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Abstract—Visual place recognition is a mature field in mo-
bile robotics research. Recognizing places in datasets covering
traversals of hundreds or thousands of kilometres and accurate
localization in small and medium size environments have been
successfully demonstrated. However, for real world long term op-
eration, visual place recognition has to face severe environmental
appearance changes due to day-night cycles, seasonal or weather
changes. Existing approaches for recognizing places in such
changing environments provide solutions for matching images
from the exact same viewpoint using powerful holistic descriptors,
using less sophisticated holistic descriptors in combinations with
images sequences, and/or pose strong requirements on training
data to learn systematic appearance changes. In this paper, we
present a novel, training free, single image matching procedure
that builds upon local region detectors for powerful Convolutional
Neural Network (CNN) based descriptors. It can be used with
a broad range of local region detectors including keypoints,
segmentation based approaches and object proposals. We propose
a novel evaluation criterion for selection of an appropriate local
region detector for changing environments and compare several
available detectors. The scale space extrema detector known from
the SIFT keypoint detector in combination with appropriate
magnification factors performs best. We present preliminary
results of the proposed image matching procedure with several
region detectors on the challenging Nordland dataset on place
recognition between different seasons and a dataset including
severe viewpoint changes. The proposed method outperforms the
best existing holistic method for place recognition in such chang-
ing environments and can additionally handle severe viewpoint
changes. Additionally, the combination of the best performing
detectors with superpixel based spatial image support shows
promising results.

I. INTRODUCTION

Visual place recognition in changing environments de-
scribes the problem of matching images (or image sequences)
of places that are subject to severe appearance changes induced
by day-night cycles, weather or seasonal changes. Two images
showing an example scene from the Nordland dataset can be
seen in Fig. 1. This is a challenging and active research field for
mobile robotics as well as computer vision. Visual localization
has benefited a lot from the evolution of local keypoint
detectors and descriptors like Harris corners or SIFT. For pure
place recognition there are also holistic image descriptors like
GIST. However, these established methods show problems in
the presence of severe image changes, e.g. matching places
seen in summer when revisiting in winter.

There have been different approaches for place recognition
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Fig. 1. Illustration of our novel, training-free approach for single image place
recognition in changing environments (e.g. between summer and winter). It
combines the robustness against appearance changes of CNN descriptors with
the robustness to viewpoint changes of local landmarks. It can be used with a
broad range of local region detectors including keypoints, segmentation based
approaches and object proposals.

in changing environments, e.g. based on matching image
sequences (e.g. SeqSLAM [1]), exploiting training data to pre-
dict systematic appearance changes [2], or using sophisticated
holistic descriptors obtained from Convolutional Neural Net-
works (CNN) [3]. However, none of the existing approaches
provides place recognition in changing environments in a
practical setup including viewpoint changes. The authors of
[4],[3] demonstrated these problems on datasets with shifted
and cropped images.

We present a novel approach to place recognition in chang-
ing environments in the presence of viewpoint changes based
on local image features. Using local image features has proven
to be a successful approach facing changing viewpoints. These
local features are composed of a feature detection and a feature
description step. The challenge for applications in changing
environments is to find detectors and descriptors which both
can handle severe appearance changes and can be combined
to provide useful landmarks.

After a short overview of related work in the following
section, we address this challenging place recognition task in
two steps. In a first step, we discuss the requirements for
the feature detector and present a measure and experiments
to evaluate the repeatability of feature detectors in changing
environments in Section III. Further, we compare a selection of
different detectors including keypoint detectors, oversegmen-
tation based approaches and object proposal methods.

Section IV discusses the second step: feature description.
We use the output of the best performing detector as spatial
image support for the CNN features that have shown to be
robust to seasonal changes [3]. We present a training free,
single image matching scheme using these landmarks based
on simple star graph models [5]. Section V shows how the



proposed approach outperforms the state-of-the-art method on
place recognition experiments on the challenging Nordland
dataset and the Berlin dataset including severe viewpoint
changes. Results and an open source implementation of the
proposed approach are available from our website.!

II. RELATED WORK

Traditionally, visual place recognition is either based on
matching local features (like SIFT keypoints [6]), bags of
visual words (like FAB-MAP [7]), holistic image descriptors
(like GIST [8]), or combinations. In changing environments,
one can either try to organize the different appearances, e.g. in
form of a plastic map [9], or to recognize places despite these
differences. While a complete review of existing approaches
is beyond the scope of this paper, we want to present some
related approaches.

In terms of local features, Valgren and Lilienthal [10]
used SIFT and U-SURF keypoints for place recognition across
seasons. They show high recognition rates on a small dataset
with omnidirectional images of five places from different
seasons. Milford et al. provided several approaches including
SeqSLAM [1]. It builds upon a lightweight holistic visual
matching front-end and explicitly matches local sequences of
images. They show impressive results on matching challenging
scenes across seasons, time of day and weather conditions.
Since it builds upon a holistic image representation, SeqSLAM
is sensitive to viewpoint changes [4]. In prior work [2], we
used superpixel vocabularies to learn and predict systematic
appearance changes. We showed how this prediction step
can improve the performance of subsequent place recognition
techniques like SeqSLAM. Since the predicted images are not
suitable for local keypoint extraction due to smoothing and
artefacts, the same issues of holistic image matching as for
SeqSLAM holds for this approach.

In recent years, image descriptors based on Convolutional
Neural Networks (CNN) showed impressive performance on
a variety of computer vision tasks, most obviously object
recognition [11]. Siinderhauf et al. [3] proposed to use de-
scriptors obtained from CNNs for place recognition in chang-
ing environments. They obtained image descriptors from the
stacked output of a single CNN layer. They evaluated different
layers and found the lower convolutional layers to be the
most robust against image changes, but sensitive to viewpoint
changes. They also proposed to compute multiple descriptors
using a sliding window scheme to improve the performance
under changing viewpoints. However, the general drawbacks
of sliding window approaches (high number of windows,
sensitivity to partial occlusions, and dynamic objects) still
apply. Nevertheless, these CNN descriptors showed impressive
performance on a set of challenging datasets, including the
cross-seasonal Nordland dataset.

In the following, we will investigate how these powerful
CNN descriptors can be combined with local spatial image
support to become more robust against viewpoint changes and
provide practical landmarks for changing environments.

III. DETECTING REPETITIVE LANDMARKS IN CHANGING
ENVIRONMENTS

Landmarks in changing environments require repeated

detection and sophisticated descriptors. In this section we

will first provide a measure to evaluate the repeatability of

region detectors in the presence of severe image changes (Sec.

! https://www.tu-chemnitz.de/etit/proaut/forschung/cv/landmarks.html.en

II-A), followed by the description of potential region detectors
including keypoints, oversegmentations and object proposals
(Sec. III-B), and finally an experimental comparison of these
detectors (Sec. III-C). The best performing detectors are then
used in the matching scheme presented in Sec. IV for the place
recognition experiments in Sec. V.

A. How to Measure the Repeatability of Feature Detectors

In their influential work Mikolajczyk et al. [12] provide a
methodology to evaluate the repeatability of feature detectors
in terms of the localization accuracy. We build upon their
methodology and adapt it for the requirements on landmarks
under severe appearance changes to measure the amount of
common spatial image support. In principle their approach is
the following: Given two images I, Ip of the same scene
and the transformation 74 between these images (i.e. the
ground truth optical flow), they detect features in both images
and evaluate their overlap. Given the sets of pixels P4, Pp
constituting the spatial image support of two features I
from 14 and ffg from Ip, the overlap is computed as the
“intersection over union (loU):

i J
10U (f}, fhy) = LanFa) 0 Py (1)
Tap(P4) U Pyl
E.g. fi4,f5 may be SIFT features, P}, P} are all pixels
belonging to the corresponding ellipses, and T'ap(P?) are the
pixels of f% moved to the image space of Ip.

An important step in their evaluation is a normalization
with respect to the features size. They show that the perfor-
mance of a region detector in their measure can be improved by
simply increasing the size of the detected regions. Therefore,
they compute for each feature comparison IoU(f%, f%) a
rescaling factor that normalizes the size of fi to a given
diameter and apply this rescaling on both features. This makes
different region detectors comparable. However, the authors
clearly point out that such a normalization should not be
applied for real applications of these feature detectors.

Our experiments with image features for place recognition
in changing environments support the hypotheses of a real
dependency of the features’ sizes and the resulting place
recognition performance. E.g. typical seasonal changes induce
severe appearance differences at small scales: leaves change
their shape and colour, snow and ice cover meadows, rain
modifies the reflective properties of surfaces and so on. In
contrast, the appearance of coarser structures is supposed to be
more persistent: mountains, buildings, streets and trees change
their detailed appearance but are likely to remain at the same
global configuration.

Therefore, we propose to use the same IoU criterion as in
[12] but in combination with another normalization procedure
to take the feature size into account. The objective is to
measure an upper bound on feature matching performance that
can be achieved with a given feature detector. Given two sets
of detections Fia = {f4, f3,..), Fz = {f%, f3, ...), from two
images with known optical flow T4 g, we transfer all features
to the same image space and assign to each feature of F'4 the
maximum JoU between this feature and a feature from Fg:

IOUmaw(fjﬂvFB) = max IOU(f:Aafé) (2)
fLEFB

These pairs are the combinations with the highest rate
on common pixels and thus (approximately) the highest rate
on common world points. This is supposed to represent an



upper bound for what could be found by matching based on
real image descriptors. If there are no feature pairs detected
showing sufficient overlap, the best feature descriptor will fail
to match the images.

As a measure for the repeatability, we can then simply
count for a set of image pairs the average number of features
whose IoU,,,, exceeds a threshold {. More formally the
average of:

#Dett(IA7IB) = |{f}4 € Fa: IOU’rnaaL‘(fvaB) > t}‘ €))

To evaluate the repeatability of a feature detector, we com-
pute a curve showing the average number detections # Det;
for a set of thresholds ¢.

Since we do not apply the normalization of [12] on the
feature size, there is a bias towards large regions in the /loU. On
the one hand, this effect is intended to obtain features whose
appearance is less affected by the environmental changes,
on the other hand we need to prevent that feature detectors
gain significant performance just due to their region size.
Therefore, we evaluate the amount of overlap of features
between corresponding scenes relative to the average overlap
when comparing random pairs of scenes. The resulting curves
in Fig. 3 show the average rate of detections per corresponding
image that exceeds the expected rate of “detections in ran-
dom images. Thus, artificial enhancement of the pure overlap
performance that is not related to real image features also
enhances the overlap on random scene pairs and does not affect
the measure. And in contrast, if larger regions really increase
the rate on common world points compared to random image
pairs, than this results in an improved performance measure.

B. The Set of Compared Local Region Detectors

There are different algorithmic approaches to provide the
spatial image support for place recognition landmarks. Key-
point detectors are a common choice for local region detectors.
However, our prior experiments in [2] have shown that e.g. the
keypoint based FAB-MAP [7] system has severe problems with
seasonal changes. We include keypoints from Scale Invariant
Feature Transform? (SIFT) [6] and Maximally Stable Extremal
Regions? (MSER) [13] in this comparison. MSER finds regions
that remain stable over a certain number of thresholds. These
regions are invariant under affine image transformations and
monotonic transformation of image intensities.

SIFT features are the scale space maxima and minima
obtained by a difference of Gaussians (DoG) function on
smoothed and resampled images. We want to clearly point out
that we use the SIFT defector (the DoG scale space maxima
detector) but not the SIFT descriptor. No single SIFT descrip-
tor has been computed during this work. The local region
around the SIFT scale space maxima is computed based on the
scale at which the maximum is detected and a magnification
factor M. To evaluate the influence of this magnification factor
we evaluate the set of M € {1,6, 10, 15,20} yielding SIFTI,
SIFT6 and so on. The receptive field of a SIFT descriptor is
typically at magnification 6 [6].

A main task of the feature detector is to provide spatial
image support for the subsequent description step. Similar
to the region growing step in MSER keypoints, superpixel
segmentation algorithms provide a broad spectrum of methods
to provide such spatial image support. Superpixel segmenta-
tions are an oversegmentation of an image or - seen the other

2We used the implementation by http://www.vlfeat.org/

way around, a perceptual grouping of pixels. Oversegmention
algorithms were not specifically designed to select salient
features. However, the detected regions are somewhere located
between small keypoints and the spatial image support for
holistic image descriptors. Hence we include them in the set of
promising “feature detectors®. In prior work [14] we evaluated
the stability of such algorithms across image changes. We
found Felzenszwalb-Huttenlocher segmentation (FH)® [15],
Quickshift Segmentation2 (QS) [16] and Edge Augmented
Mean Shift* (EAMS) [17] to be sufficiently stable to be
promising approaches for providing spatial image support for
across seasonal landmarks. FH is a graph based segmenta-
tion algorithm that incorporates the evidence of a boundary
between two segments in a greedy algorithm that also grants
global properties. EAMS combines a mean shift segmentation
and a confidence based edge detector. QS is a graph based
variant of medoid shift.

During superpixel segmentation, there is no criteria in-
volved to foster the creation of descriptive segments that
are repeatedly detected across severe appearance changes.
Therefore, we use superpixels in three different ways:

1) Superpixel segmentations directly

2) A segment soup combining multiple segmentations
of the same image

3) Randomized Prim’s (RP)° [18], an object proposal
algorithm that uses additional criteria to combine
small scale superpixels to object candidates

Object proposal algorithms were designed as preprocessing
steps for object detection to reduce the number of sliding
windows that are classified to a much smaller set of promising
candidates. RP uses a greedy algorithm for computing sets of
FH superpixels that are likely to occur together. We further
include Objectness® [19] as a second object proposal algo-
rithm: It is one of the earliest approaches and samples and
ranks a large number of windows per image according to their
likelihood of containing an object. This likelihood is based on
multiple cues derived from saliency, edges, superpixels, colour
and location.

C. Experimental Results on Detector Repeatability

We use a 100 images subset of the training dataset from
[2] as basis for the landmark repeatability evaluation. The
original dataset consists of image pairs showing the same
scene, from the same viewpoint at different seasons. To prevent
in particular superpixel segmentation algorithms to exploit the
image alignment, we crop the first image on the left side and
the second image on the right side. This is equivalent to a
shift of about 12.5 % of the image width. We configured the
detectors to create about 50 features per image. Parameters
that were changed from the defaults are given in Table I.

Fig. 3 shows the rate of features for which there is a
matching with an overlap larger or equal the threshold ¢. As
described above, these curves are normalized by the average
rate of detections for random image pairs. l.e. a detector that
just randomly samples regions would appear as a horizontal
line at the abscissa. Please keep in mind that these detections
are between images from different seasons including severe
appearance changes. As a reading example: The upper most

3 http://www.cs.brown.edu/~pff/segment/
http://www.wisdom.weizmann.ac.il/~bagon/matlab.html
5 http://www.vision.ee.ethz.ch/~smanenfr/rp/index.html
6http://groups.inf.ed.ac.uk/callvin/objectnf:ss/
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Fig. 2. Input to the matching procedure are images showing severe appearance
changes and/or different viewpoints. The matching procedure can be used with
a variety of possible local regions detectors as is illustrated in the middle row.
Each landmark is described by a CNN descriptor that is used to find one-to-
one matchings between two images as shown by the connections between the
images in the bottom row. To incorporate the global landmark configuration
in the image, the landmarks are arranged in a star graph model shown in dark
grey. To cope with false matchings (e.g. the very diagonal matching), the final
image similarities are computed by voting in a Hough scheme for the centre
of the star-graph model.

SIFT octaves=5, firstOctave=1, peakThresh=6.0

MSER minDiversity=0.8, max Variation=0.25, delta=5, minArea=200
FH k=1, minSize=1500

EAMS hs=8, hr=4, minSize=2000

QS Ratio=0.5, kernelsize=2, maxDist=40

FH soup 3 FH segmentations: k=1, minSize €{2500, 5000, 10000}
Objectness | n=50

RP q=200

TABLE 1. PARAMETERS THAT ARE DIFFERENT FROM THE DEFAULTS.

point of the dark blue curve indicates that FH creates for
corresponding images on average 15 % detections with overlap
> 0.3 more than for random image pairs. For application as
spatial image support for feature descriptors, high numbers of
detections at high overlap are requested.

As expected, using directly the scale space maxima in
SIFT1 provides high rates at small overlap. The best per-
formance is obtained from SIFT with larger magnification
factors. The typical choice for the SIFT descriptor, M = 6
shows the highest number of detection in the range of overlaps
between 0.15 to 0.4. Increasing the magnification results in a
higher number of detections for higher overlaps, at the cost
of considerably less detections at mid-low overlaps. Please
keep in mind, that this is already normalized by comparison
to random image comparisons, thus we can hope to gain a
real benefit for larger overlap values. Such dependencies on
the region size vanish in the metric of Mikolajczyk et al. [12].

The MSER features vary more strongly in the presence
of severe appearance changes as they occur in this spring-
winter dataset, thus they perform inferior to SIFT. The basic
oversegmentation features (FH,EAMS,QS) show peaks in the
midrange of the overlap spectrum with FH providing the
best results except for low overlaps were EAMS provides
more features. These segmentation algorithms do not allow
overlapping features, they are disjunct and distinct image
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Fig. 3. Results on the overlap experiment using 50 landmarks per image.

partitions. In contrast, the overlapping segments in the FH soup
(created from three FH segmentations, in total with 50 features)
may overlap. This provides a variety on possible spatial image
supports around a certain image point and seems to compensate
some appearance changes. It can be seen, that FH soup clearly
provides the largest number of features with considerable
overlap from the set of segmentation based algorithms The
object proposal methods Objectness and RP perform inferior.
They have been designed to provide large number of features
(e.g. 1,000). For Objectness we use the 50 features with the
highest objectness-score. For RP we force the features to be as
different as possible to reduce their number. This may prevent
them from providing better repeatable features.

From this evaluation, the SIFT defector with a magni-
fication factor 6 (as it is also typically used for the SIFT
descriptor) can be considered to perform best. SIFT with
higher magnification factors of 10 or 15 also seem to provide
promising trade-offs between increased number of high overlap
features without to much performance loss in the mid range.
However, increasing the size of a local region detector is
expected to increase the sensitivity against viewpoint changes
and partial occlusions. We therefore present a novel approach
for combination of the inflated SIFT detector with spatial
image support from superpixels after the introduction of the
overall matching methodology in the following section.

IV. THE PROPOSED LOCAL REGION DETECTOR + CNN
LANDMARK BASED PLACE RECOGNITION APPROACH

In this paper we embrace the idea of CNN features as
descriptors for place recognition in changing environments. In
[3] Siinderhauf et al. propose to use the stacked output of a
single CNN layer as descriptor for the whole image. They
investigated several layers and found the lower convolutional
layers to be robust against seasonal changes but sensitive
to shifts, e.g. induced by viewpoint changes or rotations.
To address the problems of the CNN based holistic image
descriptor in the presence of viewpoint changes, we propose
to compute a set of local CNN descriptors, one for each spatial
image support provided by local region detector such as those
compared in the previous section. To get the set of landmarks
for an image, we process the following steps (cf. Fig. 2):

1) Run the local region detector of your choice on
the image. For our experiments, again, we use 50
landmarks per image.

2)  Compute the CNN descriptor for the image region
inside the bounding box around each landmark. The
CNN descriptor is the vectorized output of the third
convolutional (conv3) layer of the VGG-M network?.



This is the layer that showed best performance in
across season matching and that is also used for the
holistic image descriptor.

3)  We arrange all local landmarks in a simple but flex-
ible star graph model similar to the Implicit Shape
Models of [5] to incorporate the landmarks’ arrange-
ment. Therefore, we compute the relative location of
each landmark to the centre of the landmark set.

For comparing two images based on their landmarks, we
compute the pairwise similarities from cosine distance between
the landmarks’ CNN feature vectors. These similarities are
used as weights in a Hough scheme [20] to vote for the
horizontal and vertical shift between the images’ star graph
centres. The similarity of the images is the maximum value
in the resulting 2d Hough space. This way, we can incor-
porate the landmark arrangement in a scheme that can cope
with small numbers of features including outliers and that
is robust to variations in the exact landmark locations (e.g.
compared to Fundamental matrix estimation). To reduce the
number of outlier matchings between individual landmarks,
we also incorporate a left-right check to select features that
are included in the Hough voting. An implementation of the
proposed matching procedure is provided on our website.'

As stated above, increasing the size of landmarks is ex-
pected to increase their sensitivity to viewpoint changes and
partial occlusions. We propose an optional additional step:
a combination of the inflated scale space extrema from the
SIFT detector with spatial support from superpixel segmen-
tations. Superpixel segmentations are designed to preserve
object boundaries. Navarro et al. [21] propose to split SIFT
regions into foreground and background based on a superpixel
segmentation and describe only the foreground part. We extend
this approach by computing a weight matrix from a superpixel
segment soup to weight the importance of each dimension
of the CNN descriptor. Again, we compute the segment soup
using FH and vary the following parameters to create the soup:
k € {1,10,100,1000} and minSize € {2500, 5000,10000}.
For lower layers of CNN features (as is the used conv3 layer),
each dimension has a limited receptive field in the described
image region [22]. We create a weight matrix of the spatial
resolution of the used CNN layer (e.g. 13 x 13 for the used
conv3 layer). Since the descriptors are compared using cosine
distance, the normalized weight matrix values can be directly
multiplied with the corresponding dimensions. The weight
values are computed as follows: For each segmentation mask
from the segment soup, we compute the IoU with the landmark
and increase the weight of all pixels covered by this mask by
the IoU value. This way, pixels that are contained in segments
that are well aligned with the landmark will gather higher
values than pixel that are located in segments that overflood
the landmark and are thus likely to belong to the background.

V. PLACE RECOGNITION EXPERIMENTS

We use the challenging Nordland test dataset from [2] for
our experiments. This dataset provides images of a train ride
in Norway from all four seasons. We use each tenth frame
of the full 700+ km ride. Example images can be seen in
Fig. 1 and 2. Results of other approaches on this dataset can
be found in [2], [3] and [4]. E.g. the SIFT (detector and
descriptor) based FAB-MAP fails on this dataset. The best
performing existing method is the holistic CNN feature based
matching from [3]. The original Nordland images are almost
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Fig. 4. Place recognition results. Top: he proposed landmarks (SIFT6 +
CNN) stand alone (Pure landmarks) and in combination with the Proposed
star graph and Hough based image matching approach in comparison with the
holistic descriptor on aligned images (A) and shifted image pairs (S). Bottom:
Results of various local region detectors in combination with the proposed
image matching approach on the aligned Nordland images.

perfectly pixel aligned. While these are perfect conditions for
the holistic CNN image descriptor, they are not realistic in
practical scenarios. Following [3], we additionally shift (and
subsequently crop) one image set to the left (spring) and the
other image set to the right (winter) by 10 % of the image
width. The effect of the 10% shift can roughly be compared
to the rotation of the used camera of about 5 degrees (or a
slightly different pose). We create precision-recall curves by
varying a threshold on the image distance and classifying each
image comparison as positive or negative matching.

Fig. 4 shows the benefit of the presented approach using
SIFT6 compared to the best existing holistic matching ap-
proach. The blue curves show matching based on the holis-
tic CNN image descriptor as described in [3]. The holistic
approach fails in the presence of the artificial image shift (S).
The red curves show the performance when using the proposed
landmarks directly without the star graph model and Hough
based approach. Therefore, the similarity between two images
with landmark sets A and B is directly computed from the
distance of all left-right matchings and the total number of
landmarks:

sim(A, B) = 1 — dist(a,b)

- >
|A| . |B| {a,b}ematches(A,B)

The green curves show that additional incorporation of t%%
proposed star graph model and Hough based image matching
approach further increases the place recognition performance
significantly. The bottom part of Fig. 4 shows results for a
subset of the previously evaluated detectors. It can be seen
that the general performance on the proposed measure of
Sec. III-C is resembled: As expected, SIFT1 without rescaling
performs inferior and SIFT 6 to 15 show the best performance.
The difference in the relation of the two object proposal
algorithms might be due to the missing shift that was induced
in the overlap evaluation dataset but is missing in the aligned
images setup. Superpixel SIFT is the proposed combination
of a SIFT10 with a descriptor reweighting based on the IoU
with a superpixel soup. For the presented experiment on the
aligned Nordland images there is no significant influence of
this additional effort visible.

To evaluate possible negative influence of the resizing of
the SIFT regions, we run an additional experiment on the
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Fig. 5. Example images and place recognition results on the Berlin dataset.

Berlin Halenseestrae Mapillary’ dataset. It provides two short
image sequences (157 and 67 frames, 3 km), one from a
bicyclist on a bike lane and the second from a car. Example
images showing the severe viewpoint changes can be seen
in Fig. 5 together with place recognition results. Due to the
similarity of consecutive frames we allow matchings to the one
provided ground-truth image and the two neighboured frames.
As expected the holistic descriptor fails, while the proposed
approach provides reasonable performance. Further, there is
a small benefit from using the additional superpixel based
reweighting for this setup.

VI. CONCLUSIONS

I this paper we proposed and evaluated the combination of
local region detectors and CNN descriptors as landmarks for
place recognition in changing environments. The contributions
of this paper are twofold: first we compared several region
detectors based on their ability to provide image regions that
show large overlap across severe image changes as they appear
between different seasons. We want to point out, that in terms
of measuring the repeatability of feature detectors, we do not
want to replace the methodology presented in [12], but we
want to extend the insights on the importance of feature sizes
in particular in the presence of changing environments.

Second, we proposed an image matching approach that can
be combined with a broad range of local region detectors
including those without stable midpoints like segmentation
based approaches or object proposals. The presented prelim-
inary experiments showed the benefit of the proposed land-
marks (local regions detectors and CNN descriptors) and the
additional benefit from the proposed image matching approach
based on star graph models and Hough voting. We discussed
the influence of the size of the used local regions and found
indications that the scale space extrema detector used in the
SIFT detection step can also be used with larger spatial
image support than for the typical SIFT descriptor. We also
demonstrated a potential benefit of the combination of such an
increased region with the spatial image support of a superpixel
soup.

This work presented several aspects that can be included
in the design of a place recognition system ready for practical
applications. In particular, a matching framework that can be
combined with a broad range of existing and new region
detectors, e.g. novel object proposal algorithms. Two main
directions for future work will be the experimental validation
beyond the preliminary results and work on practical aspects
like runtime and confidence of image comparisons.

For the proposed evaluation criterion for local regions
detectors it would interesting to see whether the normalization

7http://www.mapillary.com. We want to thank Niko Siinderhauf for this dataset.

with random image pairs can be enhanced or replaced with
a more analytical methodology that takes the feature size and
distribution in the image into account.
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