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Abstract

Visual place recognition is an important field in mobile
robotics. A typical setup contains a given database of im-
ages (the map) and the robot consecutively tries to find
matchings between this database and the actual visual in-
put (query images). For real world applications the runtime
of this setup can be significantly reduced by selecting only
few matching candidates from the database for the current
query image. In this paper, we propose a novel approach to
reduce the computational effort in the online stage of place
recognition by processing the database in advance. The
method can be used with any matching scheme if the follow-
ing assumption on the dataset is fulfilled: Given database
and query in form of image sequences, we assume directly
neighbouring places in the world to be represented by im-
ages sharing similar appearance. Based on this assump-
tion, we propose a selection of matching candidates for the
next query image based on the current matchings and in-
tra database similarities. We provide an algorithmic ap-
proach that can deal with different camera trajectories be-
tween database and query, repeatedly revisited places and
kidnapped robot situations. Further, we provide prelimi-
nary results on the Nordland validation dataset and show
that the proposed approach can save in many configurations
about 90 % comparisons at the online stage without consid-
erable place recognition performance loss. Finally, we dis-
cuss the intuitive parameters of the approach and evaluate
them experimentally.

1. Introduction
Visual place recognition describes the problem of match-

ing images (or image sequences) recorded at the same place
at different times. Accordingly, the revisited places can look
differently due to changing lighting conditions, changing
weather conditions or seasonal appearance changes. Rec-
ognizing these places despite their different appearances is
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an important requirement, e.g. for factor graph based Si-
multaneous Localization and Mapping (SLAM) in such en-
vironments. It is a challenging and active research field for
researchers on both mobile robotics and computer vision.

In addition to the challenges induced by the changing
appearances, the generic problems of place recognition ap-
ply - i.e. the growing runtime with increasing number of
seen places. A naive approach is to evaluate each pos-
sible combination between query (the current image) and
database images. This results in completely filled similar-
ity (or distance) matrices as can be seen in the left part of
Fig. 1. Moreover, the larger the database and the more
diverse the contained places, the higher is the fraction of
possibly avoidable comparisons between images that show
completely different places. We propose a novel method
to reduce the number of comparisons during runtime to a
subset of promising candidates. An example for a resulting
sparse comparison matrix is shown in the right part of Fig.
1.

The underlying idea is to divide the place recognition
task and its computational efforts into two phases:

1. In a first offline step, the database of known places can
be analyzed and preprocessed.

2. In the time critical online phase where incoming query
images are going to be matched to the preprocessed
database, we can now exploit the results of the prepro-
cessing.

In this paper, we propose a novel approach for such an
offline preprocessing that can significantly reduce the num-
ber of required image comparisons in the online phase and
approximately maintains the place recognition performance
obtained by the exhaustive approach. Our method can be
used with any matching scheme, if the following assump-
tion on the dataset is fulfilled: Given database and query
in form of image sequences, we assume directly neighbour-
ing places in the world to be represented by images shar-
ing similar appearance. Thus, consecutive images should
be similar and different images from multiple visits of the
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same place should be similar inside the database. We want
to emphasize that they need not be similar across changing
environmental conditions. E.g. given a database of sum-
mer images and query images from winter, we expect the
summer images of nearby places to be similar to each other.

The proposed approach can be summarized as follows:
In an offline phase, we compare the whole dataset with it-
self to determine similar places within the database. This
information can then be used in the online phase to select
promising matching candidates. Thus, we select the match-
ing candidates for an incoming query image Qt based on
successful matchings of the previous query image Qt−1
to the database. Therefore, we select the m database im-
ages that matched best to Qt−1 and additionally all other
database images with an appearance distance ≤ distmax

to one of these database images. The parameter m corre-
sponds to the number of simultaneously kept hypotheses of
matchings to the database. Subsequently, Qt is compared to
the set of matching candidates. This corresponds to a sparse
row vector in the right comparison matrix of Fig. 1. The m
best matching database images for Qt are then the base for
the candidate set for the next query image Qt+1.

To cope with situations where none of the m hypothe-
ses yield a successful matching (i.e. if the prerequisite on
the dataset is violated or in a kidnapped robot case), we add
a relocalization step: If the appearance distance between
the query image and each matching candidates exceeds a
threshold distQDB,max, we compare Qt to all database im-
ages. This adds a completely filled row vector to the com-
parison matrix. From this row, we can then select the m
best matchings as basis for the matching candidate set.

After related work in the following Sec. 2, we will give
more details on the proposed approach in Sec. 3. Sec.
4 presents preliminary results on the Nordland validation
dataset [12]. We show that the proposed approach can save
in many configurations about 90 % comparisons at the on-
line stage without considerable place recognition perfor-
mance loss. The final Sec. 5 discusses directions for future
work, in particular in the context of changing environments.

2. Related Work
There are at least three approaches on dealing with

changing environments: 1. We can try to find descriptors
that can match places despite their appearance change. 2.
One can try to learn systematic changes, e.g. by predict-
ing changes [12] or by learning co-occurrences of features
[8]. 3. Alternatively, we can accept the fact that we cannot
match all appearances and try to organize them [3, 4]. Each
approach may benefit from the proposed method.

Our experiments are based on images of the Nordland
dataset. To decide whether two images show the same place
or not, local keypoint features like SIFT or SURF can be
used. For example, the bag of words based FAB-MAP [5]

Figure 1. Two distance matrices after place recognition on
the Nordland validation dataset [12] with seasonal appearance
changes (here: spring-winter). Each row represents a query image
in winter and a column represents a database image in spring. The
left matrix is calculated by a naive approach comparing all pos-
sible query-database combinations. The right image depicts the
matrix using the proposed approach. The white space represents
image pairs which are not compared, thin horizontal lines indi-
cate a relocalization. More exactly, the sparse matrix is filled with
less than 9% of the possible comparisons, however the correspond-
ing place recognition performance is almost identical (see Fig. 4
(top)). The parameters (see Sec. 3) are m = 20, distmax = 0.25
and distQDB,max = 0.5.

showed good performance on place recognition in large en-
vironments. However, the repeatability of local keypoint
features across severe appearance changes, e.g. induced by
seasonal changes, is limited [17]. I.e. results in [12] re-
veals that FAB-MAP has severe problems in the presence
of seasonal changes.

To overcome these limitations, holistic image descriptors
are often used for place recognition in changing environ-
ments. Holistic image descriptors are for instance Gabor-
Gist [14], BRIEF-Gist [16] and WI-SURF [1]. In [13]
the sum of absolute differences across corresponding pix-
els for several image scales is used as a holistic descrip-
tor. Recently, Sünderhauf et al. [15] investigated the per-
formance of a convolutional neural network (CNN) [7] for
place recognition in changing environments. They showed
that higher layers are better suited for view changes whereas
lower layers show better performance in the presence of ap-
pearance changes. For our experiments, we decided to also
use pretrained CNN features presented in [2].

In order to improve the performance of place recog-
nition, various sequence based approaches have been de-
veloped. SeqSLAM [10] searches for partially linear se-
quences inside the query-database similarity matrix. In [9]
the computational efficiency of SeqSLAM could be im-
proved by applying a particle filter. These algorithms make
assumptions on the similarity of camera motions across
multiple visits of corresponding places. Our proposed ap-
proach relaxes this assumption to similar appearances of
neighbouring places, independently from any motion con-
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straints.
An existing approach for selection of matching candi-

dates is based on an idea for finding more reliable matches
presented in [6]. They suggest the usage of a weighted
graph for GraphSLAM - its edges are weighted with log
likelihoods. The branch with the lowest sum of likelihoods
is further expanded. In [11] this idea was adopted for an of-
fline network flow approach. However, its limitation is still
the necessity for a completely computed query-database
similarity matrix. In order to improve the efficiency Vysot-
ska et al. [18] extended this approach by using a GPS prior.
As a result, they could reduce the number of required im-
age comparisons between query and database. By using a
CNN for image comparison and a modified graph search
algorithm they could reduce the number of required com-
parisons without additional external sensors (i.e. without
GPS) [19].

3. Reducing the Number of Required Image
Comparisons

Currently, most place recognition approaches are using
the naive method of matching every incoming query image
with all existing database images with the consequence of
high computational effort. Accordingly, each query image
is matched with each database image, although they might
be very different. In this section we first provide a method
for detecting similarities inside the database (Sec. 3.1), fol-
lowed by a description how to use these similarities to avoid
unnecessary image matchings between query and database
images (Sec. 3.2). Finally, we propose a simple method to
relocalize in case of position loss (Sec. 3.3). The experi-
mental setup and corresponding results are then presented
in the following Sec. 4.

3.1. The Offline Step: Finding similar places inside
the database

In order to avoid unnecessary comparisons at the online
stage, we suggest a preparation step computing a similarity
matrix

DDB×DB ∈ R|DB|×|DB| (1)

containing all combinations of image comparisons within
the database. The computations can be done in advance,
furthermore it is sufficient to calculate a triangle matrix
since DDB×DB is a symmetric matrix. The comparison
method can be the same as for comparisons between query
and database. However, since the variance of the environ-
mental conditions in the set of database images may be
much smaller. Therefore, simpler, faster, and possibly more
robust matching strategies may be used. An example matrix
computed from our dataset is depicted in Fig. 3.

3.2. The Online Step: Comparing incoming query
images with a reasonable subset of database
images

We propose the method described in Algorithm 1 (see
below) in order to receive a subset of database images for
each time step during the place recognition phase by using
the comparison matrix DDB×DB presented in the previous
Sec. 3.1. The method is based on the assumption, that con-
secutive query images belong to places that share similar
appearance in the corresponding database images.

The steps of our proposed algorithm are illustrated in
Fig. 2. This figure shows six steps, each with the upper
matrix DDB×DB and the lower matrix DQ×DB . Since
DDB×DB is computed in advance, it is completely filled.
In contrast, the lower matrix DQ×DB starts from a single
row corresponding to a first query image, further rows are
appended when subsequent query images are processed.

Fig. 2a): A first query image Qt has unknown corre-
sponding images inside the database DB. Hence, we start a
relocalization by comparing Qt with all images inside DB.
The algorithm performs |DB| comparisons which results
in a complete row in the lower matrix. The key idea of the
proposed approach is to select just a small number of highly
similar places as basis for matching candidates for the next
query image. These selected places are shown in red in the
lower matrix of Fig. 2a). In order to work with multiple hy-
potheses for different appearances of the query place in the
database we select m ∈ N as a branching factor to proceed
with the best m hypotheses DBm.

Fig. 2b) and c): The m best hypotheses DBm are used
to search inside DDB×DB for the most similar database im-
ages DBs. DBsj is similar to DBmj if their distance is
≤ distmax ∈ R. The set DBs is shown in blue.

Fig. 2d) and e): The set of similar database images DBs

(blue) is the set of matching candidates for the newly incom-
ing query image Qt+1. If the above assumption on the sim-
ilarity of the images of neighbouring places holds, than the
true database matching for the next query image is amongst
the images similar to matchings of the previous query im-
age and thus in the candidate set DBs. The query image is
now matched with all candidate images in DBs. This can
be seen as new row in DQ×DB . Since |DBs| < |DB|, the
number of comparisons and thus the computational effort is
reduced.

Fig. 2f): Similar to Fig. 2b)) the matching of the next
incoming query image is prepared. The m best hypotheses
DBm are used to search inside DDB×DB for the most sim-
ilar database images DBs. The algorithm is repeated with
every incoming Qt+i.

3.3. Relocalization

The algorithm described in Sec. 3.2 assumes that
database images DBj+t neighbouring to DBj are similar
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Figure 2. Illustration of our approach for reducing the number of necessary comparisons. Every step is represented by two comparison
matrices DDB×DB and DQ×DB . See Sec. 3.2 for details.

enough, i.e. their distance is less than distmax. This as-
sumption may be violated if the above assumption on the
dataset is violated or in a kidnapped robot case. Fig. 3(left)
shows the similarity matrix DDB×DB from our experimen-
tal setup. The salient yellow lines indicate some unique
places inside the database which can lead to position loss.

Therefore, we introduce a third parameter
distQDB,max ∈ R. If the matching distance between
Qt and all DBmj is more than distQDB,max, a relocal-
ization is carried out. Thus, Qt is matched to all database
images DB in order to find the m best matches representing
better recognized places. In our experimental setup (Fig.
1, right), the relocalization can be seen as thin horizontal
lines.

4. Experiments
4.1. Dataset

We use the Nordland validation dataset from [12] for our
experiments. The dataset shows images of a train ride in
Norway from all four seasons. However, for first experi-
ments we use only the spring-winter configuration. Spring
images are used as database images DB, i.e. these loca-
tions can be seen as previously visited places. Accordingly,
winter images are used as query images Q which have to

be matched to places in the database. The validation dataset
contains 30 minutes of the spring and winter rides. The
dataset is sampled with a frame rate of one frame per sec-
ond resulting in 1800 frames per season. Since the image
sequences are time synchronized, the ground truth compari-
son matrix is a diagonal matrix with additional blocks at the
diagonal for situations where the train stopped. The image
sequences at a frame rate of 1 FPS fulfil the assumption of
consecutive images to share similar appearances.

4.2. Image comparison

Each image comparison is done with a holistic image de-
scriptor and a subsequent cosine distance calculation. The
holistic image descriptor is the vectorized output of the
third convolutional layer (conv3) of the VGG-M network
[2]. The database-database comparison (see Sec. 3) is also
carried out with the CNN descriptor, although there is no
need for a descriptor applicable for severe seasonal appear-
ance changes. Rather, methods using scale invariant fea-
tures could be applied (e.g. FAB-MAP [5]) in order to get
image comparisons more robust to e.g. viewpoint changes.
An example for a intra database similarity matrix is shown
in Fig. 3. This corresponds quite well to the underlying
ground truth.
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Data: Q, DB
DBcandidate = ∅;
for ∀q ∈ Q do

if DBcandidate == ∅ then
DBcandidate = get m best db(dist(q,DB));

else
DBquery = ∅;
for ∀dbcandidate ∈ DBcandidate do

for ∀db ∈ DB do
if dist(dbcandidate, db) < distmax

then
DBquery = DBquery

⋃
{db};

end
end

end
DBall candidate =
get m best dbquery(dist(q,DBquery));
DBcandidate = ∅;
for ∀dball candidate ∈ DBall candidate do

if
dist(q, dball candidate) < dist querymax

then
DBcandidate =
DBcandidate

⋃
{dball candidate};

end
end

end
end
Algorithm 1: Procedure of our proposed approach.

Figure 3. Symmetric comparison matrix DDB×DB between
database images in spring.

4.3. Results

Fig. 4 (top) shows precision-recall curves for the experi-
mental setup of one frame per second. To create the differ-
ent curves, we varied the parameter distmax = 0.05 . . . 0.4.
This parameter controls the range of similar database im-
ages that are included in the candidates set for each of the
m hypotheses from the previous query image matching. In
our experiments, the influence of the parameter m was neg-
ligible and it was fixed to m = 20. This might be different
for other datasets with larger visual ambiguity. However,

m = 20 enables to maintain 20 different corresponding ap-
pearances of a single query image in the database, which
should be sufficient for many datasets. The results also
showed to be insensitive to changes of the third parame-
ter distQDB,max that toggles the relocalization behaviour
(curves not shown). For the shown curves, the parameter
was fixed to distQDB,max = 0.5.

The precision-recall curves of our approach converge to
the curve corresponding to the exhaustive comparison of
the naive approach with increasing distmax, since the pa-
rameter controls the threshold whether a database image is
similar to another database image or not. Accordingly, the
number of similar images increases with the distance. As
a result, the number of necessary comparisons rises, which
can be seen in the legend of the diagram. For instance, a
result similar to the naive approach can be received with
distmax = 0.25 with a remaining number of comparisons
of approximately 8.8%.

In Section 3 we emphasize that our approach requires
similarity between consecutive images. In order to inves-
tigate the influence of a decreasing similarity, we reduce
the frame rate from 1fps to 1

2fps and 1
3fps for query and

dataset image sequences. Resulting curves can be seen in
the middle and bottom parts of Fig. 4. The parameter
distmax is varied identical for all three frame rates. For
corresponding parameter settings, a decreasing place recog-
nition performance can be observed for decreasing frame
rate, since the similarity between consecutive images also
decreases with lower frame rates. For instance, the above
mentioned parameter set with distmax = 0.25 results in
lower place recognition performance with decreasing frame
rates. Simultaneously, the number of comparisons rises, be-
cause the amount of relocalizations is higher. As a further
consequence of the relocalization, the lowest three curves
of 1

2fps are improved for 1
3fps, since bad place recogni-

tions cause a relocalization more often, improving the place
recognition performance but increasing the number of com-
parisons.

The influence of distmax and frame rate is depicted more
clearly in Fig. 5. The upper diagram shows the F1 score as
a function of distmax and the second diagram shows the
number of comparisons as a function of distmax. A higher
distmax results in a higher F1 score, however the corre-
sponding number of comparisons increases. Furthermore,
if distmax is constant, the number of comparisons is higher
if the frame rate is lower. For the frame rate of 1

3fps the
relocalization effect can be seen again as a better F1 score
in the left part of the upper diagram.

5. Discussion and Future Work
We presented a technique for place recognition in chang-

ing environments reducing the number of required image
comparisons between an incoming query image and the
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Figure 4. Precision-recall curves at three different frame rates with
the constant parameters m = 20, distQDB,max = 0.5, and dif-
ferent values for distmax.

database. Our approach shifts the major computational time
into an offline phase. In this offline phase, similarities be-
tween all database images are computed. Subsequently, in
an online phase these similarities can be used to choose only
a subset of database images which have to be applied for
comparisons with the next incoming query image.

Our preliminary results in Sec. 4 showed that for suit-
able parameter choices the place recognition performance
is similar to a naive approach comparing all possible query-
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Figure 5. Illustration of the influence of distmax to the F1 score
and the number of comparisons, respectively, at three different
frame rates.

database image combinations. Simultaneously, the absolute
number of comparisons was lower than 9% in our example.

In order to get multiple hypotheses for the current lo-
cation, we introduced a parameter m to keep m hypothe-
ses. Especially, if a dataset contains multiple loops or par-
tially similar places at different locations, the parameter is
required.

Furthermore, a parameter distmax is required which rep-
resents the threshold to decide whether a database image is
similar to another database image or not. We figured out
(e.g. in Fig. 5) distmax is a sensitive parameter determining
whether a good place recognition performance is received.

As a last parameter we introduced distQDB,max which
is a threshold deciding whether a query image assigned to
a database image really belongs to it. If this distance is
exceeded, a relocalization is conducted. A suitable choice
of distQDB,max avoids position loss in the online phase.

Additionally, we investigated the influence of decreasing
frame rates, since our algorithm has the requirement that ad-
jacent query images are similar due to the similarity of their
corresponding database images. It could be seen that the
place recognition performance decreases for constant pa-
rameters with lower frame rate. However, by adjusting the
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parameters and by applying the relocalization more often,
the performance could be re-established with an increasing
number of comparisons.

In the particular case of recognizing places between
changing environments, the proposed approach has some
interesting properties if we consider the usage of different
matching algorithms for the different types of comparisons:
Assume we have a database of summer images and query
images are from winter. We reduce the number of pos-
sibly expensive summer-winter comparisons by perform-
ing “cheap“ summer-summer comparisons. Even in setups
where we do not have a given database, this may be worth-
while. Moreover, we can e.g. use a matching scheme ro-
bust to seasonal changes for summer-winter comparisons
and another that is robust to viewpoint changes for summer-
summer comparisons. On the one hand this may help to
relax our assumption on the intra sequence similarities. On
the other hand this may even contribute to improve the over-
all performance by reducing the visual ambiguity of winter
images by selecting only matching candidates that are cho-
sen based on the summer data.

For our first experiments, we used only the spring-winter
combination of the Nordland validation dataset. However,
for verification of our approach we intend to run further ex-
periments with datasets containing multiple loops and view
changes.

Moreover, it is an interesting direction for future work
to investigate whether not only the runtime but the place
recognition performance can also benefit from this ap-
proach. Similar to how SeqSLAM exploits sequences in
time to improve place recognition performance, the pro-
posed approach could use ”appearance sequences”. These
are sequences of consecutively selected matching candi-
dates, that would appear as connected sequences in the sim-
ilarity matrix. Since this matrix is sparse, one might obtain
these sequences directly without further assumptions like
constant velocity.
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