
Accepted version of a publication at Towards Autonomous Robotic Systems (TAROS) 2020. The
final authenticated version is available online at Springer via
https://doi.org/10.1007/978-3-030-63486-5_13.

Building a navigation system for a shopping
assistant robot from off-the-shelf components

Kenny Schlegel, Peer Neubert, and Peter Protzel

Chemnitz University of Technology, Chemnitz, Germany
kenny.schlegel@etit.tu-chemnitz.de

Abstract. A primary goal of developing robots is to relieve people from
hard work or help them in difficult situations. An example for such a sit-
uation is a shopping assistant robot that supports people who need help
in their daily life. Such a mobile robot has to be able to deal with dy-
namic environments (moving people) and navigate safely and efficiently.
In the present paper, we provide a system description of our naviga-
tion strategy for an assistant robot that is developed for autonomous
operation in a supermarket. Creating an appropriate experimental en-
vironment can be quite challenging, and access to the application place
can be limited (e.g., a real supermarket). Therefore we complement our
real robot with a digital twin and describe our approach to create a
suitable simulation of a real-world supermarket. Further, we discuss how
off-the-shelf software can be used to implement a three-stage naviga-
tion strategy (planing a route with a TSP solver, global path planning,
and incorporating dynamic obstacles in an optimization-based TEB ap-
proach) that is suitable for environments with dynamic obstacles. The
paper presents our approaches to create a 3D map from 2D floor plans,
as well as the preprocessing of the sensor data for usage in the TEB
planner. Finally, we provide our hands-on experience with implementing
a complex state-machine using the graphical RAFCON framework.

Keywords: mobile robots · dynamic environments · navigation.

1 Introduction

As a result of the technical progress, robots are going to be more widely used
not only in industrial fields but also in people’s daily life. They can be designed
as mobile platforms to make people’s lives easier. One application scenario is a
shopping assistant for supermarkets. In the context of ambient assisted living,
such robots can be helpful for older or disabled people, but also for other con-
sumers shopping can become more convenient. For example, the robot provides
product information or their position in the market, works as a guide, or as a
shopping cart, which follows a customer. However, a major goal of this devel-
opment is autonomous shopping: with a list of items, the robot collects them
efficiently and bring them to the customer or checkout.

Supported by the Federal Ministry of Education and Research, Germany.



2 K. Schlegel et al.

Moving people, shopping carts, and narrow shelves make autonomous navi-
gation within a supermarket quite challenging. The requirements for the robot
are high: it should be fast, efficient, and safe. Compared to applications in au-
tonomous logistic centers, a supermarket is less constraint and especially naviga-
tion in the vicinity of moving people in an efficient way is difficult. It requires an
extensive perception of the environment and sophisticated planning algorithms.
But such an unconstrained system offers the opportunity to work in unpre-
pared environments and has a wider applicability. Beside robot application like
Home-care, a shopping assistant robot must be fast while ensuring safety, since
costumers usually have limited time. This leads to a difficult trade-off between
speed and safety. Furthermore, in order to fulfill complex tasks, a shopping as-
sistant robot has to have a large set of skills (autonomous shopping, leading,
following, etc.) - the coordination and ordered execution of these skills, as well
as monitoring and coordinating the various hardware and software modules are
essential. In particular, the exception handling requires a robust robot control
architecture.

Although robots designed for such complex tasks are typically customized
and vary in a lot of details, the design decisions and challenges when building
and programming such a robot are quite similar. In this paper, we present our
experiences in building the navigation module for such a shopping assistant robot
in order to facilitate the development of other robots for similar tasks. This work
is part of an ongoing larger project to create a fully functional shopping assistant
robot that is capable of navigating in crowded environments and autonomously
collect a list of shopping items. This paper presents the following aspects of our
shopping robot1:

– Sec. 2.1 provides a short presentation of the custom made robot and its
sensor layout designed for the complete autonomous shopping task.

– Since navigating a larger robot in the vicinity of humans is dangerous, ex-
tensive testing and evaluation of the navigation algorithms is mandatory.
Sec. 2.2 describes how we complement the real robot with a digital twin in a
simulated supermarket environment. This simulation can later also be used
for visualization purposes for customers.

– To circumvent the (still existing) challenges of SLAM, we present a semi-
automatic procedure to create 3D maps from a priori known 2D floor plans
in Sec. 3.1. These maps are used to create the simulation, as well as for
navigation of the real robot.

– The core navigation capabilities result from a combination of three off-the-
shelve components: we use a state-of-the-art optimization-based time elastic
band planer in combination with a TSP solver and a global A* planner to
approach navigation tasks in supermarket environments (see sec. 3.1).

– Sec. 3.2 presents hands-on experiences with the recently published RAF-
CON [2] framework to create, run, and monitor state-machines (in particu-
lar, hardware-sensor monitoring).

1 Videos and other supplementary material can be found on our website https://

www.tu-chemnitz.de/etit/proaut/shopping-robot



Navigation system for a shopping assistant robot 3

The purpose of the paper is to provide an example of a navigation system to
support researchers and developers who want to design a robot for navigation in
dynamic environments, especially those with humans. The list of similar exam-
ples of robots is not very long. A historical milestone and the first mobile robot
that could navigate autonomously was Shakey the robot [14]. Although we still
use a variant of Shakey’s A* planner in our system, since then, technology and
software have been improved, and further applications became possible. There
were mobile robots in the field of human interactions, like the RHINO robot [3],
which works as an interactive tour guide in a museum or the LINO robot [10]
as an example of a domestic user interface robot. Based on these early-stage
systems and more recent developments, applications of service robots in more
complex environments became possible. For instance, the SPENCER robot [21]
can support people at a large airport. Such a system is similar to our shopping
assistant robot since both operate in dynamic environments with moving people.
SPENCER uses multimodal people tracking with a laser scanner and RGB-D
cameras to estimate people’s motion and accordingly adapt the planned paths
based on an RRT* planner. Also related is the STRANDS [9] project that deals
with long-term autonomy in dynamic environments. Cheng [4] describes another
system in a supermarket environment that can grasp items and put them into the
bag. They used an A* algorithm to compute waypoints to navigate the robot.
However, since the main task is focused on grasping, the navigation strategy
does not provide specific dealing with dynamic obstacles.

All these presented references have individual requirements and different im-
plementations. Although our system shares some properties with the existing
approaches, there are significant differences that are supposed to provide addi-
tional insights and guidance for developers of new systems. In particular, we see
value in the parallel usage of 3D maps created from floor plans in simulation
and real-world navigation, as well as the integration and experiences with the
recently presented TEB planner as well as the RAFCON framework. Although
we build on off-the-shelve components, they require modifications and exten-
sions to work in combination to approach the challenging task of navigation in
supermarket environments.

2 System Components

In the following two sections, we will describe the system components, starting
with the hardware platform, followed by our simulation environment.

2.1 Robot Platform

The complete robot system prototype is visualized in figure 1. It shows the real
system on the left and its digital twin for our simulation on the right (described
in section 2.2). The robot is based on an omnidirectional wheel drive. This is an
important design decision since it significantly simplifies acting in a narrow and
crowded environment like a supermarket, in particular since picking items from
shelves requires small motions parallel to the shelf. The omnidirectional wheel
drive allows us to perform them without additional rotations of the platform.
The size of the platform is limited to the dimensions of a regular shopping cart.
For perception, we use the following sensors:



4 K. Schlegel et al.

RGB-D 
cameras

360° RGB 
camera

2D Laser-
scanner

Tablet

Robot arm

Cover / 
Mecanum
Wheels 

Fig. 1. left: the real robot system, right: the digital twin in simulation environment.

– Two 2D laser-scanners (Hokuyo UTM-30LX-EW), which are located on di-
agonal corners of the case to get a 360◦ field of view. They are used for
localization and collision avoidance. They are mounted very low (6cm over
the ground) in order to perceive the bottom panel of the supermarket shelves.

– One inertial measurement unit (IMU MTI-3-8A7G6-DK) located in the cen-
ter of the robot to improve the wheel odometry based on wheel encoders.

– In total, there are eight RGB-D cameras (Realsense D435), arranged in two
horizontal rings of four cameras to allow 360 degree perception and a large
vertical field of view.

The main exteroceptive sensors for navigation and collision avoidance are the
laser scanner and the lower ring of RGB-D cameras. The second RGB-D camera
ring is primarily used for interaction with potential customers by recognizing
intentions with an eye gaze tracking system described in [13]. Although it is part
of this shopping robot, this interaction system is beyond the scope of this paper.
Eight RGB-D cameras produce high data traffic on the hardware. Grunnet-
Jepsen et al. [8] provide a system description with up to four cameras. However,
our experience shows that it is possible to use simultaneously eight D435 cameras
with a PCIe extension for USB3.0 (DELOCK 89297 PCIe card mounted in an
Aprotech GOLUB 5000 i7 industry PC) if the resolution and frequency are set
to a mid-level (480x270 pixel depth resolution and 15 fps).

Furthermore, on top of the RGB-D camera rings, there is a 360 degree RGB
camera to detect people and their skeleton in images. In addition, the robot
system also has a tablet to interact with users, which is located in an ergonomic
position, and a ’Panda’ robot arm from the company ’Franka Emika’ to grasp
objects and put them into the basket. However, the components that are not
related to navigation are not further discussed in the present paper.

2.2 Simulation environment

Since it provides a more accessible test environment in contrast to a real super-
market, we use a simulation environment to develop and evaluate the algorithms



Navigation system for a shopping assistant robot 5

parallel to the real robot platform. We decided to use V-Rep [17] as simulation
software2 based on the publication [15] that compares three different simulation
frameworks - V-Rep has the overall best evaluation. V-Rep has the advantages
of a large object library, for example people who can be static or dynamic (well
suited for supermarket environments) and the simple ROS compatibility with
an appropriate plug-in. To create the 3D model of the simulated supermarket,
we evaluated two approaches:

1. Using 3D point cloud SLAM We did a 3D measurement of a real
supermarket with another robot [11] that is equipped with the 360 degrees laser
scanner from [20] to produce a real representation of the market. After getting
several 3D scans of different places in the supermarket, we fused these to one map
with the ICP registration algorithm and aligned RGB images with the 3D point
cloud to obtain a colored point cloud representation of the market. Afterward,
we created a mesh from the points to use it in the simulation. Figure 2 shows
the result of the point cloud and the constructed mesh (for visualization, the
image contains both - from left to right is going from the point cloud to the
mesh (shown in gray tones)).

2. Creating 3D maps from available 2D floor plans The target shop-
ping assistant robot is developed in cooperation with a supermarket company.
Thus, we are in the comfortable position to have floor plans available that also
include a layout of the larger furniture (e.g., the shelves). If such robots are de-
ployed in real supermarkets or other public places for practical usage, this will
presumably also be based on corporations with the owners of these places; thus,
the availability of floor plans is a reasonable assumption.

To create a 3D model with primitive geometric objects from the 2D floor
plan, we conduct the following steps:

1. We use standard image processing tools to transform the floor plan to pre-
defined color code for the different semantic objects and categories (e.g., the
floor has the color white, all shelves of a particular type have another color
value, and so on). This requires some manual configuration and supervision.

2. Based on our previous work [16] we can create a 3D model automatically
from the 2D color-coded image (basically, each area in the 2D image with a
specific color becomes a 3D object with the corresponding predefined height).

3. Finally, texturing all these primitive geometric objects with supermarket
images creates the environment visualized in figure 3.

When creating the simulation environment based on the mesh obtained from 3D
SLAM in the real supermarket, we faced three challenges: First, error correc-
tion and loop closure detection in our point-cloud SLAM required some careful
human intervention. Second, the created mesh needs a high effort to smooth
some irregularities and reducing the complexity of the surface. The third was
the high resolution of the created mesh, which made the simulation very slow
and increased the computation time for rendering and sensing. Although all
three challenges can be addressed with more sophisticated algorithms and more
manual intervention, we found the alternative approach based on the 2D floor

2 version 3.5; latest version (CoppeliaSim) does not work with the used V-Rep plug-in



6 K. Schlegel et al.

Fig. 2. The result of the supermarket
pointcloud and its resulting mesh (left
to right is going from points to surface).

Fig. 3. The simulation environment of the
supermarket with V-REP.

plans to be preferable: The 3D representation based on simple geometric ob-
jects allows a sufficiently detailed representation of the static structure of the
market while it is still possible to simulate with low computational effort. The
high-resolution 3D model provides a very detailed and realistic appearance of
the real world but is not suitable for a simulation with V-Rep. For instance, the
simple 3D map has with 2500 vertices only 0.02% of the size compared to the
high-resolution mesh visualized in fig 2. Even if the detailed mesh is reduced
in size, the simulation with the simple 3D model is still resource-hungry. For
instance, simulating with a frequency of 10Hz on an i7-8550U CPU is possible in
real-time but requires a complete CPU kernel. The scripts of the sensors (laser
and camera data-processing) need the most CPU power.

3 Software Components

The presentation of the software architecture is again divided into two sections:
3.1 provides information about the navigation software and 3.2 the concept of our
state control (state machine). The implementation uses ROS in version Kinetic.

3.1 Navigation

Where I am? (Localization) As described in section 2.2, we create a map from
available floor plans for simulation. We use the same map to create an occupancy
grid map for the localization of the robot in the supermarket. In combination
with the well known Monte Carlo localization from [7] and the available ROS
implementation3 we are able to localize the robot using the 360 degrees 2D laser
scans. The repetitive structure of supermarkets makes the initial global localiza-
tion particularly challenging. The traversal of a relatively long route might be
required to solve localization ambiguities due to visual aliasing. We circumvent
this problem by assuming a known start position of the robot. In practice, this
could be, e.g., the power charger station. Additionally, we improve the motion
estimation of the wheel odometry by combination with IMU measurements in a
Kalman filter based on an available ROS-implementation4. We did experiments
in a real supermarket (with the robot from [11]), which showed that it is possible

3 Brian P. Gerkey, AMCL, ROS Wiki, http://wiki.ros.org/amcl
4 Tom Moore, robot localization, ROS Wiki, http://wiki.ros.org/robot\

_localization



Navigation system for a shopping assistant robot 7

to hold the localization even if the initial floor map is sometimes unrelated to the
real measurements (in particular, there were unknown and temporary shelves in
the market).
Where do I need to go? (Planning the route) In the autonomous shopping
use-case, the user selects several items on the tablet and it sends a list of articles
and their positions to the robot. Then, the robot has to find the shortest route
to collect all items as quickly as possible. This optimization problem is called
’Traveling Salesman Problem’ (TSP) and is intensively studied in particular in
the field of operations research. An approximate solution can be achieved with
the nearest neighbor method described in [5]. It is a deterministic heuristic pro-
cedure that starts at one point and selects the next item based on the smallest
distance to all other open items. This greedy algorithm produces only an approx-
imated solution and not necessarily an optimal order of all items. Besides the
nearest neighbor method, there are also other solvers of the TSP. For instance,
an optimal TSP solver called CONCORDE5, which outputs the item order with
the shortest entire path. We use this solver in combination with a ROS package6

for our supermarket robot system. Since the computing time for exactly solving
the TSP can increase exponentially, it is important to know when it gets too
time-consuming and how are the difference of the lengths of the entire paths
compared to the approximate solver. Experiments in our supermarket environ-
ment with 20 items show that the exact Concorde TSP solver needs roughly 500
ms more than the approximate TSP solver (nearest neighbor) with less than 1
ms. A significant growth of computing time with the Concorde solver starts at
round about 60 to 80 items. Additionally, it has to be noticed that the most time-
consuming step is constructing the distance matrix. An A* planner calculates
distances between all possible points and saves these in a matrix. This matrix
can be precomputed concerning all item positions in the market and is given
while solving the TSP problem to save computing time. However, with a view
on the average number of items that are bought in the supermarket per stay, we
recognize that the computing time of the solver is negligible - only an average
of 10 items are purchased per visit7. Finally, a comparison of the entire path
lengths indicates that between 10 and 60 items, the Concorde solver calculates
a path that is 15% shorter than the path from the nearest neighbor approach.
Based on these significant differences and the relatively short computing time
of the exact solver within the range of typical human behaviors, the exact TSP
solver can be used for creating a global order in the market. One example of the
route planning with 16 items can be seen in figure 4 on the left image - it is the
first step of navigation planning.
What is the fastest way to the next item? (Path and motion plan-
ning) If we have the correct order of all items, we have to navigate between the

5 Applegate, D. et al., ”Concorde tsp solver”. http://math.uwaterloo.ca/tsp/

concorde.
6 Richard Bormann, ipa building navigation, http://wiki.ros.org/ipa\_building\
_navigation.

7 Statistic from our cooperation partner of the supermarket



8 K. Schlegel et al.

Fig. 4. Visualization of the three steps of navigation - left: calculate the route with
TSP solver to collect all items; middle: result the global plan to the next item with
A*; right: motion planning with TEB. Pillars are recognized people.

subgoals. The whole path and motion planning of our system is based on the
ROS navigation stack8. We use an A* planner on the grid map from the given
floorplan of the supermarket (enhanced with current sensor data) to get the
global path from the current position to the next item according to the results
of the TSP (visualized in the middle image in figure 4 with a blue line as global
path). After having our global path from the current position to the next item,
we need a planner that reacts to unknown obstacles (static objects which are
not in floor plan) and dynamic objects like people. A local planner can realize
such behavior - it uses the global plan and adopts it regarding currently seen
obstacles. In the literature are existing ready-to-use algorithms; for example,
the dynamic windows approach (DWA) planner [6]. It is also part of the ROS
navigation stack. The DWA planner is a sample-based trajectory generation al-
gorithm that samples a set of velocities for translation and rotation (concerning
the dynamic constraints of the robot). These hypotheses are evaluated with the
so-called ’trajectory rollout’ that simulates a path for all possible velocities and
compares them with the current environment for potential collisions. It results
in a score, and the best trajectory for the next time step can be chosen. A dis-
advantage of this planner is that it cannot predict a more complex path to avoid
collisions of dynamic obstacles in the future - it is rather a reactive planner with
a constant velocity model.

A more suitable planner to incorporate dynamic obstacles is the more recent
TEB (time elastic band) planner from [19] and [18] with its ROS implemen-
tation9. It is an online optimization algorithm based on a hypergraph (factor
graph) and optimizes towards a minimum execution time. All nodes within the
graph are waypoints (sampled from the solution of the global A* planner), and
all edges represent the penalization functions (e.g., close to an obstacle). The cur-
rent implementation provides an extension to incorporate dynamic obstacles and
adapt the trajectory with the optimization of the factor graph. It enables long
term planning and creates a path that avoids any collisions (static or dynamic)
efficiently. In addition, the implementation of the TEB planner also includes
the calculation of the velocities (path execution). Therefore, we chose the TEB
planner for our local navigation within the supermarket.

8 Michael Ferguson, navigation, ROS Wiki, http://wiki.ros.org/navigation.
9 Christoph Roesmann, teb local planner, http://wiki.ros.org/teb\_local\

_planner.



Navigation system for a shopping assistant robot 9

Concurrent processes 

Master

initial localization find potential user interaction receive and edit
shopping list

autonomous
shopping

Watchdog (Interrupts) Interrupt
decider

Fig. 5. High-level concept of state control within the statemachine.

However, it is essential to preprocess and provide the map and sensor data
in a suitable way. The TEB planner uses two inputs of obstacles: one static and
one dynamic. A local costmap, which is a gridmap with occupancy probabilities,
represents the environment for static navigation. In contrast, a list of object
descriptions contains all dynamic obstacles with properties like position, velocity,
and appearance (shape). We developed a pipeline to separate our environment
perceptions, which is based on the laser scanner and the RGB-D cameras. The
first step is to detect and locate humans in our environment. As described in
section 2.1, we are planning to use a 360 degrees RGB camera to detect people
around the robot. Since it is work in progress, we use a simple laser scanner
detector from [12] that can locate people in a 2D laser scanner (similar to the
approach of [21] and [9]). In combination with a Kalman filter, we can use it as a
basic human tracker. Another way is to use the ground truth positions from the
simulation environment - it provides an error-free evaluating of the navigation
algorithms. Once we have all the positions of the people in the environment, we
can go to the next step: create the dynamic obstacle description. Based on the
information about the position and velocity of the laser tracker, we used these
to create the description for the TEB planner.

The third step of our preprocessing pipeline is constructing the appropriate
static costmap. It should contain no obstacles, which were already described
in the obstacle message (including the people). To do so, we have to remove
the points assigned to humans from the laser scan and RGB-D point cloud (we
denote the input point cloud as P ). We did this by grouping the point cloud P
with an euclidean clustering. Afterward, we calculated for all clusters the centers
and compared them to the given people positions. If one center is closer than
a predefined threshold, it is marked as assigned and removed from the point
cloud P - the result is a non-person point cloud PnP . Notice, such a threshold-
based method can be sensitive to the selected value (hyperparameter) and can
remove clusters that are not related to a person (e.g., a person is standing close
to a wall). To prevent such behavior with the point-cloud clustering, we set a
maximum number of points per cluster - thus, merging of people and non-people
objects becomes less likely, and more importantly, less harmful (since only small
additional set of points is removed).

Now, the last step is to create a costmap from point cloud PnP . For that,
we use a so-called ’Nearfieldmap’ from [22], which accumulates the input (our
PnP ) over a specific time interval in a discretized 3D representation (voxel) -



10 K. Schlegel et al.

it prevents outliers from camera noise. We recognized that it would be more
suitable to apply the clustering separately to the laser and the cameras, and
fuse these two data into the nearfieldmap. It ensures a better parameterization
of the sensor data probability (the laser is more reliably than the cameras).
After a projection to the 2D plane, we obtain a 2D costmap with all non-person
obstacles and can use it as the input of the TEB planner. Besides, methods to
directly remove the people from the 2D costmap did not work because regions
of the people are sometimes connected with other non-people objects (through
projection from 3D to 2D). It leads to removing objects like walls or other
obstacles if the person is to close to it.
With such a preprocessing pipeline, it is possible to use the TEB planner for
navigation in a dynamic environment with people. Figure 4 visualize this third
step on the right sight with a local path shown in green (robot avoids the person).
Further results and visualizations can be found on our web-page1.

3.2 State control

After describing the robot and its appropriate simulation environment and creat-
ing a navigation strategy, we want to provide our hands-on experience concerning
state machine design. Such a task control software is necessary to control the
order of all tasks and subtasks (e.g., localization, global planning, or reaction
on inputs by the customer). One well-known framework to create a state ma-
chine within ROS is SMACH [1]. It is based on python scripts that execute
specific tasks and return values indicating success or failure. One disadvantage
of SMACH is the lack of tools to reduce the complexity of the state machine.
Debugging in case of errors is hard and strongly benefits from a visualization of
the states. Even though SMACH provides a graph visualization of all states and
their connections, it cannot be used to intervene when the machine is running,
and editing of the code is only possible in the concerning python script, not in
the visual graph.

Another recently published framework for efficient and transparent program-
ming of a state machine is RAFCON [2]. It is a graphical tool to construct hierar-
chical tasks and allows real-time intervention and monitoring. All states contain
a Python script that represents the executed code if the state is active. Based
on the simple and clear designing as well as the monitoring while execution, we
decide to use RAFCON to create our state machine.

Figure 5 visualizes the high-level concept of the entire system and how it is
divided into several parts. The head of all tasks is the Master state that decides
the order of given subtasks which are:

1. initial localization (robot moves to localize with MCL, see 3.1)
2. find potential user (work in progress; currently the nearest person will be

selected as a potential user - the robot rotate to it)
3. interaction (the robot starts an interaction with a selected person by the

tablet)
4. receive and edit shopping list (the user enters a shopping list for autonomous

shopping, and the robot saves it for navigation)
5. autonomous shopping (the robot plans the route and executes it)



Navigation system for a shopping assistant robot 11

Since the project of the shopping assistant robot is not finished yet, the num-
ber of possible states will be increased (e.g., following a person) and adopted
(interaction state gets more modalities like verbal communication). We want to
emphasize that each state, like the autonomous shopping, consists of multiple
subtasks summarized into on hierarchical state. Beside the Master and its tasks,
the state machine has a concurrent “Watchdog” state that monitors all processes
and reacts to interrupts or errors in the system. Additionally, user interaction
on the robot mounted tablet could trigger interrupts (e.g., a customer press the
stop button) and the state machine has to react on it. If such an interrupt arises,
the following state ’Interrupt decider’ creates a specific code and sends it to the
Master that can react (for instance, repeat a state, go to a specific state, etc.).
Another important class of interrupts comes from our sensor monitoring soft-
ware. Basically, this is implemented as a ROS node that regularly checks the
sensors concerning their connection, driver and data. If something goes wrong,
the node sends an interrupt, and the state machine decides an appropriate reac-
tion; for example restart the driver of the sensor. This monitoring node turned
out to be of very high value in a complex robotic system with many sensors and
a large number of different soft- and hardware components.

The combination of the presented high-level concept and the RAFCON frame-
work allowed to create a complex state machine with monitoring of the hardware
and reacting on signals from the tablet interaction. Based on our experience with
both, SMACH and RAFCON, we find that RAFCON provides a better solution
for complex task control then SMACH, in particular since RAFCON provides a
user-friendly GUI with several options for better debugging (step by step exe-
cution, go backwards, set breakpoints, etc.).

4 Conclusion and discussion

The paper provided an overview of the navigation strategy of our shopping as-
sistant robot. We started with describing the system in both the real hardware
platform and the simulation environment. We discussed how an available floor
plan can be used to create a suitable simulation environment and discussed
why we preferred this over a SLAM based approach. Such a simulation benefits
from easier access to the test environment and ensures repeatable test scenarios
(e.g., people are always moving on the same path and react consistently). After
describing the hardware components and the simulation, we presented the soft-
ware components, particularly the three-stage navigation process that consists
of planning the most efficient route with a TSP solver, generate a global path
to the next subgoal and plan the motion with the local TEB planner afterward.
Using the TEB planner in an environment with people as dynamic obstacles
was not described in the literature yet and required a specific preprocessing of
the obstacle perception. With our presented concept, we can use the TEB plan-
ner in the presence of humans. However, future work includes an extension to
the ’freezing robot’ problem in dense human crowds. The current system is a
promising basis for addressing this problem in the ongoing research project. For
example, the factor graph representation in the TEB planer provides a general



12 K. Schlegel et al.

framework to include additional information about predicted human motions
and their uncertainty in the planning process.

Finally, we presented why and how we use RAFCON to implement the high-
level concept of handling multiple states (tasks) and monitoring of our sensor
hardware as well as the interrupts, e.g., triggered by user interaction on the
tablet. The implementation with RAFCON showed beneficial properties like
user-friendly GUI, intuitive debugging and rapid development.

References

1. Bohren, J., Cousins, S.: The SMACH High-Level Executive [ROS News]. IEEE
Robotics Automation Magazine 17(4), 18–20 (2010)

2. Brunner, S.G., et al.: RAFCON: A graphical tool for engineering complex, robotic
tasks. IEEE International Conf. on Intelligent Robots and Systems (2016)

3. Burgard, W., et al.: Experiences with an interactive museum tour-guide robot.
Artificial Intelligence (1999)

4. Cheng, C.H., et al.: Design and implementation of prototype service robot for
shopping in a supermarket. In: ARIS (2018)

5. Domschke, W., Drexl, A., Klein, R., Scholl, A.: Einführung in Operations Research.
Springer Gabler, 9 edn. (2015)

6. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collisin avoid-
ance. IEEE Robotics & Automation Magazine 4(1), 23–33 (1997)

7. Fox, D., et al.: Monte Carlo Localization: efficient position estimation for mobile
robots. In: National Conf. on Artificial Intelligence (1999)

8. Grunnet-Jepsen, A., et al.: Using the Intel ® RealSense TM Depth cameras D4xx
in Multi-Camera Configurations. Tech. rep. (2018)

9. Hawes, N., et al.: The STRANDS Project: Long-Term Autonomy in Everyday
Environments. IEEE Robotics and Automation Magazine 24(3), 146–156 (2017)

10. Kröse, B.J., et al.: Lino, the user-interface robot. In: European Symposium on
Ambient Intelligence. pp. 264–274. Springer (2003)

11. Lange, S., et al.: Two autonomous robots for the dlr spacebot cup -lessons learned
from 60 minutes on the moon. International Symposium on Robotics, ISR (2016)

12. Leigh, A., et al.: Person tracking and following with 2D laser scanners. Proceedings
- IEEE International Conf. on Robotics and Automation (2015)

13. Lorenz, O., Thomas, U.: Real Time Eye Gaze Tracking System using CNN-based
Facial Features for Human Attention Measurement. In: VISIGRAPP (2019)

14. Nilsson, N.J.: Shakey the Robot. SRI INTERNATIONAL MENLO PARK CA
(1984), https://www.sri.com/work/publications/shakey-robot

15. Pitonakova, L., et al.: Feature and performance comparison of the v-rep, gazebo
and argos robot simulators. In: Towards Autonomous Robotic Systems (2018)

16. Poschmann, J., et al.: Synthesized semantic views for mobile robot localization.
European Conf. on Mobile Robots, ECMR (2017)

17. Rohmer, E., et al.: Coppeliasim (formerly v-rep): a versatile and scalable robot
simulation framework. In: Intl. Conf. on Intelligent Robots and Systems (IROS)
(2013)

18. Rösmann, C., et al.: Trajectory modification considering dynamic constraints of
autonomous robots. Robotik 2012 pp. 74–79 (2012)

19. Rösmann, C., et al.: Efficient trajectory optimization using a sparse model. 2013
European Conf. on Mobile Robots pp. 138–143 (2013)



Navigation system for a shopping assistant robot 13

20. Schubert, S., et al.: How to build and customize a high-resolution 3D laserscan-
ner using off-the-shelf components. In: Towards Autonomous Robotic Systems
(TAROS) (2016)

21. Triebel, R., et al.: SPENCER: A socially aware service robot for passenger guidance
and help in busy airports. Springer International Publishing (2016)

22. Weissig, P., Protzel, P.: Properties of timebased local OctoMaps. In: Workshop on
State Estimation and Terrain Perception for All Terrain Mobile Robots held in
conjunction with IROS (2016)


