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Abstract. Inferring ego position by recognizing previously seen places
in the world is an essential capability for autonomous mobile systems.
Recent advances have addressed increasingly challenging recognition prob-
lems, e.g. long-term vision-based localization despite severe appearance
changes induced by changing illumination, weather or season. Since robots
typically move continuously through an environment, there is high corre-
lation within consecutive sensory inputs and across similar trajectories.
Exploiting this sequential information is a key element of some of the most
successful approaches for place recognition in changing environments. We
present a novel, neurally inspired approach that uses sequences for mobile
robot localization. It builds upon Hierarchical Temporal Memory (HTM),
an established neuroscientific model of working principles of the human
neocortex. HTM features two properties that are interesting for place
recognition applications: (1) It relies on sparse distributed representa-
tions, which are known to have high representational capacity and high
robustness towards noise. (2) It heavily exploits the sequential structure
of incoming sensory data. In this paper, we discuss the importance of
sequence information for mobile robot localization, we provide an intro-
duction to HTM, and discuss theoretical analogies between the problem of
place recognition and HTM. We then present a novel approach, applying
a modified version of HTM’s higher order sequence memory to mobile
robot localization. Finally we demonstrate the capabilities of the proposed
approach on a set of simulation-based experiments.

Keywords: Mobile Robot Localization · Hierarchical Temporal Memory
· Sequence-based Localization.

1 Introduction

We describe the application of a biologically detailed model of sequence memory
in the human neocortex to mobile robot localization. The goal is to exploit the
sequence processing capabilities of the neuronal model and its powerful sparse
distributed representations to address particularly challenging localization tasks.
Mobile robot localization is the task of determining the current position of the
robot relative to its own prior experience or an external reference frame (e.g. a
map). Due to its fundamental importance for any robot aiming at performing
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meaningful tasks, mobile robot localization is a long studied problem, going back
to visual landmark-based navigation in Shakey the robot in the 1960-80s [23].
Research has progressed rapidly over the last few decades and it has become
possible to address increasingly challenging localization tasks. The problem of
localization in the context of changing environments, e.g. recognizing a cloudy
winter scene which has been seen previously on a sunny summer day, has only
recently been studied [17,19]. In most applications, the robot’s location changes
smoothly and there are no sudden jumps to other places (the famous kidnapped
robot problem appears only rarely in practice [7]). Therefore a key element of
some of the most successful approaches is to exploit the temporal consistency of
observations.

In this paper, we present a localization approach that takes inspiration from
sequence processing in Hierarchical Temporal Memory (HTM) [11,6,9], a model of
working principles of the human neocortex. The underlying assumption in HTM
is that there is a single cortical learning algorithm that is applied everywhere
in the neocortex. Two fundamental working principles of this algorithm are to
learn from sequences to predict future neuronal activations and to use sparse
distributed representations (SDRs). In Section 2 we first provide a short overview
of recent methods to exploit sequential information for robot localization. In
Section 3 we provide an overview of the HTM sequence memory algorithm. In
section 4 we show how HTM’s higher order sequence memory can be applied
to the task of mobile robot place recognition3. We identify a weakness of the
existing HTM approach for place localization and discuss an extension of the
original algorithm. We discuss theoretical analogies of HTM and the problem of
place recognition, and finally provide initial experimental results on simulated
data in section 5.

2 On the Importance of Sequences for Robot Localization

Mobile robot localization comprises different tasks, ranging from recognizing an
already visited place to simultaneously creating a map of an unknown area while
localizing in this map (known as SLAM). The former task is known as place
recognition problem or loop closure detection. A survey is provided in [15]. A
solution to this problem is fundamental for solving the full SLAM problem. The
research progress in this area recently reached a level where it is feasible to think
about place recognition in environments with significantly changing appearances.
For example, camera based place recognition under changing lighting condition,
changing weather, and even across different seasons [17,19]. In individual camera
images of a scene, the appearance changes can be tremendous. In our own prior
work and others, the usage of sophisticated landmark detectors and deep-learning-
based descriptors showed to be a partial solution of this task [21]. However, with
increasing severity of the appearance changes, making the localization decision
purely based on individual images is more and more pushed to its limits.

3 An open source implementation is available:
https://www.tu-chemnitz.de/etit/proaut/seqloc
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The benefit of exploiting sequence information is well accepted in the literature
[17,5,13,14,18,16]. In 2012, Milford et al.[17] presented a simple yet effective way
to exploit the sequential character of the percepts of the environment. Given
two sequences of images, captured during two traversals through the same
environment, the task is to make a decision, which image pairs show the same
place. In their experiments one sequence is from a sunny summer day and
the other from a stormy winter night. To address this challenging problem,
the pairwise similarity of images from the two runs is collected in a matrix.
Instead of evaluating each entry individually, Milford et al. [17] propose to search
for linear segments of high similarity in this matrix (this also involves a local
contrast normalization). This approach significantly improved the state of the
art at this time. However, searching for linear segments in this matrix poses
important limitations on the data: the data on both environmental traverses
has to be captured at the same number of frames per traveled distance. This
is usually violated in practice, e.g., if the vehicle’s velocity changes. Therefore,
several extensions have been proposed. E.g., allowing non-zero acceleration [14]
or searching for optimal paths in the similarity matrix using a graph-theoretical
max-flow formulation [18]. Localization approaches that include the creation
of a map inherently exploit the sequential nature of the data. Simultaneous
creation of a map while localizing in this map exploits sequence information by
creating a prior for the current position based on the previous data. However,
this is equivalent to solving the full SLAM problem and involves maintaining a
map of the environments. A particular challenge for SLAM are the consistency
of the map after closing long loops and the increasing size and complexity of
the map in large environments. One elegant approach to the latter problem is
RatSLAM [16]; it uses a finite space representation to encode the pose in an
infinite world. The idea is inspired by entorhinal grid cells in the rat’s brain. They
encode poses similar to a residual number system in math by using the same
representatives (i.e. cells) for multiple places in the world. In RatSLAM, grid cells
are implemented in form of a three dimensional continuous attractor network
(CAN) with wrap-around connections; one dimension for each degree of freedom
of the robot. The activity in the CAN is moved based on proprioceptive clues of
the robot (e.g. wheel encoders) and new energy is injected by connections from
local view cells that encode the current visual input, as well as from previously
created experiences. The dynamics of the CAN apply a temporal filter on the
sensory data. Only in case of repeated consistent evidence for recognition of a
previously seen place, this matching is also established in the CAN representation.
Although the complexity and number of parameters of this system prevented a
wider application, RatSLAM’s exploitation of sequence information allowed to
demonstrate impressive navigation results.

3 Introduction to HTM

Hierarchical Temporal Memory (HTM) [9] is a model of working principles of the
human neocortex. It builds upon the assumption of a single learning algorithm
that is deployed all over the neocortex. The basic theoretical framework builds



upon Jeff Hawkins’ book from 2004 [10]. It is continuously evolving, with the
goal to explain more and more aspects of the neocortex as well as extending the
range of practical demonstrations and applications. Currently, these applications
include anomaly detection, natural language processing and, very recently, object
detection [12]. A well maintained implementation is available [2].

Although the system is continuously evolving, there is a set of entrenched fun-
damental concepts. Two of them are (1) the exploitation of sequence information
and (2) the usage of Sparse Distributed Representations (SDRs). The potential
benefit of the first concept for mobile robot localization has been elaborated in
the previous section. The latter concept, SDRs, also showed to be beneficial in
various fields. A SDR is a high dimensional binary vector (e.g. 2,048 dimensional)
with very few 1-bits (e.g. 2%). There is evidence that SDRs are a widely used
representation in brains due to their representation capacity, robustness to noise
and power efficiency [3]. They are a special case of hypervector encodings, which
we previously used to learn simple robot behavior by imitation learning [22].

From HTM, we want to exploit the concept of higher order sequence memory
for our localization task. It builds on a set of neuronal cells with connection
and activation patterns that are closer to the biological paragon than, e.g., a
multi-layer perceptron or a convolutional neural network. Nevertheless, for these
structures, there are compact and clear algorithmic implementations.

3.1 Mimicking neuroanatomic structures

The anatomy of the neocortex obeys a regular structure with several horizontal
layers, each composed by vertically arranged minicolumns with multiple cells.
In HTM, each cell incorporates dendritic properties of pyramidal cells [25].
Feed-forward inputs (e.g. perception clues) are integrated through proximal
dendrites. Basal and apical dendrites provide feedback modulatory input. Feed-
forward input can activate cells and modulatory input can predict activations
of cells. Physiologically, predicted cells are depolarized and fire sooner than
non-depolarized cells. Modulatory dendrites consist of multiple segments. Each
segment can connect to a different set of cells and responds to an individual
activation pattern. The dendrite becomes active if any of its segments is active.
All cells in a minicolumn share the same feed-forward input, thus all cells in an
minicolumn become potentially active if the feed-forward connections perceive a
matching input pattern. From these potentially active cells, the actual active cells
(coined winner cells) are selected based on the modulatory connections. In HTM
theory, the modulatory connections provide context information for the current
feed-forward input. At each timestep, multiple cells in multiple minicolumns
are active and the state of the system is represented by this sparse code. For
description of HTM theory and current developments please refer to [10] and [1].

3.2 Simplified Higher Order Sequence Memory (SHOSM)

In the following, we will give details on a particular algorithm from HTM: higher
order sequence memory [11,6]. We will explain a simplified version that we
abbreviate SHOSM. For those who are familiar with HTM: the simplifications
include the absence of a spatial pooler and segments, the usage of one-shot learning



instead of Hebbian-like learning, and SHOSM does not start from a randomly
initialized set of minicolumns (whose connections are adapted) but starts from an
empty set of minicolumns and increases the number of minicolumns on demand.
Goal of the higher order sequence memory is to process an incoming sensor data
stream in a way that similar input sequences create similar representations within
the network - this matches very well to the sequence-based localization problem
formulation. The listing in algorithm 1 describes the operations:

Algorithm 1: SHOSM - Simplified HTM higher order sequence memory

Data: It the current input; M a potentially empty set of existing minicolumns;
Ct−1

winner the set of winner cells from the previous time step
Result: M with updated states of all cells; Ct

winner

1 M t
active = match(It,M) // Find the active minicolumns based on

similarity to feed-forward SDR input

// If there are no similar minicolumns: create new minicolumns

2 if isempty(M t
active) then

3 M t
active = createMinicolumns(It) // Each new minicolumn samples

connections to 1-bits in It

4 M = M ∪M t
active

// Identify winner cell(s) in each minicolumn based on predictions

5 foreach m ∈M t
active do

6 Ct
predicted = getPredictedCells(m) // Get set of predicted cells from

this active minicolumn m
7 M = activatePredictions(Ct

predicted) // Predict for next timestep

8 Ct
winner += Ct

predicted // The predicted cells are also winner cells

// If there are no predicted cells: burst and select new winner

9 if isempty(Ct
predicted) then

10 M = activatePredictions(m) // Bursting: Activate all

predictions of cells in m for next timestep

11 Ct
winner += selectWinner(m) // Select cell with the fewest

predictive forward connections as winner cell

// Learn predictions: prev. winner cells shall predict current

12 foreach c ∈ Cwinner do
13 learnConnections(c, Ct−1

winner) // Given the current winning cell c

and the set of previously winning cells Ct−1
winner: for all

cells ct−1
winner ∈ Ct−1

winner for which there is not already a

connection from their minicolumns to the cell c, create the

prediction connections ct−1
winner → c (one shot learning)

At each timestep, input is an SDR encoding of the current input (e.g. the
current camera image). For details on SDRs and possible encodings please refer
to [3] and [24]. Please keep in mind that all internal representations in algorithm 1
are SDRs: there are always multiple cells from multiple minicolumns active in
parallel. Although the same input is represented by multiple minicolumns, each
minicolumn connects only to a fraction of the dimensions of the input SDR and is



thus affected differently by noise or errors in the input data. The noise robustness
of this system is a statistical property of the underlying SDR representation [3].

In each iteration of SHOSM, a sparse set of winner cells based on the feed-
forward SDR input and modulatory input from the previous iteration is computed
(lines 8 and 11). Further, the predicted attribute of cells is updated to provide
the modulatory input for the next iteration (lines 7 and 10). This modulatory
prediction is the key element to represent sequences. In case of no predicted cells
in an active minicolumn (line 9), all cells activate their predictions and a single
winner cell is selected (this mechanism is called bursting). This corresponds to
current input data that has never been seen in this sequence context before.

This short description of the algorithm lacks many implementation details,
e.g. how exactly the connections are sampled or how ties during bursting are
resolved. For full details, please refer to the available Matlab source code (cf.
section 1) that enables to recreate our results. The following section explains the
application and adaptation of this algorithm for mobile robot localization.

4 Using HTM’s Higher Order Sequence Memory for
Mobile Robot Localization

4.1 Overview

Fig. 1 illustrates how HTM’s higher order sequence memory is used for place
recognition. Let us think of a robot that explores a new environment using a
camera. It starts with an empty database and iteratively processes new image
data while moving through the world. For each frame (or each n-th frame) it
has to decide, whether the currently perceived scene is already in the database
or not. This poses a set of binary decision problems, one for each image pair.
The similarity matrix on the right side of Fig. 1 illustrates the possible outcome:
each entry is the similarity of a current query image to a database image. To
obtain binary decisions, a threshold on the similarity can be used. If we think of a
continuously moving robot, it is useful to include information of previous frames
to create these similarity values (cf. section 2 on sequence-based localization).

On an abstract level, the state of the cells in SHOSM (variable M in algo-
rithm 1) is an encoding for the current input data in the context of previous
observations. In terms of mobile robot localization, it provides an encoding of the
currently observed place in the context of the prior trajectory to reach this place.
All that remains to be done to use SHOSM for this task is to provide input and
output interfaces. SHOSM requires the input to be encoded as sparse distributed
representations. For example, we can think of a holistic encoding of the current
camera image. More sophisticated encodings could also include local features
and their relative arrangement similar to recent developments of HTM theory
[12]. For several datatypes there are SDR encoders available [24]. Currently,
for complex data like images and point clouds, there are no established SDR
encoders, but there are several promising directions, e.g. descriptors based on
sparse coding or sparsified descriptors from Convolutional Neural Networks [20].
Moreover, established binary descriptors like BRIEF or BRISK can presumably
be sparsified using HTM’s spatial pooler algorithm [9].
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Fig. 1. Place recognition based on SHOSM winner cells. (left) Each frame of the input
data sequence is encoded in form of a SDR and provides feed-forward input to the
minicolumns. Between subsequent frames, active cells predict the activation of cells in
the next time step. Output representation is the set of winner cells. (right) Example
similarity matrix for a place recognition experiment with 4 loops (visible as (minor)
diagonals with high similarity). The similarities are obtained from SDR overlap of the
sparse vector of winner cells.

Output of SHOSM are the states of the cells, in particular a set of current
winner cells. This is a high dimensional, sparse, binary code and the decision
about place associations can be based on the similarity of these codes (e.g.
using overlap of 1-bits [3]). If an input SDR activates existing minicolumns, this
corresponds to observing an already known feature. If we also expected to see
this feature (i.e. there are predicted cells in the active minicolumn), then this is
evidence for revisiting a known place. The activation of the predicted cells yields
a similar output code as at the previous visits of this place - this results in a high
value in the similarity matrix. If there are no predicted cells, this is evidence for
observation of a known feature at a novel place - thus unused (or rarely used)
cells in these minicolumns become winner cells (cf. line 11 in algorithm 1). If
there is no active minicolumn, we observe an unseen feature and store this feature
in the database by creating a new set of minicolumns.

Using these winner-cell codes instead of the input SDRs directly, incorporates
sequence information in the binary decision process. Experimental evidence for
the benefit of this information will be provided in section 5.

4.2 Theoretical analogies of HTM and place recognition

This section discusses interesting theoretical association of aspects of HTM theory
and the problem of mobile robot localization.

1. Minicolumns ⇔ Feature detectors Feature detectors extract distinc-
tive properties of a place that can be used to recognize this place. In case of
visual localization, this can be, for instance, a holistic CNN descriptor or a set
of SIFT keypoints. In HTM, the sensor data is encoded in SDRs. Minicolumns
are activated if there is a high overlap between the input SDR and the sampled
connections of this minicolumn. The activation of a minicolumn corresponds to



detecting a certain pattern in the input SDR - similar to detecting a certain CNN
or SIFT descriptor.

2. Cells ⇔ Places with a particular feature The different cells in an
active minicolumn represent places in the world that show this feature. All cells
in a minicolumn are potentially activated by the same current SDR input, but in
different context. In the above example of input SDR encodings of holistic image
descriptors, the context is the sequence of encodings of previously seen images.
In the example of local features and iteratively attending to individual features,
the context is the sequence of local features.

3. Minicolumn sets ⇔ Ensemble classifier The combination of informa-
tion from multiple minicolumns shares similarities to ensemble classifiers. Each
minicolumn perceives different information of the input SDR (since they are not
fully connected but sample connections) and has an individual set of predictive
lateral connections. The resulting set of winner cells combines information from
all minicolumns. If the overlap metric (essentially a binary dot product) is used
to evaluate this sparse result vector, this corresponds to collecting votes from all
winner cells. In particular, minicolumn ensembles share some properties of bag-
ging classifiers [4] which, for instance, can average the outcome of multiple weak
classifiers. However, unlike bagging, minicolumn ensembles do not create subsets
of the training data with resampling, but use subsets of the input dimensions.

4. Context segments ⇔ Paths to a place Different context segments
correspond to different paths to the same place. In the neurophysiological model,
there are multiple lateral context segments for each cell. Each segment represents
a certain context that preceded the activation of this cell. Since each place in the
database is represented by a set of cells in different minicolumns, the different
segments correspond to different paths to this place. If one of the segments is
active, the corresponding cell becomes predicted.

5. Feed-forward segments ⇔ Different appearances of a place Al-
though it is not supported by the neurophysiological model, there is another
interesting association: If there were multiple feed-forward segments, they could
be used to represent different appearances of the same place. Each feed-forward
segment could respond to a certain appearance of the place and the knowledge
about context of this place would be shared across all appearances. This is not
implemented in the current system.

4.3 rSHOSM: SHOSM with additional randomized connections

Beyond the simplification of the higher order sequence memory described in
section 3.2 we propose another beneficial modification of the original algorithm.
The original SHOSM algorithm is designed to provide an individual representation
of each element of a sequence dependent on its context. If anything in the context
is changed, the representation also changes completely.

Fig. 2 illustrates this on a toy grid world with places A-F. What happens if a
robot follows the red loopy trajectory ABCDEBC? At the first visit of place
B, a representation is created that encodes B in the context of the previous
observation A, lets write this as BA. This encoding corresponds to a set of winner
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Fig. 2. (left) Toy example that motivates rSHOSM. See text for details. (right) Illus-
tration of the loss of sequence information in case of multiple lateral connections from
different cells x1, x2 of one minicolumn representing place B to a cell x3. If the dotted
connection from x2 to x3 exists, we can not distinguish the sequences (A,B,C) and
(E,B,C) from an activation of x3. Please keep in mind that in the actual system many
parallel active minicolumns contribute to the representation of elements and sequences;
for simplification, only a single minicolumn per element is shown.

cells. At the second visit of place B, there is a different context: the whole
previous sequence ABCDE, resulting in an encoding BABCDE . The encodings
BA and BABCDE share the same set of active minicolumns (those that represent
the appearance of place B) but completely different winner cells (since they
encode the context). Thus, place B can not be recognized based on winner cells.

Interestingly, the encodings of CAB and CABCDEB are identical. This is due
to the effect of bursting: Since B is not predicted after the sequence ABCDE,
all cells in minicolumns that correspond to B activate their predictions, including
those who predict C (line 10 in algorithm 1). Thus, the place recognition problem
appears only for the first place of such a loopy sequence. Unfortunately, this
situation becomes worse if we revisit places multiple times, which is typical
for a robot operating over a longer period of time in the same environment.
The creation of unwanted unique representations for the same place affects one
additional place each iteration through the sequence. For example, if the robot
extends its trajectory to the blue path in Fig. 2, there will be a unique (not-
recognizable) representation for places B and C at this third revisit. At a fourth
revisit, there will be unique representations for B, C and D and so on.

Algorithmically, this is the result from a restriction on the learning of con-
nections in line 14 of Algorithm 1: If the previously active minicolumn already
has a connection to the currently active cell, then no new connection is created.
Fig. 2 illustrates the situation. This behavior is necessary to avoid that two cells
x1, x2 of a minicolumn predict the same cell x3 in another minicolumn. If this
would happen, the context (i.e., the sequence history) of the cell x3 could not be
distinguished between the contexts from cells x1 and x2.

To increase the recognition capabilities in such repeated revisits, we propose
to alleviate the restriction on the learning of connections in line 14 of Algorithm 1:
Since the proposed systems evaluates place matchings based on an ensemble
decision (spread over all minicolumns), we propose to except the learning re-
striction for a small portion of lateral connections by chance. This is, to allow
the creation of an additional new connection from a minicolumn to a cell, e.g.,
with a 5 % probability (i.e., to add the dotted connection from cell x2 to x3



in Fig. 2). Thus, some of the cells that contribute to the representation of a
sequence element, do not provide a unique context but unify different possible
contexts. This increases the similarity of altered sequences at the cost of reducing
the amount of contained context. Since creating this connection once, introduces
ambiguity for all previous context information for this cell, the probability of
creating the additional connection should be low. This slightly modified version
of the simplified higher order sequence memory is coined rSHOSM. The difference
between SHOSM and rSHOSM is experimentally evaluated in the next section.

5 Experimental results

In this section, we demonstrate the benefit of the additional randomized connec-
tions from the previous section 4.3 and compare the presented approach against
a baseline algorithm in a set of simulated place recognition experiments. We
simulate a traversal through a 2D environment. The robot is equipped with
a sensor that provides a 2,048 dimensional SDR for each place in the world;
different places are grid-like arranged in the world. Using such a simulated sensor,
we circumvent the encoding of typical sensor data (e.g. images or laser scans) and
can directly influence the distinctiveness of sensor measurements (place-aliasing:
different places share the same SDR) and the amount of noise in each individual
measurement (repeated observations of the same place result in somewhat dif-
ferent measurements). Moreover, the simulation provides perfect ground-truth
information about place matchings for evaluation using precision-recall curves:
Given the overlap of winner cell encodings between all pairings in the trajectory
(the similarity matrix of Fig.1), a set of thresholds is used, each splitting the
pairings into matchings and non-matchings. Using the ground-truth information,
precision and recall are computed. Each threshold results in one point on the
precision-recall curves. For details on this methodology, please refer to [21].

Parameters are set as follows: input SDR size is 2,048; # 1-Bits in input
SDR is 40; #cells per minicolumn is 32; #new minicolumns (Alg. 1, line 3) is 10;
connectivity rate input SDR - minicolumn is 50%; and threshold on SDR overlap
for active minicolumns is 25%.

5.1 Evaluation of additional randomized connections in rSHOSM

To demonstrate the benefit of the additional randomized connections in rSHOSM,
we simulate a robot trajectory with 10 loops (each place in the loop is visited
10 times), resulting in a total of 200 observations. In this experiment, there are
neither measurement noise nor place-aliasing in the simulated environment. The
result can be seen on the left side of Fig. 3. Without the additional randomized
connections, recall is reduced since previously seen places get new representations
dependent on their context (cf. section 4.3).

5.2 Place recognition performance

This section shows results demonstrating the beneficial properties of the presented
neurally inspired place recognition approach: increased robustness to place-aliasing
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Fig. 3. (left) Benefit of the randomized connections in rSHOSM (with probabilities
0.01 and 0.05 of additional connections). This experiment does not involve noise or
place-aliasing. (right) Comparison of the proposed rSHOSM with a baseline pairwise
comparison in three differently challenging experiments. Parameter a is the amount of
aliasing (the number of pairs of places with the same SDR representation) and n is the
amount of observation noise (percentage of moved 1-bits in the SDR). In both plots,
top-right is better.

and observation noise. Therefore, we compare the results to a simple baseline
approach: brute-force pairwise comparison of the input SDR encodings provided
by the simulated sensor. The right side of Fig. 3 shows the resulting curves
for three experimental setups (each shown in a different color). We use the
same trajectory as in the previous section but vary the amount of observation
noise and place-aliasing. The noise parameter n controls the ratio of 1-bits that
are erroneously moved in the observed SDR. For instance, n = 50% indicates
that 20 of the 40 1-bits in the 2,048 dimensional input vector are moved to a
random position. Thus, only 20 of the 2,048 dimensions can contribute to the
overlap metric to activate minicolumns. The place-aliasing parameter a counts
the number of pairs of places in the world which look exactly the same (except
for measurement noise). For instance, a = 5 indicates that there are 5 pairs of
such places and each of these places is visited 10 times in our 10-loops trajectory.

Without noise and place-aliasing, the baseline approach provides perfect re-
sults (not shown). In case of measurement noise (red curves), both approaches are
amost not effected, due to the noise robustness of SDRs. In case of place-aliasing
(yellow curves), the pairwise comparison can not distinguish the equivalently
appearing places resulting in reduced precision. In these two experiments with
small disturbances, the presented rSHOSM approach is not affected. The blue
curves show the results from a challenging combination of high place-aliasing
and severe observation noise - a combination that is expected in challenging real
world place recognition tasks. Both algorithms are affected, but rSHOSM benefits
from the usage of sequential information and performs significantly better than
the baseline pairwise comparison.

In the above experiments, typical processing time of our non-optimized Matlab
implementation of rSHOSM for one observation is about 8 ms using a standard
laptop with an i7-7500U CPU @ 2.70GHz.



6 Discussion and Conclusion

The previous sections discussed the usage of HTM’s higher order sequence mem-
ory for visual place recognition, described the algorithmic implementation and
motivated the system with a discussion of theoretical properties and some ex-
perimental results where the proposed approach outperformed a baseline place
recognition algorithm. However, all experiments used simulated data. The perfor-
mance on real world data still has to be evaluated. Presumably, the presented
benefit above the baseline could also be achieved with other existing techniques
(e.g. SeqSLAM). It will be interesting to see, whether the neurally inspired ap-
proach can address some of the shortcomings of these alternative approaches (cf.
section 2). Such an experimental comparison to other existing place recognition
techniques should also include a more in-depth evaluation of the parameter
of the presented system. For the presented initial experiments, no parameter
optimization was involved. We used default parameters from HTM literature
(which in turn are motivated by neurophysiological findings).

The application on real data poses the problem of suitable SDR encoders for
typical robot sensors like cameras and laser scanners - an important direction
for future work. Based on our previous experience with visual feature detectors
and descriptors [20,21,19], we think this is also as a chance to design and learn
novel descriptors that exploit the beneficial properties of sparse distributed
representations (SDRs). An interesting direction for future work would also be to
incorporate recent developments on HTM theory on processing of local features
with additional location information - similar in spirit to image keypoints (e.g.
SIFT) that are established for various mobile robot navigation tasks.

Although, the presented place recognition approach is inspired by a theory of
the neocortex, we do not claim that place recognition in human brains actually
uses the presented algorithm. There is plenty of evidence [8] of structures like
entorhinal grid cells, place cells, head direction cells, speed cells and so on, that
are involved in mammal navigation and are not regarded in this work.

The algorithm itself also has potential theoretical limitations that require
further investigation. For example, one simplification from the original HTM
higher order sequence memory is the creation of new minicolumns for unseen
observation instead of using a fixed set of minicolumns. This allows a simple
one-shot learning of associations between places. In a practical system the
maximum number of minicolumns should be limited. Presumably, something
like the Hebbian-like learning in the original system could be used to resemble
existing minicolumns. It would be interesting to evaluate the performance of the
system closer to the capacity limit of the representation.

Finally, SDRs provide interesting theoretical regarding runtime and energy
efficiency. However, this requires massively parallel implementations on special
hardware. Although this is far beyond the scope of this paper, in the future, this
might become a unique selling point for deployment of these algorithms on real
robots.
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