
Comparison of Data Efficiency in Dynamic Routing for Capsule Networks

Kenny Schlegel 1 Peer Neubert 1 Peter Protzel 1

Abstract

Capsule Networks are an alternative to the con-
ventional CNN structure for object recognition.
They replace max pooling with a dynamic rout-
ing of capsule activation. The goal is to better
exploit the spatial relationships of the learned
features, not only to increase recognition perfor-
mance, but also improve generalization capability
and sample-efficiency. Recently, two algorithms
for dynamic routing of capsules have been pro-
posed. Although they received a lot of interest and
they are from the same group, an experimental
comparison of both is still missing. In this work
we compare these two routing algorithms and
provide experimental results on data efficiency
and generalization to increased input images. Al-
though the experiments are limited to variants
of the MNIST dataset, they indicate that the ap-
proach of Sabour et al. (2017) is better at learning
from few training samples and the EM routing of
Hinton et al. (2018) is better at generalizing to
changed image sizes.

1. Indroduction
Convolutional neuronal networks (CNN) showed very good
results in the fields of object recognition and classification.
For instance, in 2012, the well-known AlexNet classifica-
tion network (Krizhevsky et al., 2012) was able to distin-
guish 1,000 classes of the ImageNet dataset (Jia Deng et al.,
2009). Due to their convolutional character, CNNs can reuse
learned weights across the whole image. This increases sam-
ple efficiency and creates a translation equivariance of the
responses on a single layer. However, the combination of
these responses on higher CNN layers doesn’t retain this
property: changing the relative positions of parts of objects
might result in completely different representations at the
higher layers. This highly increases the required amount
of training samples. Typically, CNNs address this issue
by using max-pooling after convolutional layers to obtain

1Dept. of Electrical Engineering and Information Technology
TU Chemnitz, Germany. Correspondence to: Kenny Schlegel
<scken@hrz.tu-chemnitz.de>.

invariance towards small spatial distortions of the input. Un-
fortunately, this invariance property of max pooling causes a
loss of spacial information about the recognized parts. Fur-
thermore, non maximal responses are suppressed without
incorporation of feedback from higher layers. To address
both issues, Hinton et al. (2011) proposed Transforming Au-
toencoders to explicitly estimate the relative transformation
of object parts instead of ignoring this information using
pooling. The extension of this inverse-graphics idea of es-
timating parts and their mutual relation to a deep-learned
hierarchy is called a Capsule Network. Implementing this
novel approach poses the question how information of parts
is combined to form the next layer in the hierarchy. In Cap-
sule Networks, this is called dynamic routing. Recently,
Sabour et al. (2017) and Hinton et al. (2018) proposed two
approaches to address this task.

This paper compares these two approaches. In particular, we
evaluate their data efficiency in comparison to two baseline
CNNs using two tasks: (1) Classification with increasing
amount of training data and (2) generalization to larger
images based on training on small patches. In the following
section 2 we start with a short theoretical comparison of
both routing approaches and present experimental results in
section 3.

2. Routing Procedures
This section describes the Capsule Network approaches
from Sabour et al. (2017) and Hinton et al. (2018). A sum-
mary of the comparison can be found in the table 1. For
both, we describe two groups of properties:

• Capsules sections describe the representation, interpreta-
tion of instantiation parameters, and computation of the
activation of capsules.

• Routing sections provide properties of the routing pro-
cedures: computation of agreement, transformation, and
regularization.

2.1. Dynamic Routing I
The first dynamic routing procedure by Sabour et al. (2017)
demonstrates the idea of routing by agreement. It con-
tains groups of neurons, named Capsules after (Hinton
et al., 2011), and the routing algorithm is based on cosine-
similarity of vectors.



Comparison of Data Efficiency in Dynamic Routing for Capsule Networks

Capsules represent a visual entity in an image with particu-
lar properties, encoded by a set of instantiation parameters.
The interpretation of these parameter vectors by Sabour et al.
(2017) is quite different from Hinton et al. (2011), since the
latter contains an explicit definition of pose parameters in
the transforming auto-encoder. In contrast, the instantiation
parameters in the first routing variant by Sabour et al. (2017)
are rather abstract and, for example, lack the interpretability
of the position due to the application of non-linear squash-
ing. The propagated activation of a low-level capsule to
a higher capsule is define by computing the length of the
representation vector in combination with the squashing
function. Every capsule has an explicit receptive field to
recognize a visual entity.

Routing by agreement is implemented by iteratively updat-
ing couple-coefficients between low- and high-level cap-
sules. The couple-coefficients are based on the cosine simi-
larity of a transformed low-level capsule and its correspond-
ing higher-level capsule output. If there is a high similarity,
the couple-coefficient is increasing iteratively in the routing
algorithm. This feedback loop is similar to the explaining
away in (George et al., 2017). All capsules in a layer receive
predictions of all capsules in the layer below and send feed-
back to them. Routing with softmax is applied to select the
most likely object hypothesis. For network regularization,
Sabour et al. (2017) combine the routing with an image
reconstruction during training.

2.2. Dynamic Routing II
The second dynamic routing approach by Hinton et al.
(2018) is based on a maximum-likelihood estimator, the
Expectation Maximization algorithm.

Capsules represent visual entities similar to the first routing
(Sabour et al., 2017) but provide more explicit interpreta-
tions of the parameters. A capsule contains an activation
unit and a 4× 4 pose matrix which is intended to contain in-
terpretable pose parameters. However, Hinton et al. (2018)
do not explicitly ensure the pose meaning of the matrix en-
tries during training. Only a coordinate addition of the shift
parameters in the last capsule layer enables the interpreta-
tion of the position parameters.

Routing by agreement is implemented with a expectation-
maximization clustering. It iteratively fits a Gaussian distri-
bution to the votes from lower capsules to the higher layers.
The couple-coefficients to higher capsules are computed
from the probabilities of capsules within the estimated clus-
ters and their activations. A major difference to routing al-
gorithm I is the receptive field of transformation and routing.
In (Hinton et al., 2018) transformations are like convolu-
tions: votes and also routing are computed within a specific
receptive field. This significantly reduces the number of
parameters compared to routing procedure I. In contrast to

Table 1. Comparison of dynamic routing approaches

dynamic rout-
ing I (Sabour
et al., 2017)

dynamic rout-
ing II (Hinton
et al., 2018)

Capsules
representation vector matrix
interpretation of instan-
tation parameters

abstract, not de-
fined

pose

activation squashing
length of
vectors

activation unit

Routing
transformation and rout-
ing range

each lower to
each higher cap-
sule

only within re-
ceptive fields

kind of agreement cosine-
similarity

Gaussian proba-
bility

reconstruction regula-
tion

yes no

the first dynamic routing variant, no image reconstruction
regulation is applied at the end of capsule network.

3. Experiments
The following experiments demonstrate the data efficiency
of networks and generalization of a learned capsule network
(with routing I and II) to few variations of a given dataset.

3.1. Implementations
We implemented the two dynamic routing approaches in
two networks CapsNet I and CapsNet II. The implementa-
tion of CapsNet I follows Sabour et al. (2017) and builds
upon an open source third-party implementation available
on GitHub1. The used implementation of CapsNet II also
builds upon an open source third-party implementation avail-
able on GitHub2 and follows Hinton et al. (2018) up to the
schedule for the inverse temperature, which is not provided
in the paper. We used [1, 2, 3] in the experiments.

We also used a modified version of the latter CapsNet, which
we call CapsNet II Small. Different to Hinton et al. (2018),
it contains 64 filters with kernels of size 9x9 in first the
convolutional layer, 16 primary capsule channels, only one
convolutional capsule layer with 16 channels and stride of
2, the number of iteration is 2, and the input values are
normalized to range [0, 1].

We compare the CapsNets with two standard CNNs from
(Hinton et al., 2018) and (Sabour et al., 2017). The first CNN
I has three convolutional layers with kernel size 5, stride 1
and depths of 256, 256 and 128. The convolutional layers

1Implementation based on [Xifeng Guo, Github, https://
github.com/XifengGuo/CapsNet-Keras]

2Implementation based on [Jonathan Hui, Github,
https://github.com/jhui/machine_learning/
tree/master/capsule_em]

https://github.com/XifengGuo/CapsNet-Keras
https://github.com/XifengGuo/CapsNet-Keras
https://github.com/jhui/machine_learning/tree/master/capsule_em
https://github.com/jhui/machine_learning/tree/master/capsule_em


Comparison of Data Efficiency in Dynamic Routing for Capsule Networks

Figure 1. Illustration of L-MNIST dataset. The left image from
the original MNIST test dataset is randomly placed in the bigger
image on the right.

are followed by two fully connected layers with sizes 328
and 192. The second CNN II has two convolutional layers
with kernel size 5, stride 1 and depths of 32 and 64. Max
pooling with size of 2 is applied after each convolutional
layer. Finally, there is a fully connected layer with size of
1024 at the end of the network. Both CNN networks use
a softmax layer for classification of the 10 classes with a
dropout of 0.5.

All network were trained using Adam optimizer and learn-
ing rate of 0.001. Cap sNet I involved a decaying rate as
explained in (Sabour et al., 2017).

3.2. Datasets
In the experiments, we use variants of the MNIST dataset
(LeCun et al., 1998). For the data efficiency experiments,
the original MNSIT test set is used in combination with
increasingly large fractions of the training set. For the eval-
uation of the pose generalization capabilities, we created
a L-MNIST dataset, where the test images are randomly
placed in images of larger size than the original MNIST im-
ages. Image width varies from 28 to 88 pixels. Background
in L-MNIST images is black. An example can be seen in
Fig. 1. For experiments on L-MNIST, the default training
set is used, only the test images are enlarged.

3.3. Experiment 1: Increasing training size
According to the original papers (Sabour et al., 2017) and
(Hinton et al., 2018), CapNet I performs better than CapsNet
II on the standard MNIST classifictaion task (resulting error
rates are 0.25% and 0.44%). In a first set of experiments,
we investigate the dependency of the these results on the
number of training samples similar to the experiments in
(George et al., 2017). Therefore, we train all networks on
increasingly large training sets and always evaluate on the
full test dataset. The size of the training set increases from
1, 5, 10, 20, 30, 50 to 100 digits per class. All networks are
trained using these sets until convergence.

The results of the efficiency test are shown in Fig. 2. From
1 to 20 training samples per class CNN II shows the best
performance. Presumably, this is due to the smaller number
of parameters compared to CNN I and also CapsNet I (cf.
table 2). For higher training sample numbers, the CapsNet I
achieves the highest accuracy, reaching 96.22 % using 100

0 20 40 60 80 100

digits per class

10

20

30

40

50

60

70

80

90

100

a
c
c
u
ra

c
y
 [
%

]

data efficiency on MNIST

CapsNet I

CapsNet II

CapsNet II small

CNN I

CNN II

Figure 2. Results on training data efficiency of different networks.

Table 2. Number of trainable parameters of tested networks

NETWORK NUMBER OF
PARAMETER

CAPSNET I 8,215,568
CAPSNET II 318,964
CAPSNET II SMALL 62,404
CNN I 13,288,970
CNN II 1,111,946

samples per class. Although it has a much smaller number
of parameters, results of CapsNet II are worse in this test.
One reason could be the missing reconstruction regulariza-
tion compared to CapsNet I (cf. (Sabour et al., 2017)), but
tests with a similar decoder at the end of the network did
not improve the results. Tests on the smaller CapsNet II
Small showed somewhat improved results. The difference
between the large and the small CapsNet II becomes smaller
with increasing number of training samples. Presumably,
the improvement is a result of the smaller number of param-
eters (cf. table 2). Potential differences in implementation
compared to (Hinton et al., 2018) might influence the re-
sults, in particular since there are some missing details in
the paper. However, based on these experiments, we can
state that for the available implementation, learning trans-
formation parameters between each layer in CapsNet II to
get the correct spatial relationship required more training
samples than the other approaches.

3.4. Experiment 2: Generalisation to larger images
The output of convolutional layers (without max pooling) is
equivariant towards shift of the input. It is straightforward
to train the kernel weights on a small image size and to build
a convolutional layer for larger input images by using the
learned kernel weights in an appropriate network. However,
in practice, the convolutional layers are combined with other
layers, e.g. fully connected layers, that prevent this direct
approach. These fully connected layers would require addi-
tional retraining on large images and thus require additional



Comparison of Data Efficiency in Dynamic Routing for Capsule Networks

training data.

This section evaluates the performance of the different Cap-
sNet versions and baseline CNNs when trained on small
images and inference is done on larger images - a capability
that is very beneficial for sample-efficiency. The experi-
ments use the L-MNSIST dataset from section 3.2.

CapsNet II can directly be used for this task. Due to its better
results in the previous experiments, we use the CapsNet II
Small. Since CapsNet I uses an explicit transformation ma-
trix for each capsule, it has to be modified to share capsule
transformation across each channel. The fully connected
layers in the CNNs prevent a direct application to this task.
Thus we replace them with a global maximum pooling in
CNN GMP, and global average pooling in CNN GAP. The
architecture of the used CNN is similar to CNN II (two con-
volutional layer, each followed by a max-pool layer). We
increased the number of filters to 128 and 256 and inserted
the global pooling layers before the fully connected layer
to achieve independence from the image size. All networks
are trained on the full default MNIST dataset.

Fig. 3 shows the results. The performance of CapsNet I with
shared parameters rapidly decreases with increasing image
size. A possible reason is the combination of softmax in
the routing process and the lack of a background class. Too
many background pixel create noise due to biases, the noise
is scaled by the softmax and accumulated in the subsequent
capsules. Presumably, an extra background class could be
used to address this problem. The performance of the CNN
with global average pooling slightly drops and goes down to
70 % for maximally increased images. The average pooling
can compensate the larger images, but presumably, it is
influenced by noise from the background similar to CapsNet
I. In contrast, the CNN with global max pooling retains the
high accuracy as expected. The absolute performance of
the CapsNet II is somewhat worse, but it is only slightly
affected by the changed image size as well, and retains more
than 90 % accuracy even for the largest images.

The CNN with global max pooling showed the best per-
formance in this task. However, keeping only the single
global maximum value resembles similar problems to the
local max pooling after convolutional layers: all informa-
tion about spatial relation lost. An example experiment is
illustrated in Fig. 4. There are two images, the left showing
a correct configuration of the parts of the number seven
and the right image showing a wrong configuration of the
same parts. In this experiment, the CNN with global max-
imum pooling correctly predicts the class “seven” for the
correct configuration input with 100% confidence. For the
wrong configuration it also outputs class “seven” with 99%
confidence, although the parts in the image are not config-
ured to show a seven. In contrast, the CapsNet II Small
classifies the correct seven with 97.0% confidence to be of

0 10 20 30 40 50 60

increase input image width [pixel]

10

20

30

40

50

60

70

80

90

100

a
c
c
u
ra

c
y
 [
%

]

accuracy while increasing input image size

CapsNet I shared

CapsNet II small

CNN GAP

CNN GMP

Figure 3. Results on generalization to enlarged images.

Figure 4. Illustration of a pitfall for global max pooling. The cor-
rect configuration of the parts of the number seven on the left
image creates almost the same classification results as the wrong
configuration in the right image. There, CapsNet II Small creates
the more reasonable result “one” and returns lower confidence.

class “seven” and the wrong configuration is classified with
94.1% as class “one” - a much more reasonable result. This
experiment resembles the main motivation for capsules by
Hinton - Pooling looses spatial information: ”This method
[...] is clearly incapable of dealing with recognition tasks,
[...] that require knowledge of the precise spatial relation-
ships between high-level parts ...” (Hinton et al., 2011)

4. Conclusion
In the presented work we have examined two hypotheses:
First, a capsule network with dynamic routing is able to learn
with few training examples and second it can be applied to
different input sizes during inference. The experiments on
data efficiency have shown good results for the first routing
process by Sabour et al. (2017), but no improvements com-
pared to the compared standard CNNs. Despite its much
smaller number of parameters, the second routing variant by
Hinton et al. (2018) required more training samples than the
other approaches. This could be due to the complex model
structure of the EM routing or missing implementation de-
tails from the original paper. However, this capsule network
variant showed promising results on the generalization to
larger images during inference. Additionally, it retains the
spatial relation of the learned objects. Training on small
images and doing inference on arbitrarily sized images in-
creases data efficiency. Future work includes the evaluation
of these properties on more complex datasets. Particularly
interesting is deeper investigation how the retained spatial
relationship can be used to increase sample efficiency.



Comparison of Data Efficiency in Dynamic Routing for Capsule Networks

References
George, Dileep, Lehrach, Wolfgang, Kansky, Ken, Lázaro-

Gredilla, Miguel, Laan, Christopher, Marthi, Bhaskara,
Lou, Xinghua, Meng, Zhaoshi, Liu, Yi, Wang, Huayan,
Lavin, Alex, and Phoenix, D Scott. A generative vision
model that trains with high data efficiency and breaks
text-based CAPTCHAs. Science, 358(6368), 2017. ISSN
10959203. doi: 10.1126/science.aag2612.

Hinton, Geoffrey, Sabour, Sara, and Frosst, Nicholas. Matrix
capsules with EM routing. International Conference on
Learning Representations (ICLR), 2018.

Hinton, Geoffrey E, Krizhevsky, Alex, and Wang, Sida D.
Transforming Auto-encoders. In Proceedings of the 21th
International Conference on Artificial Neural Networks -
Volume Part I, ICANN’11, pp. 44–51, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-21734-0.

Jia Deng, Wei Dong, Socher, Richard, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009. ISBN 978-
1-4244-3992-8. doi: 10.1109/CVPRW.2009.5206848.

Krizhevsky, Alex, Sutskever, Ilya, and Geoffrey E., Hinton.
ImageNet Classification with Deep Convolutional Neural
Networks. Advances in Neural Information Processing
Systems 25 (NIPS2012), pp. 1–9, 2012. ISSN 10495258.
doi: 10.1109/5.726791.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2323,
1998. ISSN 00189219. doi: 10.1109/5.726791.

Sabour, Sara, Frosst, Nicholas, and Hinton, Geoffrey E. Dy-
namic routing between capsules. In Neural Information
Processing Systems (NIPS), pp. 3859–3869, 2017.


