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Abstract— Non-Gaussian and multimodal distributions are
an important part of many recent robust sensor fusion al-
gorithms. In difference to robust cost functions, they are
probabilistically founded and have good convergence properties.
Since their robustness depends on a close approximation of the
real error distribution, their parametrization is crucial.

We propose a novel approach that allows to adapt a multi-
modal Gaussian mixture model to the error distribution of a
sensor fusion problem. By combining expectation-maximization
and non-linear least squares optimization, we are able to
provide a computationally efficient solution with well-behaved
convergence properties.

We demonstrate the performance of these algorithms on
several real-world GNSS and indoor localization datasets. The
proposed adaptive mixture algorithm outperforms state-of-the-
art approaches with static parametrization. Source code and
datasets are available under https://mytuc.org/1libRSF,

I. INTRODUCTION

Robotic systems as well as autonomous vehicles require
a reliable estimation of their current state and location.
The algorithms that compute this information from sensor
data are typically formulated as least squares optimization
and solved with frameworks like Ceres [1l] or GTSAM [2].
Usually, they rely on the assumption of Gaussian distributed
measurement errors, which is correct for many sensors and
comes with advantageous mathematical consequences for the
estimation process. However, there is a broad range of sensors,
like global navigation satellite systems (GNSS), wireless
range measurements, ultrasonic range finders or vision-based
systems, that violate this assumption. Even simple wheel
odometry can slip on difficult grounds and cause non-Gaussian
error distributions. These violations can heavily distort the
estimation process and lead to false estimates. A variety
of robust approaches exist to provide robustness against
non-Gaussian errors, but many of them require an exact
parametrization and therefore knowledge about the expected
error distribution. Previous evaluations [3), |4] have shown
that the optimal set of parameters is hard to find and small
deviations can lead to fatal errors.

With this paper, we want to introduce a novel approach
to estimate the sensors’ error distribution during the least
squares optimization process. As improvement of the ideas in
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Fig. 1. The main concept of our proposed adaptive mixtures algorithm.

Residuals of the optimization problem (represented as factor graph) are used
to estimate a multimodal error model. Expectation-Maximization (EM) is
applied for a well-behaved convergence.

[Sll, we show how to construct an expectation-maximization
(EM) based algorithm that adapts a Gaussian mixture model
(GMM) to the sensor properties. [Fig. 1] shows how the
least squares optimization and the error model estimation
are connected. Due to its graphical representation, the least
squares problem is also referred to as factor graph. In
difference to previous work, we are able to overcome the
limitations of the Max-Mixture approximation and implement
an exact GMM inside the least squares problem. We also
increase the robustness of the GMM’s estimation process
without extensive parametrization. This results in a sensor
fusion algorithm that is robust against non-Gaussian errors
without prior knowledge. Through extensive evaluation with
real world localization datasets from [6) [7, 8], we are able to
demonstrate its performance in comparison to several state-of-
the-art approaches. Our datasets represent different scenarios
from GNSS localization in urban canyons to centimeter-level
wireless ranging.

II. PRIOR WORK

Motivated by the simultaneous localization and mapping
(SLAM) problem, several algorithms exist that try to achieve
robustness against non-Gaussian outliers. We want to give a
brief overview of them and show why existing solutions are
often difficult to apply to real world problems.
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Several methods use generic mechanisms to reduce the
influence of outliers without knowledge about the true sensor
distribution. A typical example are M-estimators, that apply
non-convex cost functions to the residual term of the optimiza-
tion problem. They are suited for many problems, but the right
parametrization is hard to find and global convergence is not
guaranteed. A different approach is Switchable Constraints
(SC) [9] that introduced a set of additional weights, each
assigned to one measurement. The weights are optimized to
weight possible outliers down, which works on SLAM [10]
and GNSS localization problems [6]. However, the introduced
tuning parameter is not directly connected to probabilistic
metrics and has to be set manually. This can be very difficult
as shown in [3] and [4]. Dynamic Covariance Scaling (DCS)
[L1] was introduced as improvement of SC and is basically
an M-estimator. In difference to SC, the weights are not
longer part of the incremental optimization process. Instead,
they get optimized analytical, which leads to an overall
faster convergence. However, they keep the disadvantage
of difficult parametrization [3| [8]. Although there is a usable
parameter window for many SLAM applications, this does
not necessarily apply to general sensor fusion. To overcome
the parametrization of SC/DCS for non-SLAM applications,
we introduced Dynamic Covariance Estimation (DCE) in [8].
Due to the non-convex optimization surface, this approach
is still limited to problems with a good initialization and
moderate outliers. |[Agamennoni et al| proposed an approach
to tune the parameters of some M-estimators in [12]. It is
limited to a subset of M-estimators that can be described as
elliptical distributions and cannot be applied to more robust
ones like DCS or the Tukey M-estimator.

Another approach to handle non-Gaussian measurements,
is to consider their true distribution during the estimation
process. In difference to previously mentioned methods, this
allows to handle asymmetric or multimodal distributions
probabilistically correct. Max-Mixture (MM) [[13] describes
the expected distribution with an approximation of a GMM.
Rosen et al. introduced a method that allows arbitrary non-
Gaussian distributions [[14]. A drawback of both approaches
is the lack of concepts to get the required parametrization of
the GMM or any other non-Gaussian distribution. Existing
approaches [15} [16] estimate it in advance which is not
possible if the error distribution depends on the environment
and varies over time. This paper is build on top of both
ideas from |Olson and Agarwal| [[13] / [Rosen et al.| [14], so
we provide more details about their concepts in A
recently published algorithm [[17] allows interference of non-
parametric distributions based on kernel densities. This offers
new possibilities for non-Gaussian distributions but cannot
solve the parametrization problem.

Our recently published approach of self-tuning GMMs
[S] aims to overcome the burden of parametrization by
introducing a self-optimizing version of Olson’s Max-Mixture.
By enabling the optimizer to change the model’s parameters,
the GMM can be adapted to the most likely error distribution.
Although the convergence on a real world GNSS dataset is
shown, the direct optimization of the error model comes with

several drawbacks:

1) The algorithm requires a good initial guess of the
true distribution since it can not recover from a local
minimum.

2) Tight bounds for the optimized GMM parameters are
required to work around numerical issues.

3) The applied Max-Mixture model is just an approxima-
tion of a GMM which is not correct for GMMs with
strongly overlapping components.

4) The used model is fixed in the number of mixture
components and there is no possibility to detect if
more or fewer components are required.

Therefore, [3] is just a proof-of-concept and real applications
require further steps. With this paper we relax limitation (1)
and overcome (2) and (3) completely. We want to introduce
a sensor fusion algorithm that adapts its error model during
runtime without more than minimal knowledge about the true
distribution. As far as we know, this is the first algorithm
which implements a robust self-optimizing GMM as error
model of a realtime capable state estimation algorithm.

III. GAUSSIAN MIXTURE MODELS

For the representation of multimodal distributions, Gaussian
mixture models are a state-of-the-art approach with several
advantages. With a weighted sum of multiple Gaussians,
corresponding to [(T)} non-Gaussian properties like asymmetry
or multiple modes can be represented easily. Due to the
variable number of components, distributions with different
complexity can be described. With expectation-maximization
exists a powerful algorithm to estimate the model’s parameters
from distributed data. We want to show in this section how
GMMs can be used for least squares. Although this is nothing
new, it is important for the further construction of the proposed
algorithm.
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A. Multivariate Gaussians and Least Squares

The least squares problem, which is solved for state
estimation, arises from the formulation of a maximum-
likelihood problem |(2)| where Z is a set of measurements z;,
and X is the set of estimated states x;.

X* = argmax P (X|Z) 2)
X

To estimate the optimal set of states X*, the problem can be
described as product of conditional probabilities:

P (X|Z) HP (z,]x;) (3)

By applying the negative logarithm, the optimization problem
can be rewritten as sum:

X = i —In(P (z;x, 4
arg)r(nln; n(P (z;]x;)) )

The estimated X is the maximum-likelihood estimator of X.



For multivariate Gaussians, the corresponding least squares
problem is defined as:

5 1 1 2
X:arg)r(ninzg Hl'f (e; —u)H ®)

The estimation error e(x;, z;) is defined as non-linear function
of a measurement and a corresponding subset of states.
Instead of the covarianlce Matrix 3, we use thle square root
information matrix Z?2 that is defined by Z2 = X7 2. It
can be computed from X! using Cholesky decomposition.
For a sum of Gaussians with n components, the conditional

probability is defined as:

n 1 N 2
P(z,|x;) x ch - exp <2 Hl'j (ei — uj)H >

(6)
1
with ¢; = w; - det (T} )

Due to the summation, the logarithm cannot be pushed inside
and the log-likelihood has to be calculated differently. |Olson
and Agarwal [[13] respectively Rosen et al.| [14]] provided two
possible solutions.

B. Approximated Solution (Max-Mixture)

In [13]] the summation of a GMM was replaced by the
maximum operator, which leads to:

1)1 ?
— In(P) :—lnmjax (Cj'exp (2“1-7? (ef“j)H )>
(7

This approximation is valid as long as the Gaussian compo-
nents are well separated. The maximum becomes a minimum
when the logarithm is pushed inside:

1 1 2
~In(P) = min <—1ncj +5 HI; (e, — uj)H ) @®)

In difference to other implementations, we keep the log-
normalization term — Inc; to preserve a consistent optimiza-
tion surface. Hence, we introduce a normalization constant
Ym to construct a well-behaved least squares problem:

. 1 \/—2-In 2L
X = argmin Z B min || V, om
X i TE (e; — “j) ©)

with ~,, = mjax c;j
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The additional term — In % is treated as separate dimension
of the vectorized error function. A positive expression under
the square root is guaranteed by +,,. The separation of log-
normalization and quadratic error leads to better convergence,
since the partial derivative regarding the state value x, is
identical to the original problem [(5)]

C. Exact Solution (Sum-Mixture)

The exact implementation of a GMM inside a least squares
problem is possible with the approach proposed in [14]]. Rosen!

et al.| demonstrated that arbitrary distributions can be applied
to weight the estimation error with:

2
) . P(z}|x->>
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arg;?“nzi: \/ n( Ve (10)

with v, > max (P (z,|x;))

It requires a normalization constant v, to keep the negative
log-likelihood positive. Based on the new normalized
probability of a GMM is defined as:

P(Z-|X») Cj 1‘ 1 2
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Since it has to satisfy P(z;1x;)/y, < 1, the normalization can
be defined as summation of all constant terms 5 = > ;G-
The resulting lest squares problem is:

X = argmin 12)
g Z (

—In Z%-exp(...)
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IV. EXPECTATION-MAXIMIZATION FOR MIXTURE
DISTRIBUTIONS

The EM-algorithm [18] is a maximum likelihood approach
in which a set of parameters @ is estimated from a set of
observed variables O, but also depends on a set of hidden
ones H. Since 8 and H are unknown at the beginning, 6
cannot be estimated directly. Instead, an alternating sequence
of E-steps and M-steps is performed. E-steps estimate the
hidden variables based on an initial guess of 8 and M-
steps compute @ based on the previously estimated H. Both
steps are performed iteratively until a maximum number of
iterations or a different convergence criterion is reached. For
GMM estimation it is defined as:

OGMJVI — {97} HGMJV[ _ {aij}
GMM 3
60 — fuwj ;T |
The observed variable is the measurement error e; = z, —
f(x;), defined by the measured value z; and the true value

of the state x,. Hidden variable is the probability «;; of each
measurement z; to belong to component j of the GMM. The
1

(13)

parameters wj, p4; and l'j5 define the mixture distribution.
For mathematical details please see Appendix [A]

V. SELF-TUNING MIXTURES

To solve the problem of simultaneous state and error model
estimation, we define them together as a nested EM-algorithm.
At first, we assume that we are able to estimate a state that
is a coarse approximation of the true state X. This can be
done with a simple initialization using accumulated odometry
measurements or non-robust least squares optimization. It
implies that the estimated measurement error &; is also close
to it’s true value:

(14)



Based on this assumption, we can redefine the observed
variable for the GMM estimation problem as [(I5)] and the
EM problem of state estimation as [(16)]

OFMM {& =e(Xi,2;)}
OSE —7 HSF — gGMM  gSE _x

Algorithm [I| summarizes how both stages of EM are
connected. After the initialization of X and %™ , an outer
EM-algorithm for state estimation (SE) is combined with
an inner one for the Gaussian mixture model (GMM). The
E-step of the SE problem estimates the hidden parameter
MM and is composed of the E- and the M-step of the
GMM estimation problem. The outer M-step is the least
squares optimization according to the Max-Mixture [(9)] or
Sum-Mixture [(12)] formulation from To keep the
algorithm real-time capable, only the measurements and states
in a sliding window with the length ¢gyy are considered in
the estimation problem.

(15)
(16)

Result: X, 0

Initialize states X randomly

Estimate X;—, with [(3)]

Initialize 5% (e.g with

foreach time step t do

Add z;, x; at t to P(X|Z, M)

Remove z,, x, older than ¢t — tgy from
P(X|Z, OGJ\%M)

// E—-step state estimation

begin estimate 5/
Compute all e, from X,Z

Initialize MM  gGAIM
repeat
// E—-step GMM
Compute o;; from e;, 85 with |(18)
// M—-step GMM
Compute HtGMM from e;, ov;; with [(19)
until convergence;

end
Update P(X|Z, 8MM) with g5
// M-step state estimation

Estimate X; with [(9)] or
end
Algorithm 1: Nested EM for Self-tuning Mixtures

Since the outer EM-algorithm is computed only once per
time step, its convergence have to be achieved over time.
For sensor fusion applications, the difference between each
time step is small, so it is called often enough to converge
until the distribution parameters change. The convergence
of the algorithm is hard to prove, since it depends on the
overall structure of the estimation problem and the non-
linearity in the error function e. It has to be assumed that the
optimized surface of the problem has several local minima,
which is a common problem in non-linear state estimation.
Nevertheless, we would like to mention a few arguments in
favor of convergence:

1) The resulting log-likelihood of Max-Mixture and Sum-
Mixture is mostly convex which supports convergence.

2) The inner EM-algorithm for the GMM will converge
for sure. [19} p. 450]

3) Since the algorithm is solved iteratively, every time
step starts close to the minima that the previous one
found.

The crucial question is, if a good initial starting point for
the state values can be found without knowing the exact
distribution. As we will show in our experimental evaluation,
this is possible at least for different localization problems.

VI. LOCALIZATION PROBLEMS AS FACTOR GRAPH

Since we evaluate the proposed adaptive GMM approach
on different localization datasets, we want to explain what
makes them challenging and how the estimation problems
are composed. Our adaptive mixtures algorithm is applied
to reduce the estimation error that non-line-of-sight (NLOS)
measurements cause. Hence, the estimation error e;, that
is described with the Gaussian mixture, is related to the
one-dimensional (pseudo) range measurements.

A. UWB-Radio Localization

In [8]], we introduced a dataset that includes range mea-
surements as well as wheel odometry of a small robot. While
driving through a labyrinth, the distance to fixed points is
measured with wireless ultra-wide-band (UWB) modules.
They are able to provide accurate range measurements, but
artificial metallic obstacles were added to provoke NLOS
effects. A top-view camera system provides a centimeter-level
precise ground truth and allows to evaluate the accuracy of
estimation algorithms. As shows, the error distribution
is asymmetric and right skewed with a mean of 0.12m and
outliers up to 1 m. Since the robot’s motion is restricted in a
plane, the system’s state is simply a 2D-pose. In difference
to earlier work [8]], we omit the estimation of a common
offset for all range measurements. The maximum-likelihood
problem is composed of one range and odometry measurement
for each time step. Further details can be found in [§].
summarizes the noise properties that are used for the non-
robust factors.

TABLE I
NOISE PROPERTIES OF THE UWB INDOOR DATASET

Factor Square Root Information Z 3

Range (0.1m)~*
0.01ms=1\

Odometry diag [ 0.01ms~1!
0.0lms~1!

B. GNSS Localization

Besides the robotic example, we evaluate the proposed
algorithm on several real world GNSS datasets. Along with
the older Chemnitz City dataset from [6], we use the four
smartLoc datasets [7] which are recorded in the major cities



TABLE II
NOISE PROPERTIES OF THE GNSS DATASETS

1
Square Root Information Z 2

Factor Chemnitz City smartLoc
Pseudorange (10m)~* *
0.05ms~1 \ " 0.05ms~1 \ !
. 0.03ms~1! . 0.03ms~1!
Odometry diag 0.03ms—1 diag 0.03ms—1
0.006 rads—! 0.002rads~!

1 -1
CCED Model ~ diag (0‘08;;1“ s_l) diag (0.81051?—1)

* individually estimated by the GNSS receiver

Frankfurt and Berlin. Due to the urban environment, they
contain a high proportion of NLOS measurements, as their
error histogram in [Fig. 2| shows. All datasets combine the
wheel odometry of a driving car with a set of pseudorange
measurements from a mass-market receiver. As ground truth,
a NovAtel differential GNSS receiver supported by a high-end
inertial measurement unit is used.

UWB Indoor Chemnitz City Berlin Platz

Probability
Probability
Probability

0 0.5 0 50 100 150 0 50 100 150
Error [m] Error [m]
Berlin Frankfurt Main Tower

Frankfurt Westend Tower

Probability
Probability
Probability

0 50 100 150 0 50 100 150 0 50 100 150
Error [m] Error [m] Error [m]

Fig. 2. Distributions of the (pseudo) range error of the UWB and GNSS
datasets. Please note the differently scaled first x-axis. All data sets show a
more or less distinct right skewness, which is caused by NLOS effects.

The vehicle’s pose is estimated according to the Cartesian
ECEF coordinate system and the rotation around its upright
axis. Since the pseudorange measurements are biased by
the receivers drifting clock error, it is estimated along with
its derivation. In difference to the UWB dataset, there
are multiple (pseudo) range measurements for each time
step. Their number depends on the number of observable
satellites. The dynamic of the clock error is described with a
constant clock error drift model (CCED). Pseudorange, wheel

odometry and CCED factor are described in detail in [S].
Tab. Il summarizes the noise properties of all GNSS datasets.

Since they are recorded with different sensors, the values for
odometry and the CCED model differ. While the pseudorange
noise of the Chemnitz City dataset is fixed, the smartLoc
datasets include an individual value for each measurement
that is provided by the GNSS receiver.

VII. EVALUATION

This section gives an overview over the performance of the
proposed adaptive mixture approach. Beside the estimation
accuracy, we want to demonstrate the good convergence
properties of the adapted error model. We compare our
approach against static mixture models as well as the state-of-
the-art algorithm DCS [11] and cDCE [8]]. We use the absolute
trajectory error (ATE) in the XY-plane as error metric, since
it can be applied to both estimation problems. The source
code as well as the datasets are online available as part of
our robust sensor fusion C++ library libRS}ﬂ

A. Implementation Details

The least squares optimization of the state estimation
problem is implemented with the Ceres solver [1]. To keep
the runtime bounded, we use a simplistic sliding window
approach that removes factors older than gy = 60s. Even
when we use recorded datasets, we process the data as it
were in real time. Hence, the estimation problem is solved
in every time step without using future measurements.

B. Parametrization of the GMM

The initial parametrization 854" of the GMM can be
determined in different ways. It can be estimated with a
simple clustering approach like k-means or defined with prior
knowledge about the estimation problem. We assume that the
(pseudo) range measurements are corrupted by outliers that
have a larger spread than the valid measurements. Therefore,
we define the initial GMM with equal-weighted, zero-mean
components that differ only in their square root information.
As defined Wigh [(T7)] for a n-component GMM, we scale
each matrix l'jE with factor 101~/ based on the square root

information for the non-robust Gaussian case T>. For the
smartLoc datasets, we also use a value of Z2 = (10m)~! to
be consistent with the Chemnitz City dataset. The algorithms
with a static GMM rely on the same values.

Ij% - T>.10'J
w, = 0 Vi=1...n 17)
W=

For the automatic selection of the number of GMM
components, we examined classical static criteria such as
BIC [20] and AIC [21]]. Since the sensor data is strongly
multimodal, both lead to higher numbers like n = 5,6.
Regarding the trajectory error, our evaluation in has
shown no advantages for higher numbers, we set n = 2 for all
datasets. Although the proposed parametrization is applied
in our final evaluation, we want to demonstrate that the self-
tuning algorithms are robust regarding their initialization.
Therefore, we evaluated the mean ATE of adaptive MM
and SM for different standard deviations of the second
GMM component. shows that there is a wide basin
of convergence for both algorithms, although Sum-Mixture
converges slightly better. Both algorithms surpass their static
variants significantly for any parametrization.

Ihttps://mytuc.org/libRSF
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RESULTS OF THE FINAL EVALUATION.

TABLE III

Algorithm Indoor UWB Chemnitz Berlin PP Berlin GM Frankfurt MT Frankfurt WT
g ATE [m] Time [s] ATE [m] Time [s] ATE [m] Time [s] ATE [m] Time [s] ATE [m] Time [s] ATE [m] Time [s]
Gaussian 0.1212 26.0 30.0 56.7 29.2 9.84 13.38 473 30.97 54.8 23.54 322
DCS 0.1443 55.9 4.403 52.6 25.04 15.7 19.11 62.3 13.25 65.0 11.39 35.8
cDCE 0.1210 53.7 4.326 52.3 17.91 15.2 14.59 64.6 14.93 68.8 11.12 35.5
Static MM 0.1569 24.6 4.127 55.3 27.25 15.2 15.73 63.1 18.1 64.4 9.467 37.9
Static SM 0.1185 39.3 4.463 55.1 18.36 19.8 12.52 63.8 20.15 69.6 10.82 37.2
Adaptive MM 0.0666 41.0 2.562 88.4 26.65 28.0 16.8 124.0 15.39 111.0 6.995 67.9
Adaptive SM 0.0651 46.4 2.559 81.0 12.96 24.2 15.67 110.0 13.89 96.9 6.669 58.6
120 Berlin damer Platz Berlin kt . . . . . .
. than the SM variant. Since there is no significant difference
% | in runtime, we would prefer the exact adaptive SM algorithm.
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Fig. 3. Position error for the smartLoc GNSS datasets depending on the
number of components of the GMM. Using more than two components has
no advantage regarding the error. Please note the shared axes.
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Fig. 4. Mean position error for the dataset “Berlin Potsdamer Platz”
depending on the initialization of the second GMM component’s standard
deviation. The exact sum-mixture approach converges for a wider range of
values, but both adaptive approaches outperform their static variants.

C. Position Accuracy

[Mab. 110 summarizes the mean ATE as well as the runtime
of all algorithms. The smallest trajectory error is marked in
green. For 5 out of 6 datasets, adaptive mixture models are
able to reduce the impact of erroneous measurements over
static ones. They are the only ones that reduce the ATE of
the indoor dataset significantly. This can be explained by
the shifted distribution, which cannot be compensated by
other robust methods. The proposed adaptive SM algorithm
achieved the best results in 4 cases. DCS achieved a slightly
better result on the “Frankfurt WT” dataset, which has a
relatively low number of NLOS measurements. However,
it performs significantly worse on other datasets. A special
case is the “Berlin GM” dataset, where only the static SM
algorithm were able to reduce the ATE. We have to investigate
further which characteristic caused this result. The adaptive
MM algorithm achieves comparable but slightly worse results

Intel i7-7700 system. As a rule of thumb, the adaptive
algorithms require twice as much time as the other robust
ones. Nevertheless, both proposed algorithms are significantly
faster than the recording time of the datasets.

VIII. CONCLUSION

In this paper, we introduced a novel approach to combine
multimodal and self-tuning error models to improve least
squares optimization. Based on the EM-algorithm, we are able
to efficiently adapt a Gaussian mixture model during the state
estimation process. Therefore, the burden of parametrization
could be relaxed for Max-Mixture [13]] and Sum-Mixture
[14] based algorithms. We compared our work to a set of
state-of-the-art algorithms on real world datasets and showed
their improved performance. Especially for the adaptive Sum-
Mixture algorithm, the well-behaved convergence could be
demonstrated experimentally.

Still open for future research is the question after the
optimal number of Gaussian components. Although “two”
is a sufficient compromise between flexibility and runtime,
this does not necessarily apply to scenarios beside GNSS.
Interesting could also be the transfer to SLAM problems that
are defined by relative rather than absolute measurements.

APPENDIX
A. Expectation-Maximization for GMMs
The expectation step is defined by:

1
Ple|w;,pu;, I?
( z| J ll’] ]) . (18)

D=1 Ple;|wp, py, I7)
with P(e”w,u,Ié) =
1 1|1 2
w - det (IQ) rexp | —3 HI2 (e; —[,I,)H

The maximization step is defined by:
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