ =

{
1 if dCC < ccdist
2 otherwise (2)

After defining the new velocity constraint corresponding
the distance to critical corners, we can create the cost
function fcc as follows (S and n are equal 1):

fCC = eΓ

(
v j,vlimit, j

(
dCC, j

)
,ε,S,n

)
(3)

It describes the penalty of a given velocity v j and the
corresponding velocity limit vlimit, j (bound of the constraint)
at the jth pose of the factor graph. In Fig. 5 on the right side
the factor fcc is directly described with equation 3.

3) Fixing time differences in the TEB-planner:
This section presents a minor issue with the original TEB
planner and is not directly related to the critical corner
extension. Nevertheless, we consider it worth mentioning for
readers who work intensively with the TEB planner.

While extending and analyzing the TEB-planner, we rec-
ognized the difficulty to compare different trajectories visu-
ally. This is caused by the internal logic which automatically
adds or removes poses before calling the optimizer to solve
the factor graph. The described effect can be seen in Fig. 7
on the left side.

We provide a solution that tackles the problem by only
changing the time differences3. We use the same thresholds
for removing poses and for not changing anything. We

3See our pull request 263 within the original TEB planner repository
https://github.com/rst-tu-dortmund/teb_local_
planner/pull/263



Fig. 7. Comparing the spacing of adjacent poses. Left: due to the internal
logic of the TEB-planner, the poses have sometimes greater spacing. Right:
our implementation solve the inequality. This was necessary to allow easier
visual comparison between different generated trajectories.

also keep the insertion between adjacent poses, but only
apply it when the time difference is twice the desired value.
Additionally, we modify time differences in the remaining
cases – we set the time difference to the desired value and
add the missing time to the next pose, if possible. As a result,
the optimizer can solve the factor graph without inequality-
spaced poses.

IV. EXPERIMENTS

The following section presents two different show-cases:
The first one represents standalone experiments of the
planner extension (obstacles, critical corners and target are
predefined - no sensors are used) and the second one deals
with practical scenarios within our simulation environment
and compares driving with and without considering critical
corners. In summary: section IV-A focuses on the planning
algorithm itself and section IV-B deals with both the detector
and the planner under realistic conditions.

For our experiments with the navigation algorithm we used
the following values of parameters:
• Original TEB-planner - used default parameters except:

no inner iterations = 10
no outer iterations = 10 (3 in simulation)
dt hysteresis = 0.05

• Critical Corner Extension:
dt force equal = true
critical corner dist (ccdist ) = 1
critical corner vel (ccvel) = 0.5
critical corner inclusion dist = 2
weight cc = 1

• Critical Corner Detector:
lmin = 0.8
δth = 1
δtol = 0.4

We chose the planner parameter values ccdist and ccvel
empirically. The parameter critical corner inclusion dist de-
scribes the radius around a critical corner in which it is
considered in the factor graph. The parametrization of the
detector is based on the assumption that a person has roughly
a diameter of 0.8 meters – it is approximated by the minimum
occlusion length lmin. All remaining parameters are selected
empirically, too.

A. Planner Standalone

We perform standalone experiments to evaluate the general
performance of our extension to the TEB-planner. The aim is
to determine whether the planner takes critical corners into
account and adjusts the trajectory. In the following, we define
two possible scenarios and discuss their results:

1) The robot turns into a supermarket corridor.

2) The robot’s goal is straight ahead in a supermarket
corridor and it crosses a junction.

In both scenarios, the planning algorithm should be able
to handle critical corners by adjusting the trajectory.

Fig. 8. Top-Left: Pass a critical corner and turn into a corridor without an
additional wall. Top-Right: Pass a critical corner and turn into a corridor
with a surrounding wall. Red lines indicate the obstacle’s boundary, blue
dots represent the critical corners and the red arrows show the single poses
of the robot (distance between them relates to the corresponding velocity).
Bottom-Left and Bottom-Right: original TEB-planner without considering
critical corners.

Fig. 9. Crossing a junction with two critical corners. The meaning of the
colours is as in Fig. 8. Left: TEB-planner dealing with critical corner. Right:
TEB-planner without considering critical corners.

Fig. 8 shows the results of scenario 1) in two possible
variations. Both have an obstacle in the middle (e.g. a
shelf), but they differ in the surrounding free space: In both
left pictures of Fig. 8 is no other obstacle and the robot
has as much space as possible during the turn. Therefore,
the planner that considers critical corners pushes the poses
away from the corner and the resulting trajectory becomes a
curve (distance between the poses corresponds to the velocity
because the time interval is the same). This happens because
when the robot is closer to the critical corner, it is not allowed
to drive fast. Since the execution time should be as short
as possible, the distance between poses and critical corners
increases to ensure higher speed. The lower picture on the
left side represents the original planning behavior without
taking critical corners into account. It shows a trajectory
without sufficient distance to the corner at almost maximum
speed (equidistant arrows).

A different situation is in the upper right image of Fig. 8,
where an additional wall limits the free space, and the
planner cannot increase the distance between the poses
and the critical corner. In that case, the resulting trajectory
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Fig. 10. A: Picture on the left and middle is the visualization of the robot’s driven trajectories with and without handling critical corners. The colors
along the trajectory represent the corresponding velocity (color bar in m/s). Dark areas represent shelves of the supermarket and light-gray areas free space
(corridors). The green rectangles represent the robot’s dimension in three different risky situations. Near pose number 3, there is a walking person that
represents a dynamic obstacle. The red circles visualize critical corners which are in effect. The picture on the right shows the velocity profiles of the
two different planning methods with the corresponding three risky situations (vertical lines). B: Stop-motion-pictures of the simulation at the three risky
situations. Point 3 is shown with two pictures to visualize the consideration of the person as well.

comes closer to the corner while reducing the velocity. Such
behavior increases the safety of a mobile robot, especially
in environments with humans. The original planner in the
lower right image does not satisfy this behaviour because it
does not take blind spots into account.

The result of scenario 2) can be seen in Fig. 9, which
also represents a common situation in a supermarket or
other human environments. As in the second variation of
the first scenario in Fig. 8 (with the additional wall), the
planner cannot increase the distance between the poses and
the critical corners. Furthermore, two corners influence the
planning – one from the left and one from the right side. The
result is a reduction of speed when passing these corners. The
right part of Fig. 9 shows the planning result of the original
TEB planner without critical corners. There, the robot is
moving at maximum speed even when it crosses the junction
with possible blind spots.

Finally, the results of the standalone experiments indicate
the correct handling of critical corners by the TEB-planner.
The next section will evaluate the detector and the planning
algorithm together in a realistic simulation environment.

B. Simulated Scenarios

After evaluating the planning algorithm’s basic functional-
ity within the previous section, we combine the planner and
the critical corner detector in a realistic scenario to analyze
the overall performance. The difference to the section IV-A
is that the planner takes critical corners into account even
if they could disappear after passing the corner. When the
robot is moving and critical corners are cleared (e.g. by the
detector), the driven trajectory may differ from the planned
path. Therefore, this section evaluates this more complex
scenario.

Since we developed a simulation in [1], we can perform
repeatable experiments in a standardized and consistent envi-

ronment. This is important for a fair comparison of different
navigation methods – in our case: The comparison of the
TEB-planner with and without handling critical corners.
For qualitative comparison, we define the start and goal
position within the simulation and record the robot’s poses
over time. To demonstrate the ability to deal with visible
dynamic obstacles as well, we added a walking person in
the simulation that crosses the robot’s path.

Fig. 10 contains the visualized results of two representative
experiments with the appropriate velocity profile and stop
motion pictures of the simulation environment. For intuitive
understanding, we colored the individual positions based
on the corresponding velocity. Hence, each colored point
in the graphic represents the position of the robot during
navigation, the color itself indicates the absolute value of
the velocity (going from blue to red is going from slow to
fast). Furthermore, we highlighted three different robot’s po-
sition (green numbered rectangles) that represents situations
of potential collisions with non-visible dynamic obstacles.
Those positions are also marked in the velocity profile on
the two lower graphs in Fig. 10.

Firstly, the images show that the TEB planner can gen-
erally handle visible dynamic obstacles – near position 3,
a walking person within the simulation crosses the robot’s
path and the robot considers it without reducing speed (based
on the person’s predicted future path). Secondly, it can be
seen that our proposed method produces safer trajectories
compared to the planner without critical corners. At each
of the three marked points, the planner with critical corners
decreases the speed to reduce the collision risk with potential
non-visible dynamic obstacles. In particular, the velocity
profiles show that the original TEB planner does not consider
critical corners and has high velocities at the important
locations. On the website where we provide the source code,
there are also videos of the simulated scenarios for better



understanding.

V. CONCLUSIONS

Prior work has developed several possible strategies for
solving the occlusion problem as described in this paper
(critical corners imply occlusions). These approaches differ
in adapting the environment’s map, the robot’s velocity or
the trajectory itself. Such methods basically provide the
functionality to incorporate non-visible dynamic obstacles
but are not able to adapt their path to visible dynamic
obstacles as in the TEB planner. In this work, we have closed
the gap of a planner that considers visible and non-visible
dynamic obstacles and modified the common TEB-planner,
capable of dealing with static and dynamic obstacles, by
extending its functionality to include critical corners (and
the resulting blind spots). In addition to this extension, we
also created a detector for critical corners, which indicates
such blind spots, based on given raw laser scans and ray
tracing methods. Experiments show that our method can
handle occlusions and increase the safety of a mobile robot
in both theoretical evaluations (section IV-A) and realistic
experiments (section IV-B).

Either the planner tries to increase the distance to a critical
corner (it improves the visibility and avoids surprising mo-
ments) or the planner decreases the velocity if the free space
is limited. Future work includes transferring and evaluating
the method to another domain with a different unstructured
environment (not a supermarket).
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