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A neurologically inspired sequence processing
model for mobile robot place recognition

Peer Neubert, Stefan Schubert, and Peter Protzel

Abstract—Visual place recognition is the problem of camera
based localization of a robot given a database of images of
known places, potentially under severe appearance changes (e.g.
different weather or illumination). Typically, the current query
images and the database images are sequences of consecutive
images. In previous work, we proposed to adapt Hierarchical
Temporal Memory (HTM), a biologically plausible model of
sequence processing in the human neocortex to address this
task. The previous work described the algorithmic steps and
showed synthetic experimental results from simulation. This
paper extends the approach to application on real world data
based on a novel encoder for state-of-the-art image processing
front-ends. The neurologically inspired approach is compared
to several state-of-the-art algorithms on a variety of datasets
and shows preferable performance. Beyond the place recognition
performance, the neurological roots of the algorithm result in
appealing properties like potentially very energy efficient imple-
mentation due to the usage of sparse distributed representations
and natural extendability like the integration of motion estimates
similar to entorhinal grid cells. Finally, we underline its practical
applicability by online, soft real-time application on a mobile
robot.

Index Terms—Biologically-Inspired Robots, Neurorobotics, Lo-
calization, Visual-Based Navigation

I. INTRODUCTION

V ISUAL place recognition is an important subproblem in
mobile robot navigation. It is the problem of matching

the robot’s current camera images to a set of images of
known places. In particular, it is an important mean for loop
closure detection in simultaneous localization and mapping
(SLAM). The simplest visual place recognition approach is
an individual, pairwise comparison of query images to images
in the database. This is prone to errors, in particular in
case of place aliasing (different places in the world share
the same appearance) or changing environmental conditions
(e.g. matching images between different lighting conditions).
To address this problem, metric motion information can be
used to iteratively estimate the current pose to support visual
place recognition - ultimately, this means first creating a map
(solving metric SLAM) and then using this map to perform
place recognition. Since the incremental pose estimate can be
in gross error [1], this might not be an option.

Fig. 1 shows the simple pairwise comparison and metric
SLAM as the opposite directions of a spectrum of approaches.
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Fig. 1. Pairwise image matching and metric SLAM are at the opposite ends of
a spectrum of approaches. We present a biologically inspired place recognition
system in between. It is based on recurrent minicolumn networks that learn
a topological map of sequential information in the input - including multiple
paths with intersections, sequence repetitions and sequence variations.

Our work targets at approaches in between, that evaluate
sequences of images to exploit some kind of systematics in the
data to foster visual localization, but do not yet create a metric
map. A well known example is SeqSLAM [2] which evaluates
short sequences of images to decide about place matchings, but
has the limitation of a non-repetitive trajectory with constant
velocities between traversals.

To address the more complex trajectories of real world
robots, e.g. with multiple revisits of the same place, stops,
and path intersections, this work presents and evaluates a
neurologically inspired approach to sequence processing for
visual place recognition. Processing of sequence information
is a fundamental capability of brains. Although detailed un-
derstanding of mechanisms in brains of even moderate size
is still lacking, there are theories of particular aspects and
working principles in brains. In this work, we take inspiration
from Hierarchical Temporal Memory (HTM) [3], a theory
on working principles of the human neocortex, in particular
of predictive connections between cells in minicolumns. In
previous work [4], we discussed analogies between HTM and
the place recognition problem, proposed a simplified version
of HTM’s higher order sequence memory for place recognition
and showed proof-of-concept results in simulation.

In this work, we extend this to application on real world
data, in particular, in combination with CNN-based image
descriptors. We recap the algorithmic approach from [4] in
Sec. III. The first contribution of this paper is a concise
presentation of the procedural algorithmic description in [4] in
a set of equations in Sec. III-A. Sec. III-B presents a modified
minicolumn reactivation strategy. Sec. III-C sets the stage
for real world application by introducing a new visual front-
end that encodes existing image descriptors like AlexNet-
conv3 or NetVLAD for combination with the presented place
recognition back-end. The experimental evaluation is three-
fold: Sec. IV evaluates robustness to noise and parameters of
the back-end in a controlled simulation environment, Sec. V
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compares the combined back-end/front-end approach on a
variety of long-term real-world datasets to several existing
algorithms and Sec. VI demonstrates the online applicability
with two shorter real-time experiments on a mobile robot. A
Matlab implementation of the presented system is available.1

II. RELATED WORK

Visual place recognition is a well studied problem. Lowry
et al. [5] provide a recent survey. Typically, a first step is
to extract image descriptors, like local landmarks [6], [7] or
global descriptors [8], [9]. For place recognition in changing
environments, descriptors from early convolutional layers (e.g.
conv3) from off-the-shelve CNNs like AlexNet [10] showed
impressive results [11]. More recently, CNN descriptors were
also particularly designed and trained for place recognition,
e.g. NetVLAD [12]. In our experiments, we will use both
CNN descriptor types, AlexNet and NetVLAD.

Based on such image processing front-ends, a variety of
approaches exists to compare and match images. Beyond
simple pairwise comparison and using statistics of feature
appearances (e.g. FAB-MAP [13]), the benefit of exploiting
sequence information is well accepted in the literature: For
SeqSLAM, Milford et al. [2] proposed to search for linear
segments of high similarity in the pairwise similarity matrix
after a local contrast normalization. This approach significantly
improved the state of the art at this time. To deal with
limitations regarding traversal velocities, several extensions
have been proposed. E.g., allowing non-zero acceleration [14]
or searching for optimal paths in the similarity matrix using
a graph-theoretical max-flow formulation [15]. Lynen et al.
[16] propose a “placeless” place-recognition system based
on continuous matching between image streams. Hansen and
Browning [17] model sequence based place recognition as
Hidden Markov Model and use the Viterbi algorithm to find a
solution by dynamic programming. Arroyo et al. [18] use con-
catenated binary features to represent sequences. Vysotska et
al. present a series of approaches to efficient place recognition
using a graph theoretical approach [19] in combination with
lazy data association [20] and hashing-based relocalization
[21]. The proposed approach incrementally creates internal
representations for places with unseen appearances, this is
related to experience-based navigation [22]. RatSLAM [23]
is a biologically inspired approach to SLAM that is inspired
by entorhinal grid cells in the rat’s brain. It uses a continuous
attractor network (CAN) whose dynamics apply a temporal
filter on the sensory data. In section V we will compare against
[2], [17], [18], [19], [20], [21]. Another related approach
to infer a camera’s pose is to perform pose regression with
neural networks. Kendall et al. [24] showed that a feed-
forward convolutional neural network (GoogLeNet) trained
with a simple loss function can be sufficient to regress position
and orientation. Walch et al. [25] perform pose regression by
feeding a CNN output vector to LSTMs. Clark et al. [26]
use this combination of CNN and LSTM to exploit sequential
information in video sequences.

1https://www.tu-chemnitz.de/etit/proaut/en/research/seqloc.html
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Fig. 2. (left) Overall approach. (right) Illustration of a minicolumn network
(MCN). Red cells are current winner cells, grey cells are active (but not
winner), blue cells are winner cells from the previous timestep.

This work builds upon our previous paper [4] which pro-
posed the usage of Hierarchical Temporal Memory (HTM) for
place recognition but did not work with any real world data.
There, we mapped parts of HTM to aspects of the sequence-
based place recognition problem and described an algorithmic
approach on how to use a variant of the higher-order sequence
memory algorithm from HTM for place recognition. HTM
builds upon the assumption of a single learning algorithm that
is deployed all over the neocortex [27]. It is a continuously
evolving theory with the goal to find algorithmic formulations
of working principles of the neocortex as well as extending the
range of practical demonstrations and applications. Currently,
these applications include anomaly detection, natural language
processing, and object detection [28]. An open source im-
plementation is available [29]. For more information on the
biological background and HTM please refer to [30].

We want to emphasize the point that we do not claim
that place recognition in human brains actually uses exactly
the presented algorithm. There is plenty of evidence [31] of
structures like entorhinal grid cells, place cells, head direction
cells, speed cells and so on, that are involved in mammal
navigation and are not regarded in this work. However, we
believe that the presented algorithm can be naturally extended
with concepts like grid cells as has been shown for HTM-based
object recognition recently [32].

III. ALGORITHMIC APPROACH

The left part of Fig. 2 illustrates the overall approach:
Each image is processed by a visual front-end that extracts
a descriptor D. The back-end creates a new descriptor D′

for each image based on the current descriptor and those of
previous images. Descriptors D′ of query and database image
sequences can then be compared pairwise and still consider
sequence information for each image.

To create descriptors D′, we use a minicolumn network
(MCN) that implements a simplified version of HTM’s higher
order sequence memory as described in [4]. This memory
model is tightly coupled to insights about the neuroanatomic
structure of the human neocortex: Sequential context is stored
in cells that are arranged in cortical minicolumns and predict
other cells through lateral connections, and the activation
pattern of all cells forms a sparse distributed representation.

For this paper to be self-contained and to provide a different
view on this algorithm, the following subsection reformulates
our approach from [4] in a compact set of equations. For a
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procedural algorithmic description and discussion of the theo-
retical background, please refer to [4]. To allow combination
with real world image data, section III-B introduces a modified
minicolumn activation strategy and section III-C describes a
novel approach to create the input SDRs from images.

A. Simplified higher order memory in a minicolumn network
A minicolumn network (MCN) is a set of binary-state cells

that are arranged in minicolumns. At each timestep, input is
a binary sparse distributed representation (SDR), the output
is the current state of the network (in particular, the set of
winner cells). Fig. 2 illustrates the two parts of a MCN: (1)
The spatial pooler which activates minicolumns that show a
certain pattern and (2) the temporal memory that predicts and
activates individual cells inside active minicolumns to distin-
guish different temporal context of this pattern. Learning is
implemented by adding new minicolumns and new predictive
connections between cells.

1) Spatial Pooler: The spatial pooler is a feed-forward
network that processes the current input SDR. It reactivates
minicolumns that correspond to known patterns and creates
new minicolumns if there are not enough active minicolumns.
For visual place recognition, it acts as feature detector for the
current input image (respectively its SDR).

Minicolumn activation: Each minicolumn Cj has a binary
state variable “active” Aj and a sparse set of feed-forward
connections Fj from dimensions of the input SDR I . It
becomes active at timestep t if sufficiently many of the
connected input dimensions are active:

At
j = 1⇔

∑
m∈Fj

Itm ≥ θ (1)

If less than kmin minicolumns are active, missing minicolumns
are newly created; each samples an individual set of feed-
forward connections F from the set of currently active dimen-
sions in It. The MCN starts with an empty set of minicolumns
and iteratively creates new minicolumns that respond to new
patterns in the input SDR. Whenever this pattern reappears, the
same minicolumns shall be activated. Using such an ensemble
of kmin active minicolumns (each looking at a different part
of the input by using an individual Fj) increases robustness
to changes in I .

2) Temporal Memory: The second part of a MCN is the
temporal memory. It is a recurrent binary-state network that
accumulates information over consecutive input SDRs to en-
code the temporal context of the current SDR. This context
information is encoded using different cells in active mini-
columns. Each cell ci,j (the i-th cell in the j-th minicolumn)
has three binary state variables: “active” ai,j , “predicted” pi,j ,
and “winner” wi,j

Cell activation: Precondition for a cell ci,j to become active
at time t is that its minicolumn Cj is active and that either
particularly this cell was predicted (pti,j = 1) or that none of
the cells in this minicolumn is predicted (in HTM theory this
is called “bursting”):

ati,j = 1⇔ At
j ∧ (pti,j ∨ (∀m : ¬ptm,j)) (2)

Cell prediction: The “predicted” variable pti,j is set if there
was an active cell cm,n at time (t−1) with a lateral predictive
connection to this cell ci,j in the set of directed lateral
predictions P with P ⊂ {(cm,n, ci,j) : i, j,m, n ∈ N}:

pti,j = 1⇔ ∃m,n : at−1m,n ∧ (cm,n, ci,j) ∈ P (3)

Each iteration, the set of predictive connections is updated
based on the previous and current winner cells. If there is
already a connection from any cell in the previous minicolumn
to the current winner cell, no new connection is created:

P = P ∪ {(cm,n, ci,j) : w
t−1
m,n ∧ wt

i,j ∧ (@l : (cl,n, ci,j) ∈ P)}
(4)

Winner cells: Winner cells are active cells that were
predicted. Additionally, in case of bursting (a minicolumn
is active, but none of its cells is predicted, cf. eq. 2),
a single random winner cell is selected from the burst-
ing minicolumn; in the following equation, this event is
indicated by random variable bi,j with bi,j = 1 ⇔
(Cj bursts and ci,j is randomly selected as winner):

wt
i,j = 1⇔ (ati,j ∧ pti,j) ∨ bi,j (5)

For more details and a procedural algorithmic description
please refer to our previous work [4] and its open source
implementation.

B. Modified reactivation strategy: kmaxNN

A MCN can maintain different contexts for different cells
in active minicolumns to prevent false-positive place associ-
ations. To achieve a low false-negative rate (i.e. to not miss
place matchings), the appropriate reactivation of minicolumns
is crucial. In the proof-of-concept demonstration in [4], we
used a simple threshold θ on the overlap similarity between
minicolumn and input pattern (cf. eq. 1). The choice of this
threshold has large influence on the results. To reduce this
influence, in this work, we additionally restrict the reacti-
vation with a kmax-nearest-neighbor (kmaxNN ) condition:
A minicolumn is reactivated iff. its overlap similarity to the
input is > θ and not smaller than the overlap similarity of
the kmax-th most similar minicolumn. This allows to use a
less restrictive threshold θ without exhaustively reactivating
minicolumns. A comparison of the two reactivation strategies
(θ-only and θ+kmaxNN ) is shown in Fig. 3 (bottom-left).

C. SDRs and sparsified binary image encodings (sLSBH)

Beside temporal prediction in sequences, the second fun-
damental concept in HTM is the usage of Sparse Distributed
Representations (SDRs). SDRs are high dimensional binary
vectors (e.g. 8,192 dimensional) with very few 1-bits (e.g.
2.5%). There is evidence that SDRs are a widely used
representation in brains due to their representation capacity,
robustness to noise and power efficiency [33]. They are a
special case of hypervector encodings, which have been used,
e.g., to model memory [34], do approximate inference [35]
and to learn simple robot behavior by imitation learning [36].

In MCN, an ensemble of at least kmin minicolumns is active
in parallel. Since this is typically only a small fraction of all
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minicolumns, this forms a sparse representation. To addition-
ally distribute information across the active minicolumns, each
minicolumn samples an individual set of connections Fj from
the input pattern. MCN requires binary input data. Although
the HTM’s spatial pooler can further sparsify the input data,
it benefits from an already low number of ones in the input
data [37].

In general, any sufficiently sparse binary descriptor can be
used as input for MCN. Based on their results in pairwise
image comparison for place recognition, we want to build upon
CNN-based descriptors like AlexNet [10] (i.e. the output of the
conv3 layer) and NetVLAD [12]. Our encoding is a sparsified
binary adaptation of locality sensitive hashing (LSH) based on
random projections. It consists of the following two steps:

1. Random projection For using different feature descrip-
tors like the above CNNs in MCN, we want to be able to
control their number of dimensions and the distribution of
information across the descriptor dimensions. The statistical
properties of the two chosen CNN descriptors are quite differ-
ent. AlexNet-conv3 descriptor has n = 64, 896 dimensions and
concatenates feature map values of local image regions which
are expected to be highly correlated. In contrast, NetVLAD
has n = 4, 096 dimensions, accumulates residuals to words
from a dictionary and creates a whitened distribution with
decorrelated dimensions. We use random projections to control
both properties. Given a normalized n-dimensional feature
descriptor x ∈ Rn (e.g., from one of the above CNNs), we first
project this vector to a high dimensional space using a row-
wise L2-normalized random projection matrix P ∈ Rm×n,
each entry in this matrix is sampled iid. from a standard normal
distribution: Pi,j ∼ N (0, 1). In our experiments, we chose
m = 214 = 16, 384. This results in approximately uniform
angular distribution of the m row vectors of P in the n-
dimensional hyperspace and creates a distributed (holographic)
representation. The result of the projection is y = P · x.

2. Binarization and sparsification The input to MCN is
expected to be a sparse binary vector [37]. To create a binary
vector from the result of the random projection y, the authors
of [11] propose to only keep the sign information for each
dimension. The sign of dimension k encodes on which side
of the hyperplane with normal vector according to the k-th
row in P the vector x ends. Hamming distance based on
this sign information approximates the cosine distance of the
original vectors [38]. The authors of [11] achieved 95 % place
recognition accuracy using m = 8, 192 bit. However, the sign
vector is a dense binary vector. Instead of using the sign,
we propose to create a sparsified binary LSH vector z by
concatenating the binary vectors with ones at the s percent
smallest absolute angles to the m plane normals and the s
percent largest absolute angles:

z = [z+z−]T with (6)

z+i =

{
1 if yi amongst s

100 ·m largest values in y
0 otherwise

z−i =

{
1 if yi amongst s

100 ·m smallest values in y
0 otherwise
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Fig. 3. Parameter evaluation using simulation. In the two top rows, the color
encodes the amount of aliasing and the line style the observation noise.

The sparsified binary LSH (sLSBH) vector z ∈ {0, 1}2m is
the input to the MCN. The results section V will evaluate
the accuracy of this encoding and compare the two CNN
descriptors (AlexNet and NetVLAD) in combination with
MCN and other place recognition approaches.

IV. NOISE TOLERANCE AND PARAMETER EVALUATION

The first sequence of experiments evaluates noise tolerance
and parameter settings under controlled conditions. We use a
simple simulation environment following [4] that simulates a
path in a grid-like world. Each grid cell is considered a place
and the robot path is a sequence of neighbored places. The
simulated sequence comprises 642 steps with multiple loops
over 206 different places. For each place an 8,192 dimensional
SDR is stored. At each visit of a place an observation
measurement of its SDR is simulated. The measurements are
affected by two types of noise, controlled by parameters pn
and pa: (1) Observation noise: Each time a place is visited
and observed, each of its SDR’s 1-bits is randomly shifted to a
wrong position with probability pn. E.g., pn = 25% indicates
that on average 25% of the 1-bits for each observation of
a place are shifted. (2) Place aliasing: Different places can
share the same SDR (i.e., they can only be distinguished in
the sequence context). Parameter pa sets the probability of two
randomly chosen places to share the same SDR. E.g., pa = 1%
implies that there are only 67 different SDRs to encode the
206 different places (accordingly: pa = 5% implies 18 SDRs,
pa = 10% implies 10 SDRs for 206 places).

Each experimental run start with an empty minicolumn
network. The SDR output from the simulator is iteratively
fed into the system. For each timestep, the current set of
MCN winner cells is stored. Place matchings are obtained
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from the overlap of winner cell sets from different timesteps.
The ground truth place matchings provided by the simulation
environment are used to compute precision-recall curves from
winner cell overlaps. To evaluate the influence of different
amounts of noise, multiple traversals along the same path
with the accordingly set noise parameters are simulated. The
default MCN parameter setting for simulation experiments are
θ = 0.4, kmin = 5, kmax = 10, SDR length is 8,192, number
of cells per minicolumn is 32 and there are 200 connections
from the input to each minicolumn. To evaluate the influence
of different parameter values, each traversal is evaluated
multiple times while varying a single MCN parameter.

For each MCN configuration, the maximum F1-score from
the resulting precision-recall curves results in one point on a
curve in Fig. 3. The bottom left plot shows the benefit from the
kmax-NN minicolumn activation strategy. The performance
of place recognition using direct pairwise comparison of the
SDR observations from the simulation illustrates the general
difficulty of the simulated place recognition task. Even for the
lowest considered amount of noise (pn = 10, pa = 1), the
pairwise comparison shows severe problems.

The evaluation of the number of cells per minicolumn shows
that for increasing amount of aliasing in the environment, more
cells are required to encode the different contexts (the yellow
curves converge at higher parameter values than e.g. the blue
curves). For the number of cells, the number of connections of
a minicolumn to the input SDR, and the number of enforced
active minicolumns kmin, higher values are in general better.
It can be seen, that the higher the amount of observation noise
(pn), the higher is the required number of connections to the
input. The 2.5% sparsity (roughly 200 of 8,192 dimensions)
taken from the biological model is a reasonable value. The
ratio of kmax to kmin has only minor influence for a large
range of values (not shown).

The minicolumn activation threshold t has to be chosen
carefully. Too low values cause activation of too many mini-
columns. This effect is mitigated by the kmax-NN sampling
strategy but not eliminated. Too high values hamper recall
in case of high observation noise. For the used simulation,
the value t = 0.35 results in best performance for all
evaluated amounts of noise. However, this is a statistical effect
of the mutual independence of the input SDR dimensions.
Presumably, for real world data, there is no single best choice,
but the parameter has to be adapted to the used front-end and
maybe also to the environment. Our simulation results indicate
that in case of varying and unknown amounts of noise, a too
high threshold value is presumably less harmful than a too low
value.

V. COMPARISON ON REAL WORLD DATASETS

This section compares MCN to other available back-end
approaches. Therefore we modified or reimplemented available
sequence processing place recognition algorithms such that
all work with the same visual front-ends (NetVLAD and
AlexNet). The baseline is a Pairwise comparison of individual
descriptors using cosine distance for AlexNet and Euclidean
distance for NetVLAD. For SeqSLAM [2] we used OpenSe-
qSLAM [39] and replaced the internally computed image

similarity matrix with the pairwise cosine similarity matrix of
the CNN descriptors and use standard parameter ds = 10.
We reimplemented ABLE [18] based on information from
the paper and available code and replaced the concatenated
binary descriptors with concatenated CNN descriptors. Se-
quence length is equal to SeqSLAM. For ISM [19], OPR
[20] and VPR [21] we used the implementations by the
authors with their default parameters but used precomputed
Pairwise distances as cost matrix. Since runtime is not an
issue for the compared approaches, we replaced the hash-based
relocalization in VPR to also use the provided cost matrix. We
reimplemented HMM [17] based on the information from the
paper and Matlab’s Viterbi implementation. Again, we used
the same sequence length as SeqSLAM. For NetVLAD [12],
we use the authors’ version using VGG-16 and whitening
trained on the Pitts30k dataset. For AlexNet [10], we use
Matlab’s ImageNet model.

The comparison is based on five datasets with different
characteristics regarding environment, appearance changes,
single or multiple visits of places, possible stops, or viewpoint
changes. StLucia (Various Times of the Day) [40]: Collected
with a forward facing webcam mounted on a car driving in a
suburb between morning and afternoon over several days. Each
sequence contains several loop closures. We sampled images
at 1Hz. Oxford RobotCar [41]: Recorded with a car equipped
with several cameras and lidars over a period of over a year.
The dataset is demanding due to seasonal changes, weather,
long-term changes like roadworks and building construction,
a few loop closures within each sequence and stops in front
of traffic lights or intersections. We sampled images at 10Hz
of the front facing part of the trinocular stereo camera. CMU
Visual Localization [42]: Five car rides along a 8km route
with possible stops, weather, and seasonal changes. There are
no loop closures witin a sequence. We use the left camera.
Nordland [39]: Time and viewpoint synchronized rides along
a single train track once in each season. We use the same
image set as [7]. Gardens Point Walking [43]: Hand held
camera on a single route on campus, two times at day and once
at night with controlled viewpoint deviations. The dataset is
special due to the outdoor/indoor location, many pedestrians,
and severe lighting changes. Nordland and Gardens Point are
time synchronized, for all other datasets, we used GPS for
ground truth.

The experimental results of NetVLAD+sLSBH+MCN and
AlexNet+sLSBH+MCN on the above datasets and the compar-
ison to the above algorithms (using the same visual front-end)
in table I are a main contribution of the paper. For all datasets,
the same parameter setup for MCN is used (kmin = 50,
kmax = 100, number of cells per minicolumn is 32). For
the different visual front-ends, we only changed minicolumn
activation threshold θ and the number of connections per
minicolumn from 0.4 and 800 for NetVLAD to 0.75 and 200
for AlexNet. MCN is trained on the database sequence; during
query, no new minicolumns are created. For each dataset-
algorithm pairing, we compute precision-recall curves and
report average precision in table I. Average precision is the
area under the precision recall curve obtained by trapezoidal
numerical integration. The bold numbers indicate the best
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TABLE I
EXPERIMENTAL RESULTS FOR MCN WITH NETVLAD OR ALEXNET FRONT-END. METRIC IS AVERAGE PRECISION. BEST VALUES PER ROW ARE BOLD.

THE COLORED ARROWS INDICATE LARGE (≥25% BETTER/WORSE) OR MEDIUM (≥10%) DEVIATION COMPARED TO “PAIRWISE”. THE SLSBH COLUMN
SHOWS THE RESULTS OF PAIRWISE COMPARISON OF SLSBH ENCODINGS OF FRONT-END DESCRIPTORS. MCN USES SLSBH AS INPUT.

N
et

V
L

A
D

fr
on

t-
en

d

Dataset DB Query Pairwise ABLE ISM OPR VPR HMM SeqSLAM sLSBH MCN (ours)
StLucia 10th Sep 08.45 19th Aug 08.45 0.51 0.48→ 0.54→ 0.53→ 0.47→ 0.54→ 0.13 ↓ 0.49→ 0.60↗

10th Sep 10.00 21st Aug 10.00 0.58 0.45↘ 0.54→ 0.54→ 0.49↘ 0.55→ 0.12 ↓ 0.57→ 0.65↗
10th Sep 12.10 21st Aug 12.10 0.60 0.43 ↓ 0.53↘ 0.53↘ 0.47↘ 0.51↘ 0.12 ↓ 0.59→ 0.65→
10th Sep 14.10 19th Aug 14.10 0.45 0.49→ 0.53↗ 0.53↗ 0.46→ 0.54↗ 0.14 ↓ 0.44→ 0.54↗
10th Sep 15.45 18th Aug 15.45 0.42 0.49↗ 0.51↗ 0.50↗ 0.42→ 0.48↗ 0.13 ↓ 0.40→ 0.49↗

Oxford 9th Dec 14 16th Dec 14 0.87 0.76↘ 0.53 ↓ 0.03 ↓ 0.51 ↓ 0.18 ↓ 0.05 ↓ 0.86→ 0.88→
9th Dec 14 3rd Feb 15 0.93 0.82↘ 0.51 ↓ 0.03 ↓ 0.52 ↓ 0.13 ↓ 0.03 ↓ 0.92→ 0.91→
9th Dec 14 19th May 15 0.83 0.66↘ 0.55 ↓ 0.01 ↓ 0.54 ↓ 0.18 ↓ 0.05 ↓ 0.82→ 0.95↗
19th May 15 3rd Feb 15 0.85 0.82→ 0.48 ↓ 0.05 ↓ 0.45 ↓ 0.11 ↓ 0.02 ↓ 0.84→ 0.85→

CMU 21th Apr 11 1st Sep 10 0.59 0.49↘ 0.38 ↓ 0.26 ↓ 0.50↘ 0.29 ↓ 0.04 ↓ 0.82 ↑ 0.86 ↑
15th Sep 10 0.66 0.53↘ 0.35 ↓ 0.53↘ 0.49 ↓ 0.32 ↓ 0.08 ↓ 0.81↗ 0.81↗
21th Dec 10 0.41 0.36↘ 0.34↘ 0.51↗ 0.46↗ 0.29 ↓ 0.06 ↓ 0.56 ↑ 0.60 ↑
2nd Feb 11 0.45 0.26 ↓ 0.39↘ 0.42→ 0.48→ 0.31 ↓ 0.14 ↓ 0.68 ↑ 0.85 ↑

Nordland fall spring 0.39 0.98 ↑ 0.91 ↑ 0.90 ↑ 0.68 ↑ 0.89 ↑ 0.93 ↑ 0.39→ 0.52 ↑
fall winter 0.06 0.73 ↑ 0.19 ↑ 0.17 ↑ 0.26 ↑ 0.59 ↑ 0.80 ↑ 0.05→ 0.21 ↑
spring winter 0.11 0.85 ↑ 0.75 ↑ 0.18 ↑ 0.39 ↑ 0.72 ↑ 0.88 ↑ 0.11→ 0.23 ↑
winter spring 0.11 0.85 ↑ 0.46 ↑ 0.39 ↑ 0.32 ↑ 0.73 ↑ 0.88 ↑ 0.11→ 0.29 ↑
summer spring 0.32 0.97 ↑ 0.88 ↑ 0.73 ↑ 0.64 ↑ 0.89 ↑ 0.94 ↑ 0.32→ 0.44 ↑
summer fall 0.63 1.00 ↑ 0.97 ↑ 0.97 ↑ 0.89 ↑ 0.94 ↑ 0.97 ↑ 0.63→ 0.53↘

Gardens day left night right 0.41 0.79 ↑ 0.61 ↑ 0.48↗ 0.29 ↓ 0.02 ↓ 0.15 ↓ 0.39→ 0.43→
Point day right day left 0.98 1.00→ 0.69 ↓ 0.69 ↓ 0.69 ↓ 0.33 ↓ 0.68 ↓ 0.98→ 0.99→

day right night right 0.52 0.80 ↑ 0.64↗ 0.64↗ 0.47→ 0.20 ↓ 0.30 ↓ 0.49→ 0.54→

A
le

xN
et

fr
on

t-
en

d

Dataset DB Query Pairwise ABLE ISM OPR VPR HMM SeqSLAM sLSBH MCN (ours)
StLucia 10th Sep 08.45 19th Aug 08.45 0.60 0.44 ↓ 0.57→ 0.57→ 0.54↘ 0.56→ 0.13 ↓ 0.60→ 0.61→

10th Sep 10.00 21st Aug 10.00 0.56 0.39 ↓ 0.56→ 0.56→ 0.54→ 0.55→ 0.13 ↓ 0.56→ 0.62↗
10th Sep 12.10 21st Aug 12.10 0.54 0.36 ↓ 0.56→ 0.56→ 0.52→ 0.54→ 0.40 ↓ 0.54→ 0.63↗
10th Sep 14.10 19th Aug 14.10 0.60 0.48↘ 0.58→ 0.57→ 0.55→ 0.56→ 0.14 ↓ 0.59→ 0.62→
10th Sep 15.45 18th Aug 15.45 0.59 0.48↘ 0.58→ 0.58→ 0.54→ 0.57→ 0.14 ↓ 0.59→ 0.64→

Oxford 9th Dec 14 16th Dec 14 0.48 0.32 ↓ 0.53↗ 0.02 ↓ 0.44→ 0.11 ↓ 0.04 ↓ 0.46→ 0.50→
9th Dec 14 3rd Feb 15 0.64 0.57→ 0.49↘ 0.04 ↓ 0.49↘ 0.14 ↓ 0.02 ↓ 0.60→ 0.75↗
9th Dec 14 19th May 15 0.25 0.16 ↓ 0.53 ↑ 0.01 ↓ 0.46 ↑ 0.10 ↓ 0.18 ↓ 0.24→ 0.86 ↑
19th May 15 3rd Feb 15 0.36 0.41↗ 0.48 ↑ 0.05 ↓ 0.41↗ 0.10 ↓ 0.02 ↓ 0.30↘ 0.86 ↑

CMU 21th Apr 11 1st Sep 10 0.39 0.30↘ 0.39→ 0.51 ↑ 0.46↗ 0.27 ↓ 0.04 ↓ 0.51 ↑ 0.61 ↑
15th Sep 10 0.57 0.45↘ 0.35 ↓ 0.17 ↓ 0.45↘ 0.30 ↓ 0.07 ↓ 0.64↗ 0.58→
21th Dec 10 0.29 0.28→ 0.35↗ 0.26→ 0.37 ↑ 0.30→ 0.06 ↓ 0.34↗ 0.51 ↑
2nd Feb 11 0.28 0.15 ↓ 0.39 ↑ 0.36 ↑ 0.42 ↑ 0.32↗ 0.14 ↓ 0.37 ↑ 0.65 ↑

Nordland fall spring 0.81 1.00↗ 1.00↗ 0.99↗ 0.91↗ 0.96↗ 0.98↗ 0.81→ 0.94↗
fall winter 0.65 0.99 ↑ 0.98 ↑ 0.98 ↑ 0.87 ↑ 0.94 ↑ 0.98 ↑ 0.64→ 0.82 ↑
spring winter 0.60 0.99 ↑ 0.98 ↑ 0.98 ↑ 0.90 ↑ 0.94 ↑ 0.98 ↑ 0.59→ 0.82 ↑
winter spring 0.60 0.99 ↑ 0.96 ↑ 0.96 ↑ 0.89 ↑ 0.95 ↑ 0.98 ↑ 0.59→ 0.81 ↑
summer spring 0.76 1.00 ↑ 0.99 ↑ 0.98 ↑ 0.89↗ 0.94↗ 0.98 ↑ 0.75→ 0.92↗
summer fall 0.93 1.00→ 1.00→ 1.00→ 0.99→ 0.95→ 0.98→ 0.93→ 0.98→

Gardens day left night right 0.11 0.21 ↑ 0.55 ↑ 0.57 ↑ 0.19 ↑ 0.02 ↓ 0.06 ↓ 0.11→ 0.19 ↑
Point day right day left 0.60 0.89 ↑ 0.62→ 0.62→ 0.52↘ 0.14 ↓ 0.10 ↓ 0.60→ 0.61→

day right night right 0.53 0.77 ↑ 0.71 ↑ 0.71 ↑ 0.62↗ 0.46↘ 0.43↘ 0.53→ 0.74 ↑

results per row. It can be seen that no algorithm is the
single best one, but for most datasets and both front-ends the
combination with MCN provides the best results. For single
sequence datasets like Nordland, algorithms that exploit this
apriori knowledge like SeqSLAM or ABLE perform superior.
However, they perform worse if this assumption is violated
(e.g. StLucia or Oxford). Interestingly, no algorithm is always
better than the pairwise comparison, although all datasets
provide sequence information. However, MCN is the algorithm
with the best worst-case performance across all datasets. In
most cases it is much better than Pairwise and in worst
case it looses 16% compared to Pairwise (Nordland summer-
fall with NetVLAD) which is significantly better than, e.g.
ABLE with up to 46% loss on multiple datasets. MCN can
represent arbitrary complex routes with repetitions and handle
arbitrarily many matches within a sequence. Algorithms like
SeqSLAM and VPR require additional algorithmic steps to
detect multiple matchings (which are not provided in their
available implementations). The comparison of the sLSBH

and Pairwise columns shows the feasibility of the proposed
sLSBH encoding. Surprisingly, on the CMU dataset pairwise
matching based on sLSBH is even better than using the
original descriptors.

VI. ONLINE EXPERIMENTS

In these experiments, the MCN runs online on a mobile
robot and computes place associations in soft real-time (the
onboard computer provided relocalizations as fast as possible)
while the robot is moving around. The online character reduces
the evaluation possibilities (i.e. we cannot compare against
other algorithms). These experiments are mainly intended to
demonstrate the feasible runtime and to underline the potential
for practical application. All computations are done onboard
on a laptop with i7-8550U CPU. The robot is equipped with
a 250◦ aperture angle camera as well as 2D lidar, odometry
and IMU; ROS is used for drivers and communication. Solely
camera images are used for place recognition whereas other
sensors are used for ground truth.
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Fig. 4. Online experiments. Thick curves are 21-frame sliding averages of thin curves. Dotted green lines indicate exploration, solid lines revisits.

The rectified camera images are input for the
NetVLAD+sLSBH+MCN pipeline. The output winner
cell descriptors for each image are stored in a database and
MCN-desciptors of new images are compared to the database
using overlap metric (ratio of common ones). A fixed,
beforehand chosen threshold is used to make hard binary
decisions about place matchings. MCN parameters are as
before, except for minicolumn activation threshold: θ = 0.55.
In contrast to previous experiments, we do not distinguish
database and query sequences but look for matchings within
a single robot trajectory. The robot is controlled remotely
by hand on two trajectories A and B, illustrated in Fig. 4.
Experiment A is an approx. 730m long ride with many loops
through the foyer of a lecture hall building with passing
students. The shown map is created from lidar measurements
and lidar-based localization is used to distinguish true (shown
green) and false loop closures (red, > 3m position error).
There are 823 true and 68 false loop closures. One area
on the left side produced a group of wrong matchings and
there are very few additional wrong matches. The second
experiment B is an approx. 860m long ride through a 160m
long corridor with a few passing people and a modern, clean
architecture. Despite the very repetitive appearance, the map
B in Fig. 4 illustrates the many correct loop closures due to
the exploitation of sequence information. However, the two
elevator areas (one is shown in the example image B) are
systematically mixed up. In total, MCN achieved 618 true
and 260 false loop closures.

Average time for the whole pipeline from image acquisition
to relocalization decision was 2.1s. It is dominated by the
image processing front-end. The curves on the right side of
Fig. 4 evaluate the runtime and growth of the MCN system.

The green curves show the number of minicolumns which is
continuously increasing during exploration (the robot sees new
areas for the first time, plotted as dotted line). The growing
stops or slows down during revisits of the same areas (solid
line parts). E.g., in experiment B at frame 403, the robot has
traversed the corridor once in each direction and now starts
recognizing places. In general, the runtime of the spatial pooler
increases with increasing number of minicolumns. The runtime
of temporal memory does not increase significantly over time
but depends on whether the robot explores new places or
reactivates predictions from known places.

VII. DISCUSSION

We extended our previous theoretical work to application on
real world data. The presented minicolumn network (MCN)
approach creates an internal representation that encodes se-
quential context. It can maintain different alternative routes
through the world, is not limited to a defined sequence length
(cf. parameter ds in SeqSLAM), and can provide multiple
matchings for each query image. MCN’s runtime depends
on the number of minicolumns. During exploration of new
areas, new minicolumns are created; multiple revisits of the
same area reactivate existing minicolumns. To bound the
runtime during long-term operation, the usage of a fixed
number of minicolumns whose connections adapt over time
similar to HTM’s spatial pooler in [3] should be a topic
of future work. Representations in MCN are binary sparse
distributed representations. Operations on these structures can
be implemented very energy efficient in hardware [44] which
is important for battery driven devices such as robots. The
output of MCN is the sparse set of winner cells. These indices
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could be used to directly address all similar places without
pairwise comparison, which is essential for large datasets.

MCN takes major inspiration from Hierachical Temporal
Memory, a biologically plausible theory on working princi-
ples of the human neocortex. We evaluated its properties in
simulation and presented results on real world data, however, a
major direction for future work is a deeper theoretical analysis
(e.g., the connection to bagging ensemble classifiers [45]).
Also a more in depth analysis of the capacity and runtime
behavior will be beneficial for practical application. Further,
there are several aspects of HTM that are interesting for future
inclusion, e.g. segments, permanences, and the combination
with grid-cells.
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