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Abstract. The Schema Mechanism is a general learning and concept
building framework initially created in the 1980s by Gary Drescher. It
was inspired by the constructivist theory of early human cognitive de-
velopment by Jean Piaget and shares interesting properties with human
learning. Recently, Schema Networks were proposed. They combine ideas
of the original Schema mechanism, Relational MDPs and planning based
on Factor Graph optimization. Schema Networks demonstrated interest-
ing properties for transfer learning, i.e. the ability of zero-shot transfer.
However, there are several limitations of this approach. For example, al-
though the Schema Network, in principle, works on an object-level, the
original learning and inference algorithms use individual pixels as ob-
jects. Also, all types of entities have to share the same set of attributes
and the neighborhood for each learned Schema has to be of the same
size. In this paper, we discuss these and other limitations of Schema
Networks and propose a novel representation based on hypervectors to
address some of the limitations. Hypervectors are very high dimensional
vectors (e.g. 2,048 dimensional) with useful statistical properties, includ-
ing high representational capacity and robustness to noise. We present
a system based on a Vector Symbolic Architecture (VSA) that uses hy-
pervectors and carefully designed operators to create representations of
arbitrary objects with varying number and type of attributes. These
representations can be used to encode Schemas on this set of objects in
arbitrary neighborhoods. The paper includes first results demonstrating
the representational capacity and robustness to noise.

Keywords: Schema Mechanism · Hypervectors · Vector Symbolic Ar-
chitectures · Transfer Learning.

1 Introduction

The idea to let machines learn like children, in contrast to manually program-
ming all their functionalities, at least goes back to Turing 1946 [3]. Although
a comprehensive picture of human learning is still missing, a lot of research
has been done. A seminal work is the theory of cognitive development by Jean
Piaget [21]. It describes stages and mechanisms that underly the development
of children. Two basic concepts are assimilation and accommodation. The first
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describes the process of fitting new information in existing schemas and the lat-
ter to adapt existing schemas or create new schemas based on novel experiences.
Schemas can be though of as set of rules, mechanisms, or principles, that explain
the behaviors of the world. In the 1980s, Gary Drescher developed the Schema
Mechanism [6], a “general learning and concept-building mechanism intended
to simulate aspects of Piagetian cognitive development during infancy” [6, p.2].
The Schema Mechanism is a set of computational algorithms to learn schemas
of the form < context, action, result > from observations.

Recently, Schema Networks were proposed [16]. They combine inspiration of
the Schema Mechanism with concepts of Relational Markov Decision Processes
and planning based on Factor Graph optimization. Schema Networks demon-
strated promising results on transfer learning. In particular, to learn a set of
schemas that resemble the underlying “physic” of a computer game and enable
zero-shot transfer to modified versions of this game. Kansky et al. [16] demon-
strated these capabilities on variations of the Arcade game Breakout. Previ-
ously, Mnih et al. [19] used end-to-end deep reinforcement learning to solve this
and other Arcade games. In contrast to this subsymbolic end-to-end approach,
Schema Networks operate on objects. However, the algorithms provided in the
Schema Network paper require all objects to share the same set of attributes and
all schemas to share neighborhoods of the same size. This restricts the applica-
tion to domains with similar properties of all entities and regular neighborhoods.
Thus, the experiments in [16] use again pixels as objects instead of more complex
entities (like “brick” and “paddle” in the Breakout game).

In this paper, we present ongoing work on using hypervector representations
and Vector Symbolic Architectures to relax the above conditions on the objects.
In particular, we describe how objects can be represented as superposition of
their attributes based on hypervector representations and how this can be used
in a VSA to implement schemas. Similar approaches have previously been suc-
cessfully applied to fast approximate inference [25] and mobile robot imitation
learning [20]. We start with an introduction to the Schema Mechanism, Schema
Networks and hyperdimensional computing, followed by a description of the pro-
posed combination of these concepts and initial experimental results.

2 Introduction to the Schema Mechanism

The Schema Mechanism is a general learning and concept-building framework
[6]. Schemas are constructed from observation of the world and interaction with
the world. They are of the form < context, action, result >: Given a certain state
of the world (the context), if a particular action would be performed, the prob-
ability of a certain change of the world state (the result) would be increased. A
schema makes no predication in case of not fulfilled context. Schemas maintain
auxiliary data including statistics about their reliability. According to Holmes
and Isbell [12, p.1] they “are probabilistic units of cause and effect reminiscent
of STRIPS operators” [7]. In the original Schema Mechanism, the state of the
world is a set of binary items. Schema learning is based on marginal attribution,
involving two steps: discovery and refinement [6]. In the discovery phase, statis-



tics on action-result combinations are used to create context-free schemas. In the
refinement phase, context items are added to make the schema more reliable. An
important capability of the original Schema Meachanism is to create synthetic
item to model non-observable properties of the world [6].

Drescher [6] presented an implementation and results on perception and ac-
tion planning of a simple simulated agent in a micro-world. Several extensions
and applications of this original work have been proposed. For example, Chaput
[4] proposed a neural implementation using hierarchies of Self Organizing Maps.
This allows to learn schemas with a limited amount of resources. Holmes and Is-
bell [12] relaxed the condition of binary items and modified the original learning
criteria to better handle POMDP domains. They also demonstrated the appli-
cation to speech modeling. An extension to continuous domains was proposed
by Guerin and Starkey [10]. Schemas provide both declarative and procedural
meaning. Declarative meaning in form of expectations what happens next and
procedural meaning as component in planning. The recently proposed Schema
Networks [16] exploit both meanings.

3 Overview of Schema Networks

Schema Networks [16] are an approach to learn generative models from observa-
tion of sequential data and interaction with the environment. For action plan-
ning, these generative models are combined with Factor Graph optimization.
Schema Networks work on entities with binary attributes. For learning, each
training sample contains a set of entities with known attributes, a current action
of the agent and a resulting state of the world in the next timestep (potentially
including rewards). From these samples, a set of ungrounded schemas is learned
using LP-relaxation. Ungrounded schemas are similar to templates in Relational
MDPs [2,13]. During inference, they are instantiated to grounded schemas with
the current data. For each attribute y, there is a set of ungrounded schemas W .
The new value of y is computed from its neighborhood:

y = XW1 (1)

W is a binary matrix. Each column is an ungrounded schema. X is a binary
matrix where each row is the concatenation of attributes of entities in a lo-
cal neighborhood and a binary encoding of the current action(s). The matrix
multiplication in equation 1 corresponds to grounding of schemas. If any of the
schemas in W is fulfilled, the attribute y is set. For action planning, a Factor
Graph is constructed from the schemas. Optimization on this Factor Graph as-
signs values to variables for each relevant attribute of each relevant entity, the
actions and the expected rewards at each timestep in the planning horizon. For
more details on this simplified version of schemas, please refer to [16].

Schema Networks showed promising results on learning Arcade games and
applying the learned generative model to modified game versions without re-
training (zero-shot transfer). However, the description in the paper [16] is rather
coarse and not self-contained. Moreover, there are also several theoretical limi-
tations: The perception side is assumed to be solved. Schema Networks work on



entities and attributes, not on raw pixel data. In particular, the types of entities
and their attributes have to be known in advance and have very large influence
on the overall system. The schema learning approach can not deal with stochas-
tic environments, i.e. contradicting (or noisy) observations are not allowed. All
items have to be binary. Moreover, all entities have to share the same set of at-
tributes and the neighborhood of all schemas has to be of the same size. This is
a consequence of the matrix representation in equation 1. Section 5 presents an
approach to use hypervector-based VSAs to address these latter two limitations.

4 Properties and Applications of Hypervectors and VSAs

Hypervectors are high dimensional representations (e.g. 2,048 dimensional) with
large representational capacity and high robustness to noise, particularly in case
of whitened encodings [14,1]. With increasing number of dimensions, the prob-
ability of sampling similar vectors by chance deceases rapidly. If the number of
dimensions is high enough, randomly sampled vectors are expected to be almost
orthogonal. This is exploited in a special type of algorithmic systems: Vector
Symbolic Architectures (VSA) [18]. A VSA combines a high dimensional vector
space X with (at least) two binary operators with particular properties: bind ⊗
and bundle ⊕, both are of the form: X× X→ X. bind ⊗ is an associative oper-
ator which is self-inverse, this is ∀x ∈ X : x ⊗ x = I with I being the identity
element. For example in a binary vector space, binding can be implemented by
an elementwise XOR. Binding two vectors results in a vector that is not simi-
lar to both of the input vectors. However, the results of binding two vectors to
the same third vector preserves their distance. In contrast, applying the second
bundle ⊕ operator creates a result vector that is similar to both input vectors.
For more details on these operations, please refer to [15,8,22].

Hypervectors and VSAs have been applied to various tasks. VSA can imple-
ment concepts like role-filler pairs [24] and model high-level cognitive concepts
[9]. This has been used to model [17] and learn [20] reactive robot behaviors.
Hypervectors and VSAs have also been used to model memory [5], aspects of the
human neocortex [11], and approximate inference [25]. An interesting property
of VSAs is that all entities (e.g. a program, a variable, a role) are of the same
form, a hypervector, independent of their complexity - a property that we want
to exploit for representation in schemas in the next section.

5 Combining Hypervectors and Schemas

This section describes an approach to represent context, action and result of
a schema based on hypervectors and VSA operators. The goal is to provide a
representation for the context that allows to combine objects with varying num-
ber and types of attributes and neighborhoods of varying size. The approach is
inspired by Predication-based Semantic Indexing (PSI) [25] a VSA-based system
for fast and robust approximate inference and our previous work on encoding
robot behavior using hypervectors [20].

We propose to represent a schema in form of a single condition hypervector
and a corresponding result hypervector. The condition hypervector encodes the
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Fig. 1. Hypervector encoding of Context-Action-Pairs (all rectangles are hypervectors).

context-action-pair (CAP) of the schema. To test whether a known schema is
applicable for the current context and action, the similarity of the current CAP
and the schema’s CAP can be used. Fig. 1 illustrates the encoding of arbitrary
sets of attributes of objects and arbitrary neighborhoods in a single hypervector.
We assume that hypervector encoders for basic datatypes like scalars are given
(cf. [23]). Objects are encoded as ”sum“ of their attributes using the VSA bundle
operator similar to the PSI system [25]. The more attributes two objects share,
the more similar are their hypervector representations. Each attribute is encoded
using a role-filler pair. One hypervector is used to represent the type (role) of
the attribute and a second (the filler) to encode its value. Filler hypervectors can
encode arbitrary datatypes, in particular, it can also be a hypervector represen-
tation of an object. The binding of the role and filler hypervectors results again
in a hypervector of the same dimensionality. The bundle of all object properties
is the hypervector representation of the object. The shape of the representation
is independent of the number and complexity of the combined attributes.

Neighborhoods are encoded similarly by encoding the involved objects and
binding them to their relative position to the regarded object. Let us consider
the very simple example of a 3× 3 neighborhood in an image. In a hypervector
representation of this neighborhood, there are 8 objects surrounding a central
object, each object is bound to a pose (i.e., top, top-right, ...) and the 8 result-
ing hypervectors are bundled to a single hypervector. In contrast to the matrix
encoding in Schema Networks, the hypervector encoding allows to bundle an
arbitrary number of neighbors at arbitrary poses (e.g. at the opposite side of
the image). This is due to the fact that the shape of the hypervector bundle is
independent of the number of bundled hypervectors (in contrast to the concate-
nation of the neighbors in Schema Networks) and the explicit encoding of the
pose. Thus we can use an individually shaped neighborhood for each schema.

The creation of the CAP is illustrated at the bottom of Fig. 1: object-, action-
and neighborhood-hypervector representations are bundled to a single CAP hy-
pervector. Each of the representations is created by binding the filler encoding
to the corresponding role (e.g. filler ”OBJ-INSTANCE“ to role ”OBJECT“).

6 Results

The initial goal to allow different attributes in objects and different neighbor-
hoods for schemas is already fulfilled by design. In noiseless environments, recall
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of a schema based on the similarity of CAP representations is inherently ensured
as well (this can also be seen in the later explained Fig. 2 at noise 0). What about
finding correct schemas in case of noisy object attributes? We want to demon-
strate the robustness of the presented system to noise in the input data. The
attributes of the objects that should toggle applicability of schemas are hidden
rather deeply in the created CAPs. For application in real world scenarios, a
known schema should be applicable to slightly noise-affected observations. If the
derivation of the attributes is too large, the schema should become inapplicable.
In the presented system, this should manifest in a equivariant relation of change
in the input data and the similarity of the resulting CAP to the known schema.

For a preliminary evaluation of this property, we simulate an environment
with 5,000 randomly created objects. Each object has 1-30 attributes randomly
selected from a set of 100 different attribute types (e.g. color, shape, is-palpable,
...). All attribute values are chosen randomly. There are 1,000 a priori known
schemas. Each is composed of one of the above objects, one out of 50 randomly
chosen actions, a neighborhood of 1-20 other randomly chosen objects, and a ran-
domly chosen result. All random distributions are uniform distributions. These
are ad-hoc choices, the results are alike for a wide range of parameters. The
properties of the used VSA are provided in Fig. 3. Fig. 2 shows the influence of
noise on the encoding of the object’s attributes on the similarity to the original
schema. Noise is induced by adding random samples of a zero-mean Gaussian,
drawn independently for each dimension of the hypervector encoding of the ob-
ject’s attribute value encodings. The standard deviation of the noise is varied as
shown in Fig. 2. It can be seen that the distance of the noise-affected CAP to the
ground-truth schema smoothly increases as desired, although the varied object
attribute is deeply embedded in the CAP. The noisier the object attributes are,
the less applicable becomes the schema. For comparison, the red curve shows
the distance to the most similar wrong schema.

7 Conclusion

We presented a concept to use hypervectors and VSAs for encoding of schemas.
This allows to address some limitations of the recently presented Schema Net-
works. We presented preliminary results on recall of schemas in noisy environ-
ments. This is work in progress, there are many open questions. The next steps
towards a practical demonstration will in particular address the hypervector
encoding of real data and action planning based on the hypervector schemas.
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