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Abstract Superpixel segmentation showed to be a useful pre-
processing step in many computer vision applications. This led
to a variety of algorithms to compute superpixel segmentations,
each with individual strengths and weaknesses. We discuss the
need for a standardized evaluation scheme of such algorithms
and propose a benchmark including data sets, error metrics, us-
age guidelines and an open source implementation of the bench-
mark in a Matlab toolbox. The benchmark evaluates the quality
of the superpixel segmentation with respect to human ground
truth segmentation and the segmentation robustness to affine
image transformations, which is crucial for application on im-
age sequences. To our knowledge, this is the first benchmark
considering the segmentation robustness to such image trans-
formations. To better consider the characteristics of an image
oversegmentation, we provide a new formulation of the underseg-
mentation error. Using this benchmark, we evaluate eight algo-
rithms with available open source implementations and discuss
the results with respect to requirements of further applications
and runtime.

1 Introduction

Image pixels are the base unit in most image processing tasks. However, they
are a consequence of the discrete representation of images and not natural
entities. Superpixels are the result of perceptual grouping of pixels, or seen
the other way around, the results of an image oversegmentation. Superpixels
carry more information than pixels and align better with image edges than
rectangular image patches (see fig. 1.7). Superpixel can cause substantial
speed-up of subsequent processing since the number of superpixels of an image
varies from 25 to 2500, in contrast to hundreds of thousands of pixels. A
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Figure 1.1: (left) Superpixels examples. The input image (left part) is segmented
into 25 (middle part, top-left corner) and 250 (middle part, bottom-right)
superixels and shown with mean segment colors (right part). (right) The
varying results on the established normalized cuts superpixel segmenta-
tion algorithm using the same implementation, data set and error metric,
demonstrate the need for a standardized benchmark.

superpixel segmentation of an input image is illustrated in fig. 1.1. Superpixels
are becoming increasingly popular in many computer vision applications. Their
benefit is analyzed in [1] and shown in applications like object recognition
[2], segmentation [3] and automatic photo pop-up [4]. Downsides of using
superpixel segmentation as preprocessing step are the computational effort
for the computation of superpixels and more importantly the risk of loosing
meaningful image edges by placing them inside a superpixel. Depending on
the application and the used superpixel algorithm, subsequent processing steps
can struggle with a non lattice arrangement of the superpixels. Therefore, the
careful choice of the superpixel algorithm and its parameters for the particular
application are crucial. In this paper, we provide a benchmark framework for
superpixel segmentation algorithms and compare various existing algorithms.
We focus on algorithms with an open source implementation, that are ready
for application on a variety of computer vision tasks. We consider both, the
quality of the segmentation compared to human ground truth segmentations
and the robustness to affine image transformations. The following section gives
an overview of the state of the art in superpixel segmentation and figures out,
why there is still a need for a comparison of the quality of these algorithms.
Section 3 describes our evaluation scheme, followed by an overview of the
compared algorithms in section 4. Comparison results are given in section 5.

2 Related Work and Why We Need a New Benchmark

There has been a lot of research on superpixels since the term has been es-
tablished in [5]. In particular, various algorithms for superpixel segmentations
have been proposed, e.g. [5] [6] [7] [8] [9] [10] [11] [12] (these algorithms are
compared in this work). Most of the existing work includes comparisons to
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a couple of established algorithms, supported by publicly available implemen-
tations. Due to its broad publicity and its free implementation, superpixel
segmentation based on normalized cuts [5] is one of the commonly used algo-
rithms for comparison. Together with the Berkeley Segmentation Data Set [13]
and the two error metrics “boundary recall“ and “undersegmentation error,
this is a repetitive comparison framework in the literature. However, there are
small variations in the usage of the dataset or implementation of the error met-
ric that cause major differences in the benchmark results. This is illustrated in
fig. 1.1 (right). Each curve comes from a paper where the authors report to use
the free implementation of the normalized cuts superpixel algorithm, together
with the Berkeley Segmentation Data Set and the boundary recall error metric.
Nevertheless, the results are apparently different. A closer look reveals small
differences in the usage of the dataset (e.g. Is the full dataset used or just a
part? How is dealt with multiple ground truth?) and the implementations of
the error metrics (e.g. How are boundary recall and undersegmentation error
implemented? What is the threshold on boundary recall?) Furthermore, to
apply superpixel segmentation on image sequences or video, the stability of
the segmentation under transformations of the image content is important. To
our knowledge, there exists no benchmark considering such transformations.

3 The Proposed Superpixel Benchmark

3.1 Error Metrics

For evaluation of segmentation quality, we focus on two error metrics: bound-
ary recall and undersegmentation error. Boundary recall is an established
measurement to evaluate segmentation algorithms. However, using boundary
recall alone, favors segments with long boundaries. E.g. think of a segment
with an anfractuous boundary that assigns each image pixel as boundary, this
segment would achieve perfect boundary recall. Thus, in figure-ground seg-
mentation, boundary recall is used together with boundary precision to take
care of the length of boundaries. However, since for superpixel segmentation
a low precision is inherent, undersegmentation error is more appropriate. Be-
cause there exist various implementations of these error metrics, we describe
and discuss our choices in the following.

Boundary Recall
is the fraction of ground truth edges that fall within a certain distance d of a
least one superpixel boundary. We use d = 2. Given a ground truth boundary
image G and the algorithms boundary image B, the computation of boundary
recall is straight forward:
1. True Positives (TP) Number of boundary pixels in G for whose exist
a boundary pixel in B in range d.
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Figure 1.2: Illustration of undersegmentation error. A ground truth segment (green)
is covered by three superpixels (A,B,C), that can flood over the ground
truth segment border.

2. False Negatives (FN) Number of boundary pixels in G for whose does
not exist a boundary pixel in B in range d.

3. Boundary Recall R = T;;%

Multiple ground truth boundary images are combined using OR operation.
Thus, the resulting boundary map answers for each pixel the question: Is
there a ground truth segmentation with a boundary at this pixel?

Undersegmentation Error

compares segment areas to measure to what extend superpixels flood over the
ground truth segment borders. A ground truth segment divides a superpixel
P in an in and an out part. This is illustrated in fig. 1.2. There exist various
implementations of undersegmentation error metrics. In [11], for each segment
S it is summed over the out-parts of all superpixels P that overlap the segment:

szpms;é@ | Pout|

o (1.1)

UndersegmentationErrorrp = Z

SeGT

For the example of fig. 1.2, this is: ‘A"“‘H‘B“g‘”lﬂc"“” However, there is a
serious penalty for large superpixels that have only a small overlap with the
ground truth segment. Thus, [12] uses a similar model, but only superpixels
with an overlap with the segment of at least 5% of the superpixel size are
regarded. To overcome this free parameter, we propose a new formulation of
the oversegmentation error and define the remaining error as the smaller error
introduced by either appending the out-part to the segment or by omitting the
in-part of the superpixel. Being N the total number of pixels, this results in:

. 1 .
Undersegmentation Error = N Z Z min(Pin, Pout) (1.2)
SEGT \ P:PNnS#D
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The inner sum is the error introduced by this specific combination of

ground truth segment and superpixel. For the example of fig. 1.2, this is:
|Aout‘+|Bout‘+|Cin|
IS]

Precision-Recall on Boundary Images

For evaluation of robustness to affine image transformations, we compare
boundary images of superpixel segmentations directly. The concrete usage is
described in section 3.2. The evaluation metric is precision-recall represented
by the Fl-score. Computation of TP, FN and Recall follows computation of
boundary recall, FP and Precision are computed as follows (d is set to 2 again):

1. False Positives (FP) Number of boundary pixels in B for whose does
not exist a boundary pixel in G in range d

TP

2. Boundary Precision P = 7575

3.2 Benchmarking Robustness to Affine Transformations

For application of superpixel segmentation on image sequences or video, the
stability of the segmentation under image changes is crucial. To evaluate the
robustness of an algorithm A against an affine image transformation 7', we
compute two boundary images using this algorithm and compare. The first
boundary image A(I) is computed on the origin image directly. For the second
boundary image, the image is first transformed by 7' to T'(I) using inverse
mapping, followed by the computation of the boundary image A(T'(I)). Back-
transformation yields T~ (A(T(I))) which is compared to the boundary map
A(I) obtained from the segmentation of the origin image. The transformation
scheme is illustrated in figure 1.3 together with some example transformations.
The comparison of the boundary maps follows section 3.1 and yields an F-score
for each transformation. Due to their non rectangular shape, a black border
can appear at some transformed images T'(I). To minimize their effects on
the segmentation, all origin images are padded with a black border at the very
beginning.

3.3 Image Data, Usage Guidelines and Matlab Toolbox

The implementations of the error metrics are part of an open source Matlab
toolbox that is available from our website’. The toolbox also provides func-
tions for automatic benchmarking and evaluation of new superpixel algorithms,
including easy parameter evaluation. The image data base is BSDS500 [14],
the extended version of the established Berkeley Segmentation Data Set. To
ensure comparable results, the usage of the partitions of the BSDS 500 dataset
is intended as follows:

L http://www.tu-chemnitz.de/etit/proaut/forschung/superpixel.html
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Figure 1.3: Image transformations (left) To evaluate the robustness to an im-
age transformation T, we compute two boundary images, A(I) and
T—Y(A(T(I))), and compare. For more details, see text. (right) Il-
lustration of example transformations.

Boundary Image
Al)

1. Train There are 200 images for learning purposes.

2. Val The cross-validation dataset contains 100 images for adjusting the
parameters of an algorithm.

3. Test The 200 test set images are only meant for the final benchmark.
4 Algorithms

We compare various existing superpixel segmentation algorithms. Require-
ments for an algorithm to be presented here is an available open source imple-
mentation. The results are going to be presented on our web site, and thought
to be extended with the results of newly available algorithms. Algorithms
tested are Normalized Cuts (NC) [5]?, Felzenszwalb-Huttenlocher Segmen-
tation (FH) [6]°, Edge Augmented Mean Shift (EAMS) [7] [15]*, Quickshift
(QS) [9]°, Marker-Controlled Watershed Segmentation (WS) [10]°, Entropy
Rate Superpixel Segmentation (ERS) [8]”, Turbopixel Segmentation (TP) [11]®
and two implementations of Simple Linear Tterative Clustering [12] (oriSLIC?
and vISLIC'?). The oriSLIC implementation does not strictly follow the de-

2 http://www.timotheecour.com /software/ncut /ncut.html
3 http://www.cs.brown.edu/ pff/segment/
4 http://www.wisdom.weizmann.ac.il/~bagon /matlab.html
5 http://www.vlfeat.org/
6 We use the OpenCV implementation with uniformly distributed markers
http://opencv.willowgarage.com/wiki/
7 http://www.umiacs.umd.edu/ mingyliu/research.html#ers
8 http://www.cs.toronto.edu/ babalex/turbopixels_supplementary.tar.gz
9 http://ivrg.epfl.ch/supplementary_material/RK_SLICSuperpixels/index.html
10 http://www.vlfeat.org/
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scription in [12] but incorporates some simplifications for speedup. The base-
line comparison algorithm (BOX) simply divides the image to a regular grid
with the given number of segments. Resulting segmentations are shown in fig-
ure 1.7. Due to its runtime, the normalized cuts algorithm is often applied on
resized images. Thus we include a ”NC resized “ algorithm in the benchmark,
where the images are scaled to 160 pixel on the longer side before segmentation.
We further want to point out, that we show results of Turbopixel segmentation,
although the performance for small numbers of superpixels is much worse than
in the origin paper [11]. Turbopixel segmentation is based on growing of initial
small segments. For small numbers (e.g. 100 or 1000) of initial segments, these
initial segments do not grow enough to cover the complete image. We consider
this implementation as broken for small numbers of segments.

5 Comparison Results

Segmentation Quality

The properties of the resulting superpixel segmentations strongly depend on
the algorithm. ERS produces similar sized superpixels, that carefully follow
image gradients. Increasing the number of segments results in a refinement
of the prior segmentation (i.e. only few superpixel borders get lost, but some
superpixels are divided). Further, ERS allows to catch an exact number of
segments. Superpixel borders of FH strictly follow image gradients. The
resulting segments vary strongly in shape and size. Sometimes, long, thin seg-
ments occur along strong image gradients. There are problems with very small
segment numbers (e.g. 30) on the regarded image size (481x321). EAMS
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Figure 1.4: Results of segmentation algorithms on the proposed benchmark. At
boundary recall top-left is better, at oversegmentation error, bottom left
is better.
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segments also vary in size and shape, but are more regular than with FH. Fur-
ther, increasing the number of segments gives a good refinement of the prior
segmentation. NC does not give such an refinement, but the superpixels are
regularly sized, shaped and distributed. The resized NC does not give the
exact same results, but the segmentation has same properties, including an
exactly controllable number of segments. QS produces more irregular shapes
and there occur small artifact segments. The regularity of segment borders of
oriSLIC and vISLIC strongly depend on the compactness parameter. Tuning
this parameter is crucial. Moreover both implementations handle the compact-
ness parameter differently. Values that create comparable smooth results for
large numbers of segments produce much smoother borders at oriSLIC for
small segment numbers. However, the compactness parameter enables adjust-
ing the regularity of the superpixels at the cost of loosing some object borders.
At WS the initial marker distribution influences the segmentation result. On
one hand it supports a regular distribution, on the other hand does it cause
small artifact segments. The resulting segment size and shape are not regu-
lated. The quantitative benchmark results on segmentation quality are shown
in figure 1.4. On boundary recall, vISLIC performs very well on small num-
bers of segments, however, for larger numbers, FH and ERS achieve higher
recall. oriSLIC also performs worse on small numbers, but equally well for
larger numbers. This also follows the intuition, that segmentations with more
irregular, longer border achieve higher boundary recall. On undersegmenta-
tion error ERS, EAMS and oriSLIC perform best. On very small numbers
of segments, VISLIC performs comparable but gets higher errors on larger
numbers. As expected TP performs badly on small numbers of superpixels
and does not achieve the performance from the origin paper [11]. The visual
inspection of BOX ”segmentations“ and its quantitative performance empha-
sizes the benefit of superpixel segmentations.

—— EAMS
-~ FH

1000 ERS t in sec [n=50 n=100 n=500 n=1000
—NC EAMS 4.4 44 41 1
g 1/ NC (resized) FH 0.13 0.13 0.13  0.13
§ 100/ —Qéuc ERS 1.85 1.93 2.37  2.52
& ™ NC 150 295 - -
< o ws NC (resized)| 9.51 19.34 402.44 -
£ 10 —~ orisLIC S 9.25 5.86 3.05  2.71
H I — BOX VL SLIC 0.49 0.64 0.94 0.83
3 TP - 38.7 41.10 43.71
¥y —— ] ws 0.01 0.01 0.01  0.01
1 ori SLIC 0.19 0.20 0.19  0.20
0.1
0 500 1000 1500 2000 2500

Number of Segments

Figure 1.5: (left) Runtime of segmentation algorithms (log-scale). (right) Runtime
in seconds for different number of superpixels.
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Runtime

The runtime comparison given in figure 1.5 was carried out on an Intel Core 2
Quad Q9400 (2.66 GHz) processor with 4 GB RAM. The measurements only
show tendencies, since no special efforts were made to make exact runtime
measurements. WS is by far the fastest algorithm followed by FH and oriS-
LIC. oriSLIC is faster than vISLIC since the latter follows more closely the
description in [12] while the former uses some simplifications for speedup. If
runtime considerations play any role in the application of an superpixel algo-
rithm, it is important to notice, that the range of runtimes of the different
algorithms covers five orders of magnitudes.

Segmentation Robustness

Figure 1.6 shows results of all algorithms on the affine transformations shifting,
rotation, scaling and shearing. The number of segments is 250. FH and
EAMS are invariant to image shifts, QS is at least robust to shifts. Results
of ERS are inferior, but good-natured. SLIC is has problems with shifts,
however, vISLIC can better handle certain step widths. Due to the lattice
arrangement of superpixels in NC, this algorithm also has serious problems
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Figure 1.6: Robustness of algorithms towards shifting, rotation, scaling and shearing.
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with shifts. The same happens for WS, due to the regular distributed markers.
On rotation a periodic behavior of the performance of most algorithms can be
seen. Rotation of 90 or 180 degree are less hard than arbitrary rotations.
EAMS performs best on rotations, followed by FH and QS. Again, the lattice
initial segment arrangements of NC, WS and oriSLIC cause problems. On
changes on scale, all algorithms perform comparable for small changes. As
expected, there is an asymmetry in favor of enlarging the image content. ERS
deals best with decreasing image content, oriSLIC deals best with enlarging.
On shearing, the behavior of all algorithms is similar, EAMS performs best.

6 Conclusions

We designed and applied a benchmark for superpixel segmentation algorithms.
The implementation of all necessary functions to run the benchmark on new
algorithms is available from our website!'. We compared open source imple-
mentations of state of the art algorithms regarding quality and robustness of
the segmentations. Left for future work is the evaluation of robustness with
respect to variations of the intensity or color values. Algorithms that strongly
depend on image data and not on a compactness constraints or lattice distri-
bution of segments, showed to be more robust towards affine transformations.
However, dependent on the application, compactness constraints or lattice dis-
tribution can be crucial. WS is the fastest algorithm, however, neither the
segmentation quality nor the robustness is among the best. FH seems to be a
good alternative if runtime plays a role, however, the resulting segments vary
strongly in shape and size. EAMS showed to be the most robust against affine
transformations, however, EAMS is inferior with respect to boundary recall.
QS is faster than EAMS but yielded inferior segmentation results. ERS has
good balanced results on segmentation properties, quality and robustness. If
the runtime of 2s per image is not a problem, this could be an interesting base
for many computer vision tasks. The two implementations of SLIC showed
good, but diverging properties. Very recent, the authors of [12] announced a
new zero-parameter version (SLICO) on their website that overcomes the com-
pactness parameter. Dependent on the application, using this parameter to
adjust for more regular or more gradient aligned superpixel could be prefer-
able. Further, on Windows machines, the closed source implementation of
Lattice Cut [16] could be interesting. The implementation of TP seems to be
broken, otherwise, this could have been a faster alternative for NC, which is
too slow for many real world application. In general, there is a lack for faster
superpixel algorithms with high segmentation quality and robustness.'?

I http://www.tu-chemnitz.de/etit /proaut /forschung/superpixel.html
12 This work has been funded by the European Union with the European Social Fund
(ESF) and by the state of Saxony.
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Figure 1.7: Superpixel segmentations. (top-row) Different segmentations by humans
taken as ground truth. (other rows) Each row shows results of one algo-
rithm and 3 parameter settings, visualized as overlayed boundary image
and superpixels with average image colors. The algorithms parameters
where chosen to produce about 25, 100 and 500 superpixels (execpt for
TP and NC). The algorithm name and individual number of superpixels
are given on the very left.
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