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Optimization based 3D Multi-Object Tracking using Camera and
Radar Data

Johannes Pöschmann, Tim Pfeifer and Peter Protzel

Abstract— Robust and reliable online 3D multi-object track-
ing is an essential component of autonomous driving. Recent re-
search follows the tracking-by-detection paradigm and focuses
mainly on lidar sensors, due to their superior range, resolution
and depth accuracy compared to other automotive sensors. This
simplifies the challenging data association in crowded urban
road scenes, resulting in a predominant status of laser based
methods. In contrast, we propose an online 3D multi-object
tracker based solely on mono camera images and radar data to
promote non-lidar based tracking research. By representing all
detections of one frame as a Gaussian mixture model (GMM),
we are able to avoid a fixed data association, which may
include wrong assumptions. Instead, we assign the GMM to
each tracked object and solve the data association implicitly
and jointly by estimating the full 3D object tracks in our factor
graph based optimization back end. By including all available
information from the object detector, our algorithm achieves
accurate, robust and reliable tracking results. We conduct real
world experiments on the nuScenes tracking data set improving
the state-of-the-art for non-lidar based methods from 17.7%
to 34.1% AMOTA.

I. INTRODUCTION

Robust and reliable 3D multi-object tracking is essential for
autonomous driving. Most challenging are urban road scenes
with multiple dynamic objects in close proximity, since 3D
object detectors struggle to detect each object individually
(e.g. in a group of pedestrians) and objects occlude each other
frequently. The current state-of-the-art in online 3D multi-
object tracking approaches this problem by following the
tracking-by-detection paradigm [1, 2]. These methods apply
a 3D object detector to estimate the location, rotation and size
of each object in the scene from the given sensor input. The
key challenge is a robust and reliable data association between
detected objects and existing tracks, which is commonly
solved via the Hungarian algorithm [3, 4]. The performance
of these methods is therefore closely coupled to the quality of
the given object detections and the accuracy and robustness
of the data association. As a result, recent research focuses
mainly on lidars, since their far superior object detections
compared to other automotive sensors [5, 6, 7], which also
simplifies the data association step.

In contrast, cameras and radars are the most common au-
tomotive sensors in modern cars, because they are affordable,
easily available and small compared to lasers. Therefore, we
propose a 3D multi-object tracker which is solely based on
camera and radar sensors. Following the common tracking-
by-detection paradigm, an of-the-shelf 3D object detector
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Fig. 1. Factor graph representation of the solved estimation problem. Each
tracked object is represented as an independent set of states, including its
position, velocity, spatial dimensions and rotation. Our multimodal detection
factor (blue) assigns all detections simultaneously to all available objects.
The actual assignment is done implicitly during the optimization and can
change over time.

[7] is applied to estimate the position, orientation, size and
velocity of all objects in the scene. Although the algorithm
fuses mono camera images and radar data for a better depth
estimation, the resulting object detections are less accurate
and reliable compared to laser based methods [5, 7]. This
is critical in situations with multiple dynamic objects in
close proximity (e.g. a group of pedestrians), since the data
association will most likely contain wrong matchings. We
approach this problem by designing a robust optimization
back end, which is able to solve the data association implicitly
and jointly with the estimation of the full 3D object tracks
during inference. All detections of one frame are collectively
represented as a single Gaussian mixture model (GMM),
including the position, velocity, dimensions and rotation of the
3D bounding boxes from the object detector. The full GMM



is integrated into our factor graph via the Max-Mixture [8]
approximation. In combination with a simple motion model,
we can estimate the full 3D object tracks without solving the
data association explicitly. Furthermore, this association is
not fixed and can be changed in future optimization steps
with more available information.

The proposed algorithm is an ongoing development of our
proof-of-concept for factor graph based multi-object tracking
[9] and contributes:
Camera and radar based 3D multi-object tracking: We
utilize common automotive sensors for multi-object tracking
to work against the recent focus on lidar sensors and to
promote camera and radar based methods.
Estimation of the full 3D object tracks: Our algorithm
includes all available information from the 3D object detector
into the implicit data association and the estimation of the
object tracks. Therefore, it can optimize the 3D position,
velocity, dimensions and rotation of the tracked objects.
State-of-the-art tracking results: We conduct real world
experiments on the nuScenes tracking data set improving
the state-of-the-art for non-lidar based methods from 17.7 %
to 34.1 % AMOTA and reducing the track fragmentation by
36.6 %. We provide a comprehensive ablation study of the
utilized data, which shows that including more information
into the implicit data association and the state estimation
results in more accurate, robust and reliable tracking results.
Furthermore, videos and the source code of our algorithm
are available online under an open source license 1.

II. RELATED WORK

A. Automotive Object Detection

All state-of-the-art 3D object detectors are neural network
based approaches [5, 7, 10]. Recent research focuses mainly
on lidar point clouds as input, since they directly provide
3D data with superior range, resolution and depth accuracy
compared to other automotive sensors like cameras or radars
[5, 10]. Another common approach is the combination of
camera and laser based features inside a deep neural network
[11, 12]. Obtaining accurate and reliable 3D bounding boxes
from camera or radar is a lot more challenging, since the
sensors either lack a robust depth estimation or suffient
resolution. The authors of [13] use stereo camera images
to reconstruct the depth of the scene and to propose 3D
object detections. In [14] and [15], an end-to-end learned
deep neural network is applied to obtain 3D object detections
directly from 2D camera images by estimating the depth
solely from mono camera images. The authors of [7] propose
a fusion algorithm that associates proposed 3D bounding
boxes from mono camera images with radar detections and
refines their features in a neural network for a better depth
and velocity estimation. We use this algorithm as an out-
of-the-box object detector for our 3D multi-object tracking
algorithm.

1https://github.com/TUC-ProAut/FG-3DMOT

B. Online Multi-Object Tracking

Most state-of-the-art online multi-object trackers follow the
tracking-by-detection paradigm [1, 2, 3]. Recent research in
the domain of neural network based 3D multi-object tracking
focuses mainly on end-to-end learned models like [2, 16],
since object detection and tracking are combined in one
pipeline and learned simultaneously. The authors of [16]
propose a robust neural network based fusion module to
merge features from lidar and camera input for better tracking
results. In [2], a simultaneous detection and tracking algorithm
is proposed, which detects objects as points in temporal
image pairs and predicts the association from frame to frame.
Another approach is the combination of neural networks and
filter based solutions. The authors of [17] use a deep neural
network to obtain object detections from 2D images and
combine it with a Poisson multi-Bernoulli mixture filter to
generate 3D tracks. Other common filter based approaches
are particle [18] or Kalman [3, 19] filter. These methods
usually implement the data association step as a bipartite
graph matching and solve it once every time step via the
Hungarian algorithm [3, 4] or a custom greedy approach [19]
and assume it to be fixed afterwards. This is critical, if the
data association contains wrong matchings. We avoid this
problem by formulating an implicit data association, which
is solved jointly with the state estimation during inference.
This allows our algorithm to correct the data association of
past time steps with new information relaxing the problem
of wrong matchings.

C. Factor Graphs in Tracking Applications

A common use case of factor graphs in tracking applica-
tions is the data association step. The authors of [20] present
a factor graph based method to solve the data association
for a multi-object tracking problem in a 2D simulation and
combine it with an extended Kalman filter to track objects
over time. In [21], a factor graph is utilized to solve the data
association of a 2D cell tracking problem, but the resulting
cell tracks are not optimized. The authors of [22] solve the
data association for closely moving objects based on a factor
graph and compare it against a JPDA (joint probabilistic data
association). However, their experiments are limited to two
objects in a 2D simulation.

Factor graph based data fusion is also common in tracking
applications. The authors of [23] and [24] use a factor graph
to fuse the data of multiple sensors respectively agents and
combine it with a particle based belief propagation to track
objects over time. In both cases, the experiments are limited
to 2D examples in a simulated environment. In [25] the
data of multiple sensors and an Extended Kalman Filter are
integrated into a single factor graph framework. However,
they evaluate the approach only in 2D simulation for a
single tracked object. The authors of [26] use a factor graph
formulation for joint inference of multi-object tracking and
navigation in a multi agent scenario, which is based on a
particle filter implementation. Again, the authors only conduct
2D experiments in a simulated environment.

https://github.com/TUC-ProAut/FG-3DMOT
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Fig. 2. Data flow of the proposed multi-object tracking algorithm. We represent the objects from the CenterFusion [7] object detector as a multivariate
Gaussian mixture model. Beside the position and spatial dimensions of the bounding boxes, we also incorporate the velocity and orientation into the model.
During this preprocessing step, the predicted states from the factor graph allow us to decide about creating new tracks or respectively terminating old ones.
The association between states and measurements is not fixed and can be changed at any time by optimizing the factor graph.

Our previous work [9] proposed factor graph based 3D
multi-object tracking in lidar point clouds. In contrast to
this proof-of-concept is our current work centered around
the more challenging camera and radar based multi-object
tracking. We are able to avoid a fixed data association
by representing all detections of one frame as a Gaussian
mixture model (GMM) and assigning it to each tracked object.
Therefore, the data association is solved implicitly and jointly
with the state estimation during optimization of the factor
graph. We account for inaccuracies of the object detector by
including all available information into the GMM. This also
enables our tracking algorithm to optimize the full 3D object
tracks. We provide a comprehensive ablation study of the
utilized information in the implicit data association and state
estimation in Sec. V-C. It proves, that the accuracy, robustness
and reliability of the achieved object tracks increase with
more available information.

III. FACTOR GRAPHS FOR STATE ESTIMATION

The most important difference of our approach to the state-
of-the-art is the formulation of the optimization problem as
factor graph. Combined with a powerful Gaussian mixture
model, this allows us to track objects without a fixed
assignment between measurements and states.

A. Graphs and Least Squares

We formulate the tracking of objects in 3D space as a
probabilistic state estimation problem, which includes the
position, velocity, size and rotation of each object, combined
in set of states X. It can be formulated as the search for
optimal set of states X∗, given a set of Measurements Z:

X∗ = argmax
X

P(X|Z) (1)

Under the assumption of Gaussian distributed noise, we can
convert the maximization of probabilities to a minimization
of negative log-likelihoods in

X̂ = argmin
X

∑
i

1

2

∥∥∥I 1
2 (ei − µ)

∥∥∥2 . (2)

This maximum-likelihood estimator X̂ can be obtained by
applying non-linear least squares optimization of the residual

function ei = f(xi, zi). We use mean µ and square root
information matrix I

1
2 of the Gaussian distribution to describe

the measurements error characteristics. Furthermore, we can
describe the estimation problem as factor graph, as shown in
Fig. 1, to visualize its structure.

Since the least squares approach can be efficiently applied
to large sets of states and measurements, we keep the whole
trajectory inside the factor graph. This enables our tracking
algorithm to improve the estimation of past states with future
information resulting in refined estimations of the 3D object
tracks at the current time step.

B. Implicit Assignment

The data association is the most crucial step in tracking-
by-detection algorithms, since a consistent tracking requires
correct assignments of incoming measurements to the existing
states. Performing a fixed assignment based on predicted
states is an error-prone workaround that is often used in
state-of-the-art approaches [1, 3]. Since there is only a
coarse knowledge about the true object position, it is likely
that wrong assignments occur. With a fixed scheme, this
misassignment can never be corrected.

We can avoid problems by using the implicit assignment
scheme, which we have proposed in [9]. Hence, we describe
the whole set of measurements with an equally weighted
Gaussian mixture model (GMM)

P (zi|xi) ∝
n∑
j=1

cj · exp

(
−1

2

∥∥∥I 1
2
j

(
ei − µj

)∥∥∥2),
with cj = wj · det

(
I

1
2
j

)
.

(3)

By equally assigning each measurement zj with mean µj

and uncertainty I
1
2
j to each state xi, we do not include

any assumption regarding the data association. Instead, the
assignment can be solved implicitly and jointly with the state
estimation during least squares optimization by combining
all available information. This data assignment is not fixed
and can be changed during future inference steps, similar to
the re-estimation of past states.

Using Gaussian mixtures in (2) of course breaks the
Gaussian assumption, that leads to the efficient least squares



formulation. The authors of [8] propose an effective solution
by approximating the sum inside (3) with a maximum-
operator, which allows us to represent the GMM inside a least
squares problem. A detailed explanation of the Max-Mixture
approach can be found in the original publication [8] or our
previous work [27]. The actual error functions are described
in the next section.

IV. FACTOR GRAPH BASED TRACKING

An overview of our online 3D multi-object tracking
algorithm is given in Fig. 2 and the whole algorithm is
shown in Alg. 1. We obtain 3D object detections solely from
mono camera images and radar data, which is explained
in Sec. IV-A. Subsequently, all detections of one frame
are jointly represented as a GMM, which is incorporated
in our factor graph back end besides other constraints of
the state estimation. The structure of the factor graph is
explained in Sec. IV-B and visualized in Fig. 1. We explain
the estimation of the full 3D object tracks and the necessary
track management in Sec. IV-C.

A. Object Detection

We use mono camera images and radar data as input for
an out-of-the-box 3D object detector [7] at each time step
t to obtain 3D bounding boxes zt,j defined by their center
point zpos

t,j , velocity zvel
t,j , dimension zdim

t,j , rotation zrot
t,j , class

zclass
t,j and confidence zconf

t,j :

zt,j =
[
zpos
t,j , z

vel
t,j , z

dim
t,j , z

rot
t,j , z

conf
t,j , z

class
t,j

]
zgeo
t,j =

[
zpos
t,j , z

vel
t,j , z

dim
t,j , z

rot
t,j

]
zpos
t,j =

[
zxt,j , z

y
t,j , z

z
t,j

]
, zvel

t,j =
[
zvxt,j , z

vy
t,j , z

vz
t,j

]
zdim
t,j =

[
zwt,j , z

l
t,j , z

h
t,j

]
, zrot

t,j =
[
zcos θt,j , zsin θt,j

] (4)

The rotation zrot
t,j encodes the yaw angle of the 3D bounding

box and is defined on the unit circle for a continuous and
unambiguous rotation between 0◦ and 360◦. We introduce
confidence threshold cdet to filter out all detections with
zconf
t,j < cdet, since most of them are false positives. Besides

that, the object detector outputs a lot of overlapping bounding
boxes for the same physical object. Therefore, we delete all
boxes which overlap more than boverlap with another bounding
box of the same class and a higher confidence.

B. States and Factors

We utilize a separated factor graph for each class including
the following estimated states for each tracked object obji at
each time step t :

xall
t,i =

[
xpos
t,i ,x

vel
t,i,x

dim
t,i ,x

rot
t,i

]
xpos
t,i =

[
pxt,i, p

y
t,i, p

z
t,i

]
, xvel

t,i =
[
vxt,i, v

y
t,i, v

z
t,i

]
xdim
t,i =

[
dwt,i, d

l
t,i, d

h
t,i

]
, xrot

t,i =
[
rcos θt,i , rsin θt,i

] (5)

State xpos
t,i encodes the 3D position, xvel

t,i the 3D velocity, xdim
t,i

the 3D bounding box size and xrot
t,i its yaw angle on the unit

circle.
By applying the Max-Mixture [8] approximation to the

sum in (5) we can formulate the following error function for

the detection factor edet
t,i which incorporates the GMM into

the factor graph:

∥∥edet
t,i

∥∥2 = min
j

∥∥∥∥∥∥
√
−2 · ln ct,j

γm

I
1
2
j

(
et,i − µt,j

)
∥∥∥∥∥∥
2

with γm = max
j
ct,j , I

1
2
j = (Σdet)−

1
2

et,i = xall
t,i, µt,j = zgeo

t,j

(6)

We enable an implicit data association by adding the detection
factor edet

t,i to all estimated states. A generic null-hypothesis
with mean µt,0 = mean

(
µt,j ∀ j

)
and a broad uncertainty

Σdet
0 is added to the GMM for robustness against errors of the

object detector. We utilize a simple constant velocity model
connecting the xpos

t,i and xvel
t,i states of one object over time

to describe its movement and to predict existing tracks into
the future:∥∥ecv

t,i

∥∥2
Σcv =

∥∥∥∥(xpos
t,i − xpos

t+1,i

)
− xvel

t,i ·∆t
xvel
t,i − xvel

t+1,i

∥∥∥∥2
Σcv

(7)

To enforce a fixed 3D bounding box size for each obji, a
constant value factor is added between states xdim

t−1,i and xdim
t,i :∥∥ecd

t,i

∥∥2
Σcd =

∥∥xdim
t−1,i − xdim

t,i

∥∥2
Σcd (8)

In the same way, a stable rotation xrot
t,i is ensured by∥∥ecr

t,i

∥∥2
Σcr =

∥∥xrot
t−1,i − xrot

t,i

∥∥2
Σcr . (9)

The structure of the resulting factor graph is visualized for a
generic example with two tracked objects in Fig. 1.

C. Track Management and State Estimation

As mentioned earlier, an independent factor graph is
utilized for each class for simplicity and to separate mea-
surements of different classes in our implicit data association.
An algorithmic overview of our approach is given in Alg. 1
and the track management and the estimation of the full 3D
object tracks is explained in detail in this section.

At the first frame of a sequence, a new object obji is
initialized with xall

t,i = zgeo
t,j for each measurement. The motion

of the objects can be predicted into the future with the help of
(7) after adding all necessary factors and the optimization of
the factor graph. Since we do not use an explicit data associ-
ation step, we cannot find matchings between detections and
predicted tracks in order to initialize, continue and terminate
tracks. Therefore, we utilize an auxiliary data association
based on the similarity of objects and detections in order
to find correspondences between objects and measurements
needed for track management. We create a similarity matrix
between all xall

t,i (column) and zgeo
t,j (row), including null-

hypothesis z0, based on − log
(
P
(
zgeo
t,j |xall

t,i

))
. By finding

the minimum (best similarity) we get the correspondence
between an object objt,i and a measurement zt,j and delete
the respective column and row from the matrix, except for the
row of the null-hypothesis z0. In this way, all objects without
a correspondence to a real measurement are matched with the
null-hypothesis. This step is repeated until all correspondences



Algorithm 1: Online Tracking Algorithm
generate detections Z using CenterFusion [7]
delete all zt,j with zconf

t,j < cdet

delete overlapping zt based on boverlap and zconf
t,j

foreach class c do
initialize factor graph
foreach time step t do

create GMM based on zgeo
t,j with zclass

t,j = c and
null-hypothesis z0

if t == 0 then
init objt,i with xall

t,i = zgeo
t,j

else
propagate xall

t−1,i to t
get correspondence between objt,i and zt,j

according to − log
(
P
(
zgeo
t,j |xall

t,i

))
if objt,i not corresponds to any zt,j then

mark objt,i as lost and delete if
nlost > nkeep

end
if zt,j not corresponds to any objt,i then

init objt,i with xall
t,i = zgeo

t,j

end
end
add factors (6), (7), (8) and (9)
optimize factor graph
output all objt,i with nlost <= nperm

end
end

are solved. For each measurement without a matching object,
a new track objt,i is initialized at xall

t,i = zgeo
t,j . All objects

corresponding to the null-hypothesis are marked as lost
and terminated after more than nkeep consecutive time steps
without a matching to a real measurement. Our algorithm
outputs object tracks starting from the first detection and
for nperm time steps after they are marked as lost. The
correspondences between objects objt,i and measurements
zt,j are only used for track management and not for the
implicit data association, which is solved entirely during
optimization.

After all tracks are managed we add factors (6), (7), (8)
and (9) and optimize the factor graph at each time step t.
This solves the data association implicitly and jointly with
the estimation of the full 3D object tracks by combining
all available information of the entire factor graph. This
approach has three major advantages: Our algorithm is robust
against inaccuracies of the object detector by solving the
data association during inference, it can correct inaccurate
detections by optimizing the full 3D bounding boxes for
the tracked objects and past states can be re-assign and
re-estimated with future information, resulting in refined
3D object tracks for the current time step t. We provide
a comprehensive analysis of the importance of position xpos

t,i ,
velocity xvel

t,i, dimension xdim
t,i and rotation xrot

t,i information for
our implicit data association and state estimation in section
Sec. V-C.

TABLE I
PARAMETERS OF OUR ALGORITHM

Parameter Name Symbol Value

Detection Covariance Σdet diag



0.1m
0.1m
0.1m

1m s−1

1m s−1

1m s−1

0.5m
0.5m
0.5m
1
1



2

Detection Null-Hypothesis Covariance Σdet
0 Σdet · 104

Constant Velocity Covariance Σcv diag


0.1m
0.1m
0.1m

0.5m s−1

0.5m s−1

0.5m s−1



2

Constant Box Dimension Covariance Σcd diag

1m
1m
1m

2

Constant Rotation Covariance Σcr diag

(
1
1

)2

Detection Confidence Threshold cdet 10%

Bounding Box Overlap Threshold boverlap 15%

Num. Con. Null-Hypothesis Detections nkeep 2

Object Permanence nperm 1

V. EXPERIMENTS

A. Setup

We conduct real world experiments on the challenging
nuScenes data set [29]. It features 700 training and 150
validation and test scenes in an urban road environment.
The data set includes a laser scanner, 6 cameras with a
360◦ view around the ego vehicle and 5 radar sensors.
Each scene has a length of 20 s and is annotated with
3D bounding boxes at a frame rate of approximately 2 Hz,
resulting in 40 key frames per scene. The object classes
bicycle, bus, car, motorcycle, pedestrian, trailer and truck
are evaluated separately for the tracking task. The two
most important metrics are the average multi-object tracking
accuracy (AMOTA) and precision (AMOTP) with a 40 point
interpolation over different recall thresholds to approximate
integral metrics for a better evaluation [3]:

AMOTA =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,...,1}

MOTAR (10)

MOTAR =

max

(
0, 1− IDSr + FPr + FNr − P · (1− r)

rP

)
(11)

AMOTP =
1

n− 1

∑
r∈{ 1

n−1 ,
2

n−1 ,...,1}

∑
i,t di,t∑
t TPt

(12)



TABLE II
RESULTS ON THE NUSCENES TRACKING TEST SET

Method Modalities AMOTA ↑ AMOTP ↓ MOTAR ↑ Recall ↑ TP ↑ FP ↓ IDS ↓ FRAG ↓

DEFT [28] Camera 17.7% 1.57m 48.4% 33.8% 52 099 22 163 6901 3420

DBNet∗ Camera 7.2% 1.49m 34.9% 20.2% 33 819 19 874 3831 2726

ProTracker∗ Camera 7.2% 1.63m 25.6% 23.9% 32 245 17 957 4006 2935

Buffalo_Vision∗ Camera 5.9% 1.49m 24.4% 24.3% 32 325 26 003 4170 3157

CaTracker∗ Camera 5.3% 1.61m 16.8% 29.0% 33 937 24 574 4457 3169

FG-3DMOT (ours) Camera, Radar 34.1% 1.25m 60.7% 43.7% 61 893 18 110 2032 1728

∗Methods without publications.

AMOTA includes false positives FPr, false negatives FNr
and id switches IDSr. P denotes the ground truth positives
and P (1− r) is used for recall normalization. The AMOTP
metric summarizes the spatial error of the tracks. di,t denotes
the position error of track i at time t, which is divided by
the number of matches TPt.

As mentioned earlier, we use CenterFusion [7] as an out-
of-the-box object detector based on mono camera images and
radar data. It provides 3D bounding boxes, velocities in x
and y direction and a confidence for each object detection
at a framerate of 2 Hz. All other parameters of our approach
are summarized in Tab. I. We use libRSF [30] as our factor
graph back end and solve the least squares optimization with
Ceres [31].

B. Results

We evaluated our online 3D multi-object tracker on the
nuScenes tracking benchmark server. The results of our
algorithm and the best five non-lidar based approaches from
the leaderboard are summarized in Tab. II (accessed February
2021). Please note, that most of the methods from the
leaderboard do not provide a scientific publication, since non-
lidar based 3D multi-object tracking algorithms are highly
under-represented on the nuScenes dataset. Furthermore, our
approach is the first entry based on camera and radar data.

Our proposed algorithm improves the state-of-the-art for
tracking without lidar by considerable 16.4 % from 17.7 %
to 34.1 % AMOTA. Additionally, we are able to half the
number of id switches (IDS) and achieve a 36.6 % lower
track fragmentation (FRAG) compared to the other methods,
proving the effectiveness of our combined implicit data
association and state estimation. By including all available
information into the factor graph we achieve robust, reliable
and accurate tracking results. Our approach also improves
the precision of the generated tracks (AMOTP) from 1.49 m
to 1.25 m by estimating the full 3D object tacks, which
compensates for inaccuracies of the object detector. All in
all, the accuracy, robustness and reliability of the tracking
results of our proposed algorithm are far superior compared
to other camera and radar based methods.

C. Ablation Study

We provide a comprehensive ablation study on the infor-
mation used in the implicit data association and the state

estimation to analyze the impact of position xpos
t,i , velocity

xvel
t,i, dimension xdim

t,i and rotation xrot
t,i data on the robustness

of our tracking algorithm. The structure of the factor graph
described in Sec. IV does not need to be altered for the
ablation study. Instead, we can just exclude information from
the implicit data association and state estimation and define
idle states as constant. We always utilize the 3D position
information and analyze it with all possible combinations of
velocity, 3D bounding box dimension and rotation based on
the AMOTA. The results of our ablation study are summarized
in Tab. III.

The more information we add in the implicit data associa-
tion and the state estimation the more robust tracking results
our algorithm achieves, which is evident for class trailer.
It’s AMOTA improves from 6.20 % based only on position
information to 13.16 % when all available information zgeo

t,j

is utilized. Additionally, the average AMOTA over all classes
improves from 32.43 % to 36.36 % by including all available
information. In contrast, the accuracy of class car does
not improve considerably because the 3D position of the
detections is reliable on its own. Adding more information
does not always improve the AMOTA for single classes. The
accuracy of class motorcycle decreases slightly from 34.85 %
to 34.27 % with added velocity, while the added information
is beneficial for car or pedestrian. This illustrates, that more
information in the data association and state estimation results
in a more balanced tracking of all classes.

Our algorithm achieves real time feasible frames per second
(FPS) for all combinations of utilized information, which
is shown in the last column of Tab. III. Adding velocity
information into the implicit data association and the state
estimation provides the constant velocity model with a robust
velocity estimation instead of initializing it with zero. This
results in a much faster optimization, demonstrated by the
achieved 15.9 FPS for the combination of position and
velocity in comparison to the 5.8 FPS for position only.
Apart from the velocity, additional information increases
the computational load during optimization, which results in
a trade off between the quality of the achieved results and
the required computational speed. The ablation study proves
that the robustness, reliability and accuracy of the tracking
results increases with more added information. Furthermore,
additional data can be easily integrated into the algorithm
due to flexible structure of factor graphs.



TABLE III
ABLATION STUDY ON THE NUSCENES TRACKING VALIDATION SET BASED ON AMOTA OF THE CLASSES AND FPS

Used Information Average Bicycle Bus Car Motorcycle Pedestrian Trailer Truck FPS

Position 32.43% 21.57% 43.76% 59.68% 31.15% 38.71% 6.20% 25.94% 5.77

Position, Rotation 34.23% 23.19% 46.48% 61.34% 33.42% 39.97% 6.63% 28.57% 3.52

Position, Dimension 34.72% 23.38% 47.18% 61.55% 33.64% 40.28% 8.48% 28.52% 2.85

Position, Velocity 35.27% 24.53% 47.27% 62.22% 33.19% 42.25% 7.90% 29.55% 15.86

Pos, Dim, Rot 35.32% 23.95% 46.75% 61.22% 34.85% 40.34% 9.97% 30.14% 2.11

Pos, Vel, Rot 35.90% 23.92% 47.35% 62.82% 34.11% 42.24% 10.57% 30.31% 12.10

Pos, Vel, Dim 35.91% 24.00% 46.80% 62.86% 33.86% 42.39% 10.65% 30.78% 9.66

Pos, Vel, Dim, Rot 36.36% 24.57% 46.10% 62.76% 34.27% 42.17% 13.16% 31.53% 6.44

VI. CONCLUSION

Our main contributions are an online 3D multi-object
tracking algorithm without an explicit data association and
the analysis of its core component – the Gaussian mixture
model that represents all available detections.

The robustness of this approach stems from an implicit data
association that is done jointly with the 3D track optimization.
A robust factor graph back end allows us to solve both tasks
simultaneously and under real time conditions. By including
the combined information from a camera and radar based
object detector, our algorithm is able to compensate for its
inaccuracies and to refine the 3D bounding boxes. As a
result, our proposed method achieves accurate, reliable and
robust tracking results based solely on mono camera and
radar data. We conducted real world experiments on the
nuScenes tracking data set improving the state-of-the-art for
tracking without lidar data from 17.7 % to 34.1 % AMOTA.
Furthermore, we could reduce the number of id switches by
considerable 47.0 % and the track fragmentation by 36.6 %.
These results prove the effectiveness of our implicit data
association and full 3D state estimation for low quality object
detections. Our ablation study of the utilized information
inside the factor graph shows, that including more information
results in more accurate and robust tracking results. We
could also show that an increasing number of information
does not necessarily come with an increasing run time. The
advantage of velocity measurements is a strong motivation for
further research in radar based tracking. Due to the flexible
structure of factor graphs, the proposed algorithm can be
easily extended by including additional information in the
implicit data association, utilizing more sensor modalities or
implementing a more sophisticated motion model.
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