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Abstract

The SpaceBot Cup 2015 was a national robotics contest among 10 German universities and research institutes. It was
organized by the German Aerospace Agency DLR and required 60 minutes of autonomous operation in a challenging
environment. The robots had to explore and map the environment, find, transport and manipulate two objects, and navigate
back to the landing site without global position information like GPS under very restricted communication. This paper
describes our concept, the used systems and algorithms, and our experiences in terms of lessons learned.

1 Introduction

The DLR Space Administration decided in 2012 to host
a national competition called SpaceBot Cup to foster new
ideas and to assess the current state of the art of autonomous
robotics for planetary explorations as well as for terrestrial
applications. Ten German universities and research insti-
tutes were selected as participating teams. After eight month
of preparation, the SpaceBot Cup was held in November
2013, finishing with unexpected results. In contrast to the
promising robotics communities’ research papers, no partic-
ipant could solve the given task. Mostly the teams got stuck
right in the beginning, due to the restricted communication
and the accompanying problems, which will be explained
later on. As a consequence, the DLR Space Administration
started a new call in 2014 with similar terms. Again, ten
teams were selected and funded with €50,000. In the fol-
lowing, we will describe the required tasks, the technical
choices made to build a team of two ground robots, chal-
lenges and performance issues, and the lessons learned from
the competition.

With this kind of field report about our experiences with a
complex system applied to a very challenging mission, we
want to provide some insights and suggestions applicable to
a variety of similar tasks.

2  The SpaceBot Cup

The SpaceBot Cup 2015 was organized starting with a Kick-
Off-Meeting in December 2014, followed by several indi-
vidual team status meetings, leading to a qualification stage,
and the final competition in November 2015.

The mission of the SpaceBot Cup 2015 resembled the tasks
of the first SpaceBot Cup challenge in 2013, in which we
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Deimos on the rugged terrain during the SpaceBot Camp
2015.

also participated [1]. On a simulated moon-like planetary
surface built inside a television studio, the task was to ex-
plore the environment autonomously as well as finding,
assembling and transporting different objects.

The environment had about 30m x 20m of rugged realis-
tically modeled surface, which was composed of different
materials like gravel and fine sand as well as boulders of
different size, trenches and small hills of up to 2 m height
and 30° slopes. A landing site marked the starting point
for the robots where they had to start their autonomous
exploration (obviously without GNSS) navigating around
dangerous soil or slopes. At unknown locations, a battery
pack (a yellow, rectangular cuboid) of 800 g weight and an
open mug filled with about 200 g of a soil sample! had to
be discovered. The robot had to pick up and transport the

! As an optional task, the soil sample could be gathered by the robots
using an empty mug.



Figure 2 A panoramic view of the final stage of the competition. The complete area is divided by a black barrier into

two identical fields to allow parallel runs.

detected objects to a third object called base station. After
reaching the base station, the objects had to be assembled.
By activating a switch, the sub-task was fulfilled. Within
the remaining time, all robotic systems had to return to the
landing site.

Besides completing the described task within one hour,
other constraints had to be considered. Similar to real mis-
sions, a communication delay of 2s with possible packet
loss was implemented by the organizers. To further tackle
the reality of the mission, a spatial separation of the plane-
tary environment and the robots’ control station was ensured.
The operators could monitor the planetary robots only by
the delayed sensor data. Within three time slots of 5 min
each, it was possible to send commands back to the planet’s
surface.

Although a realistic terrain causes specific conditions like
special temperature, radiation or atmospheric pressure, they
were not considered as the competitors focused on the au-
tonomy of the systems. Therefore, RGB-D sensors like the
Kinect were allowed and usable due to the indoor setting.
In contrast to the last SpaceBot Cup, a qualification stage
was held about two month before the finals to foster commu-
nication between the teams and to show their ability to solve
the final mission. Surprisingly, only three out of ten teams
were able to solve all stages of this qualification. Luckily,
we were one of them. According to the rules, at least four
teams had to pass the qualification for the SpaceBot Cup
finals to take place. The organizers decided to have a final
showcase with a simplified mission rulebook instead of a
ranked competition and called it SpaceBot Camp.

Due to a tight schedule, two teams performed their runs
simultaneously on the left and right side of the arena (see
Fig. 2). In contrast to the original task, the robots started on
a plane but slightly rough area. They had to find and grab
the battery and mug, which were placed in about 5 m and
10 m distance. Booth objects had to be assembled at the
base station, which was positioned on a 2 m high plateau
with a steep slope at its edge.

3  System Overview

In retrospect, we gained considerable expertise from the
past SpaceBot competition. Hence, we give a short review
of the missing or flawed components in 2013 followed by a
detailed overview of our new hardware design.

3.1 Pitfalls in 2013

The most relevant component which was obviously ne-
glected by many teams, including ours, was the commu-
nication between the ground station and the robot. 1t is
just an engineering task, but time-consuming and not very
research relevant. In retrospect, we could not determine a
specific source of error. There appeared to be flaws in our
solution as well as in the organizers’ communication scripts.
Clearly, to rely solely on one RGBD sensor for collecting
environment information is insufficient, for instance in prox-
imity of light absorbing materials or intense back light. In
2013 this probably caused the collision of one robot with a
missed obstacle and lead to the termination of our run after
about 15 min.

Also, self made hardware solutions lead to maintenance
overhead and require a high amount of manpower, so we
banished our custom made manipulator and replaced the
needed actuator by a commercially available one, as de-
scribed later on.

Our solution to use a UAS (Unmanned Aerial System) with
offline processing during the SpaceBot Cup event with mul-
tiple WLANS being active, showed to be not reliable. Com-
munication dropouts and increasing time delay led to in-
stability and an emergency landing outside the mission’s
arena. Therefore, we focused on another UAS with adequate
payload to carry sensors and enough processing power for
on-board processing.

Despite these problems, several components proved to be
well working and robust enough for the task as described in
the following sections.

3.2 The Hardware Platform

The described mission scenario of the SpaceBot Cup with
its rough terrain, called for an extremely capable robot plat-
form. After a careful consideration of the commercially
available platforms, we decided to use two Summit XL rovers
from the Spanish manufacturer Robotnik as a platform. The
skid-steered robots are capable of carrying up to 20 kg pay-
load. With their independent wheel suspension, the large
contoured tires, and the powerful 4 x 250W drive, these
robots proved to be a good choice for the type of terrain
encountered during the contest. For mastering the given
tasks autonomously, we had to do extensive hardware modi-
fications and systems integration (see Fig. 1), resulting in a
robotic system based on commercially available hardware



and Open Source Software (ROS — Robot Operating Sys-
tem) for mobile manipulation in rough terrain.

Our mission concept includes the deployment of a team
of two ground robots. Despite the relatively lightweight
robots (35 kg without additional sensors and casing), we
were limited by the competition rules of deploying a maxi-
mum of 100 kg. This leads to a maximum of about 14 kg of
additional payload for each robot, leaving 2 kg for commu-
nication infrastructure on the landing site.

Since each robot should be able to complete the mission
on its own, we have to equip each with a manipulator (in
our case the weight is 5.3 kg), which results in a remaining
payload of 8.7 kg for sensors, PC, communication devices
and the enclosing structure.
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Figure 3 Left: The aluminium structure for mounting
the manipulator as well as the layout of our aluminium
profiles as base for sensors and additional devices. Right:
Close-up of the custom made PTU with the MultiSense S7
and the Asus Xtion mounted on it.

To be prepared for future enhancements, we use building
kit like aluminium profiles of the type MakerBeam for the
basic structure. With its 1 cm X 1 cm profile dimension, they
are lightweight and still strong enough for our needs. The
structure without devices, is shown in Fig. 3. A sensor tower
with a height of 69 cm (base to top) is placed approximately
in the middle part of the robot, with a removable top for
easy transportation.

Our overall sensor concept includes low-level sensors,
namely the wheel odometry provided by the ROS interface
of the Summit XL platform as well as an Xsens MTi-G IMU
for 3D orientation estimation. Additionally, we use a Mul-
tiSense S7 stereo camera from Carnegie Robotics together
with the Asus Xtion for visual odometry as well as map
generation. A rotating Hokuyo UTM-30LX 2D laser scanner
completes our sensor concept in terms of global localization
and mapping.

Both of our cameras are mounted together on a Pan-Tilt-
Unit (PTU) (see Fig. 3), which is constructed with Dy-
namixel MX-64 servos. This allows different camera angles
for driving and grasping and furthermore enables us to in-
spect a wide area without the need of moving the robot itself.
Our Pan-Tilt-Unit is a custom-made construction, where the
heavy MultiSense S7 (1.5kg) rotates around its center of
mass to avoid constant load of the servo motor. To keep it
simple, we used Teflon discs as a kind of bearing between
the stiff and moving aluminium parts to reduce the friction.

In the central part our robot casing, a standard Mini-ITX
board with an Intel Core 17-3770 CPU is mounted onto a vi-
bration damped aluminium plate. All sensors and actors are
connected via USB — except for the MultiSense S7, which
has an Ethernet interface. The robot’s motor controllers are
interfaced by an USB to CAN bus adapter.

For on-field communication, we used three Netgear AC
1900 WiFi routers. One on board of each rover, config-
ured in bridge mode, and one acting as stationary access
point connected to the organizer’s network route towards our
ground control station. A management device within this
route enforced communication restrictions like delay and
port limitations. We have chosen these routers to provide a
5 GHz wireless link, without having to think about network
drivers or configurations. Additionally, we connected an
ARM based Odroid-XU4 mini computer to the access point
router. This mini computer served as relay station between
the rover network and the link towards the ground station.

4 Localization

Solving the mission task autonomously requires a precise
localization within the previously unknown environment.
This is a typical SLAM problem, which is well known in
the robotics literature. We decided to divide our localization
and mapping problem into a local and a global component.
This is necessary as one part uses sensors with a fast data
rate whereas the other part depends on a well suited but
slow sensor. The first part is called local localization - the
robot estimates its relative motion continuously without
any global consistency (see subsection 4.1). However, a
global consistency is necessary to know the actual pose
in the world. Therefore, the second part of localization is
termed global localization - the task to build a map of the
environment and estimate the own position and orientation
inside this map (see subsection 4.2). Both the local and the
global localization are shown in the first two layers in Fig. 4.
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Figure 4 The localization, mapping, and navigation con-
cept with its corresponding data flow.
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4.1 Local

The local localization estimates the relative motion from
the robot between two time steps - i.e. it determines how the



robot is moving without global consistency. Accordingly, a
motion estimation is needed which returns position changes,
velocities or accelerations for translation as well as rotation.
In order to combine advantages of different sensors and
algorithms a data fusion is needed as depicted in the upper
layer in Fig. 4.

In our system, we employ three kinds of sensor informa-
tion: wheel odometry, visual odometry, and orientation of
an IMU. The wheel odometry is returned by the SummitXL
driver and contains 2D position changes. In contrast, the
visual odometry computes a 3D pose by comparing subse-
quent frames from a camera. As our robot is equipped with
two types of cameras, we employ two different algorithms
for visual odometry: The RGB-D camera Asus Xtion is
used in combination with the algorithm FOVIS [2] whereas
the stereo camera Multisense S7 images are the input for
LIBVISO?2 [3]. The third source of information is the IMU
Xsens MTi-G returning raw information of its internal gy-
roscope, accelerometer, and magnetometer. Furthermore,
it fuses this information internally to return an orientation
estimate, which is essential for our robot’s pose estimation.
Unfortunately, after each driver restart, the internal filter
needs a settling time of about 15min to get usable bias val-
ues (drift compensation). As we may restart our robot or
parts of the software components during the mission, instan-
taneous orientation information is essential. So, we decided
to use the ROS package imu_filter_madgwick* [4], which
gives in our case nearly the same estimation quality like
the IMU’s internal filter, after bias settling, but in a nearly
instantaneous manner.

These three sensor sources compose the input of an
EKF (Extended Kalman Filter), implemented within the
robot_pose_ekf> package. Since it accepts merely one vi-
sual odometry input, we always have to choose between
the both mentioned visual odometry algorithms. However,
in case of sunlight the stereo camera should be preferred
whereas the RGB-D camera is advantageous in indoor envi-
ronments with less textured surfaces. An alternative ROS
package for odometry fusion is the robot_localization pack-
age* [5] which takes more than one visual odometry estima-
tion.

As mentioned earlier in this paper, the cameras for visual
odometry are attached to a PTU. While the visual odometry
is running, the PTU must not rotate in order to avoid motion
estimation errors. Accordingly, the robot pauses the visual
odometry during zero motion to enable the PTU to rotate. In
addition, this reduces the CPU workload while the robot is
not moving which is needed by other tasks like object recog-
nition, robot arm trajectory planning, and global position
estimation.

4.2 Global

The second layer in Fig. 4 shows the concept of our global
localization. The central component of the system is a map
consisting of all consecutively acquired 3D laserscans. A

2imu7ﬁlter7madgwick - http://wiki.ros.org/imu_filter_madgwick
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4robot_localization - http://wiki.ros.org/robot_localization

special custom-made rotating base comprising a slip-ring
and a servo motor is used for generating a 3D scan with
the help of a 2D laserscanner (Hokuyo UTM-30LX). More
details about the custom-made 3D laserscanner can be found
on our website” including a mechanical drawing as well as
images and videos. In summary, the complete approach for
the global localization is

1. The robot stops to record a 3D laserscan.

2. The new 3D scan is matched to nearby scans inside the
global map.

3. The transformations between them are estimated by
ICP and added into a pose graph for optimization.

4. All poses of the sub-scans within the global map are
updated with the new optimization result.

5. The new scan together with its optimized pose is added
into the global map.

6. Finally, the local localization estimation is adjusted by
the global localization.

Once a global localization run is initiated through our state
machine, see Sec. 7, the robot is already stopped and begins
recording a new 3D laserscan at its current position. Sub-
sequently, the acquired 3D scan has to be matched to the
global map. Its current pose as a combination of the last
known global pose and the current local pose is used to de-
termine the closest 3D scans inside the map. All these close
scans are matched with the new scan. This scanmatching is
done with the ICP (Iterative Closest Point) implementation
from the 3D Toolkit® which is designed to cope with large
3D point clouds [6].

These relative transformations between the new 3D scan and
corresponding past scans as well as all past scan-matching
information is transferred into a pose graph for optimization.
As an optimization back-end, we use GTSAM —see e.g. [7]
for a general introduction. As a result, the optimized pose
graph contains a global pose for every scan of the map. This
approach allows the robot to improve its map especially
after loop closures, i.e. after re-visiting an already known
location.

Finally, all past 3D scans inside the map are updated by the
optimized poses and the new scan is used for both extending
and enhancing the map. Usually, this leads to a correction
of the robot’s pose estimation. As an example of our global
mapping capabilities, a final map of the competition arena
is shown in Fig. 5.
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Figure 5 The SpaceBot Camp arena without the dividing
wall — mapped with 15 3D laserscans.
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5 Navigation and Traversability

Following our approach from 2013, we split our navigation
system into several small and compact modules (see Fig. 4).
Like before we use a simple pilot to drive the robot from one
way point to the next. These points are created by our path
planner, which uses a terrain evaluation called danger map
(based on [8]). In 2013 this map was directly created from
one sensor, but this time we added a new feature - our near
field map, which acts as an omnidirectional sensor fusing
data from different sensors.

The essence of our near field map is a OctoMap [9], which
is not only a discrete representation (using voxel) of the
known space but it also stores its occupancy. For each
new measurement the data is not inserted directly, but the
occupancy of all related voxel will be updated. Especially
made for ranging sensors, this takes both into account: The
occupied voxel at the end of each ray and all unoccupied
voxels along. Since the occupancy of not updated voxel
will stay unchanged, the OctoMap represents always the
latest possible information for each voxel, e.g. a rotating
2D laser scanner will implicitly create a 3D representation
after a while. Another advantage is granted to the updating
process: single erroneous measurements can be suppressed
and different sensors can be weighted according to their
reliability.

Our near field map also consists of several filters, which
will mutate the sensor data: On the one hand the update
rate is reduced, e.g. the frequency of the RGB-D sensor
is limited from 30 Hz to about 3 Hz for run-time reasons.
And on the other hand the robot with all its parts is removed
from the data, therefore it will not recognize itself as an
obstacle. A similar filter is set up for the output, mainly
to limit the update rate and to limit the data to the region
of interest. The output itself is a simple point cloud of all
occupied voxels, i.e. the inner occupancy is reduced to a
binary state.

This point cloud is directly fed to the second module within
the navigation system - our danger map, based on [8].
The resulting map is a discrete 2D representation of the
traversability, calculated from the terrain slope and the max-
imum step height in the vicinity of each cell. The maximum
traversable slope angle and step size are determined accord-
ing to the capabilities of the robot’s locomotion system.
The next module is our two-level path planner. On the top-
level is a global planner, which generates just a few meta
points for each new target pose, referred to as coarse path.
On the bottom-level is the local planner, which steadily
creates close-knit way points from the robot’s pose to the
next meta point(s). The separation is motivated by the idea
to have a rough direction while reacting to new or unknown
obstacles within a reasonable amount of time.

Finally, the last module is the pilot, which continuously
creates driving commands based on the robot’s current pose
and the next way point.

6  Mobile Manipulation

The mission of the SpaceBot Cup containing the tasks: find,
grasp, and transport two objects (battery and mug) to a third
one, and assemble all objects there like shown in Fig. 6. Ad-
ditionally, one of the small items should not be visible from
the aerial view. Thus, it must be assumed it is located inside
a small cave or beneath a ledge. In respect to mounting the
battery pack into the base object or handling the filled mug
without loosing its content the robot has to execute tasks
with distinct geometrical constraints which are the most
challenging ones for an autonomous robot.
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Figure 6 Our rover with the mission objects in RViz.

6.1 Mechanical Approach

Aside from an optional gathering of a soil sample, the task is
basically the same as in 2013, when we used a custom-made
manipulator. Due to the high amount of maintenance and the
lack of reliability we had to replace it with a more suitable
model. Fortunately after the competition in 2013, the robotic
arm Mico, manufactured by Kinova, became commercially
available. Thus, we chose Kinova’s Mico as it met our
requirements of a lightweight 6-DoF (Degrees of Freedom)
arm with sufficient payload. Due to the fact that the scope of
Mico is limited we had to find the most efficient mounting
position. Therefore, we analyzed and verified the workspace
experimentally with a virtual representation of our complete
rover. A coarse approximation for the workspace of such a
6-DoF arm is a sphere around its shoulder joint, see [10, p.
72]. In order to move this sphere closer to the ground, the
manipulator was tilted forwards. Finally, the off-centered
position we chose, allowed a lower mounting point and a
better protection against frontal collisions.

6.2 Algorithms and Software

A collision free manipulation in an unknown environment
with a moving platform is still a task where no robust out-of-
the-box solutions exists and a high amount of custom engi-
neering is needed. However, with Movelt!” there is a mighty
framework that offers the tools to build such a solution. We
used this framework as it provides a huge API around the
so called Move Group, which acts as an interface between
low-level control and high-level planning, and brings access
to the OMPL (Open Motion Planning Library, [11]). Due
to the fact that manipulation is a planning and control prob-
lem, good models of the environment, the robot’s arm and
possible interactions are essential. Therefore, we used the
Movelt! representation of the environment, the robot’s arm

"Movelt! — http://moveit.ros.org/



itself and the interaction of both to control the manipulator
and plan our tasks. A overview about Movelt!’s capabilities
we used is given in the table 1.

Type of object Data source Internal representation

Robot itself Joint controller Joint states and URDF

Known objects Object recognition  Primitive collision objects

Unknown environment  Depth image Octomap

Table 1 Different ways Movelt! represents collision ob-
jects.

The development of autonomous manipulation software is
difficult due to the high risks that real experiments come
with. Manipulators like the Kinova Mico are able to damage
itself or other parts of the robot like expensive sensors quite
easily. So it is crucial to have the possibility of realistic
simulations to test the behaviour of planners and state ma-
chines. With its good virtual geometric representations and
fake joint controllers, Movelt! supplies an infrastructure to
simulate almost everything you can do with the real hard-
ware on a geometrical level. Although the missing Gazebo
support of Mico’s software stack restrains physical level
simulations.
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Figure 7 Software structure used to solve the manipula-
tion task.

As Fig. 7 shows, we utilize Movelt! to calculate paths
with the OMPL between the actual position and goal poses
results from our higher planning in SMACH or manual com-
mands from our HMI. Goals are generated depending on
the position of recognized objects and multiple pre-defined
grasping poses for each object. After each planning pro-
cess, the shortest path calculated between start and goal
position is selected. Accordingly, this path will be executed
by the wpi_jaco package ®, which is a third party ROS
driver/controller for the Kinova Jaco/Mico manipulators.
All we have mentioned at this point, is a straight forward
implementation of a Movelt! based autonomous manipula-
tion system which looked very promising but almost twice
the time was necessary to make it successfully go through
practical tests.

8https://github.com/RIVeR-Lab/wpi_jaco

6.3 Movelt! — a love-hate relationship

Although the Movelt! framework contains a huge set of
functions, like all complex pieces of software, it contains
the same amount of annoying bugs. In this section we want
to introduce some of the problems we encountered and how
we built solutions around them.

Inconsistent robot state — The robot state that is used for
planning does not match the current state. Attached ob-
jects disappear or trajectories start at the wrong place.’'? A
possible workaround is to use a Planning Scene Monitor in-
stead of the MoveGroup: : getCurrentState() function
of Movelt! to request the current state.

Collision checking on attached objects — Attached objects
are ignored if the corresponding link has no geometry. !!
Therefore, if possible attach it to a link with geometry.
Collada mesh parsing — Some Collada meshes (.dae files)
are parsed wrong causing some problems with missing or
phantom collisions.'?!3 It is recommended using STL files
instead of the Collada ones.

Planning in narrow conditions — Actions like deploying
the battery pack out of its mount requires path planning in
very tight spaces which seems to be a general problem with
Movelt! and the OMPL. None of the planning algorithms
that were available in 2015 were able to find a valid plan
in a repeatable manner. Even if a valid plan was found by
the planner, the following error message occured: Motion
plan was found but it seems to be invalid (possibly due to
postprocessing). This happens if the trajectory smoother of
Movelt! smooths the trajectory too much and pushes it into
a collision element. To prevent this behaviour you can try to
setthe longest_valid_segment_fraction parameter in
the ompl_planning.yaml to a small value e.g. 0.05 but there
is no guarantee for success. A more robust solution could
be achieved with Movelt!’s Cartesian paths which move the
objects into free space and start the normal planning process
afterwards. This simple function generates straight linear
paths as long as the manipulator doesn’t reach a joint limit.

7  Control Architecture

The control architecture of the robot was implemented as a
hierarchical task-level state machine using the SMACH'
package of ROS. SMACH allows the easy creation of com-
plex hierarchical state machines that support concurrence
and provides full access to the underlying ROS message
passing concepts such as topics, services and actions.

Programming errors happen all the time, especially if many
people are working on the same code and the deadline for
the competition is coming closer. Some syntactic checks
are done by SMACH on startup, but that merely catches
unconnected outcomes of SMACH itself. As SMACH is
written in python, a script language, a good think to do is

https://github.com/ros-planning/moveit_ros/issues/583
10https://github.com/ros-planning/moveit_ros/issues/442
https://github.com/ros-planning/moveit_core/issues/158
2https://github.com/ros-planning/moveit_core/issues/202
Bhttp://jonweisz.com/collada-fools-me-twice/
4http://wiki.ros.org/smach
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Figure 8 Example of the MultiSMACH concept. The
master process starts and stops the worker state machine
processes. An Observer instance checks if the worker
state machines are behaving as expected. This can mean
running watchdog timers or do some sanity check of the
behaviour. The observer and master may also check each
other to have a failsafe if there is any malfunction within
these components.
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to run a code checker like pylint'> to catch some anomalies
before runtime. Another thing to do: run practical test with
your system as soon as you changed anything and try to
provoke difficult situations. One challenge we encountered
was how to limit the effects of programming errors in our
state machine, if they only surface in rare conditions. To
increase the overall stability of the control architecture we
separated complex state machines into smaller, independent
tasks, called worker state machines. These state machines
run as separate processes and communicate by simple ROS
topics, referred to as trigger topics. We use this concept
to create a more robust software architecture. It can deal
with unforeseen exceptions and even programming errors to
some degree. If a worker state machine should crash the rest
of the system can still work. The problematic state machine
itself might also work again after an automatic restart, if the
problem was caused by very rare conditions. This might not
always seem to be a good idea, but for a robot competition
a simple «Carry on!» might do the trick.

The design also allows us to monitor each subtask and de-
cide if it is working properly. An observer task might even
try to validate the logic and detect anomalies. On a basic
level that could mean something like an assertion checking.
Consequently, this information can also be used to restart
or permanently shutdown problematic or currently unnec-
essary parts of the control architecture. However during
the competition the monitoring part was not implemented.
We only had an automatic restart mechanism for individual
worker state machines implemented.

Another benefit of this design is the easy access to inner
connections (trigger topics) of the control architecture. Dur-
ing the robot competition, we were able to solve a deadlock
situation by sending a, ping-like, trigger command to one
of the worker state machines.

The communication between our robots and our ground
station was realized with two separate networks, for field
and ground side and a connection software with the ability
to handle the restrictions of the competition (delay, only
one separate port for up link and one for down link). The
synchronization between field and ground control network
was realized with our serializer software. For each direction

Bhttps://www.pylint.org/

there is a sender and receiver process. The sender subscribes
to specified ROS topic of a ROS master on the first network.
The messages of these topics are then hashed, compressed,
tagged and serialized. The transmission is done with UDP
on the specified up link and down link port. The received
packages are deserialized, ordered, verified, and announced
as ROS messages to a ROS master within the second net-
work. The endpoints of this communication link is an odroid
mini PC on the field side and one of our ground station PCs
on the other side.

For distributing the ROS messages between the ROS mas-
ters within the two networks, where port restrictions and
high delays are not an issue, we used the multimaster_fkie'®
package. This package contains tools to synchronize ROS
topics and services between multiple ROS master instances.
It is described in [12]. On the field side the ROS master
instances of our rovers and the odroid are synchronized.
Hence all messages send by our ground station are dis-
tributed from the odroid to our rovers. The same applies for
sensor data topics coming from our rovers for the ground
station PCs in the other direction.

On the ground control side we used the same setup. All
topics meant for our secondary rover were synchronized to
our secondary workstation. During normal operation mode
each workstation was configured to only process the topics
of one of the rovers.

8 Conclusion

Despite our second participation in the SpaceBot competi-
tion it was still a challenging task. We made the decision to
design our rovers completely new by adding new sensors
and replacing the manipulator with a commercial model. In
the following, we present some lessons we have learned dur-
ing the competition and list future steps for the improvement
of our complete system.

8.1 Lessons Learned

A good HMI is essential! We improved our HMI concept,
as we believed the old one to be to basic for the qualification
run. We wanted to be prepared if anything went sideways.
Since the time limit for the qualification tasks was quite
tough, we wanted quick access to any major capability of
the system. We used the rgr plugin structure for creating
a GUI with all major interaction possibilities. Hence, we
implemented direct access to the driving mode, several trig-
ger buttons for our state machines, the camera feeds, and of
course log messages from the system.

As driving is a very essential capability of a rover, we
wanted to have different modes for that. Starting with a
fully autonomous mode, we could step down the autonomy
level to manual control, with some semi-autonomous modes
in between. We made use of that feature several times
during the competition to save time when high precision
was not necessary due to the absence of close obstacles. For
data visualization we had two RViz windows in addition
to our command GUI — one for driving and the other for

16 multimaster_fkie - http://wiki.ros.org/multimaster_fkie



manipulation. Each window showed only the necessary
sensor data relevant for the task.

Don’t ignore the boring low-level basics. Working on low-
level tasks like robust communication under the competi-
tion’s limitations is painful and time consuming but nec-
essary! Everyone talks about the new sensor or improved
algorithm that was implemented and probably made a dif-
ference. But you can also spend a lot of time to make
communication robust if there are constraints in place, like
limited bandwidth or high delay. Most importantly make
sure you have a test setup to check the limit of your own
system and also the system provided by others. Check what
happens if you exceed specified limits. Make your test sys-
tem as similar as possible to the setup you will find during
the competition. And do not assume something should be-
have as specified, always test and verify. The devil is in the
details.

Don’t underestimate the necessity of continuous mainte-
nance of the software system! ROS packages change over
time. Do not expect a working robot after two years of devel-
opment pause. Do not try to make everything by your own!
Use ROS packages wherever possible. This may result in
pain, because some packages are stopped to be maintained
or have a changed API interface, but on the other hand your
own packages are likely to be outdated and incompatible
with the current ROS version.

8.2 Future Work

Even if our systems could manage the given task of the
SpaceBot Camp 2015, there is much work to be done, espe-
cially regarding ROS package integration. Due to historical
reasons, we implemented our own path planner and cost
map node. Meanwhile the ROS navigation stack'” provides
more advanced components like the costmap_2d [13] with
its plugin structure, the dwa_local_planner based on [14],
and the global_planner with different planning strategies.
We have already begun to utilize these packages within
our system and got promising results regarding a smoother
driving performance.

To enhance robustness of our localization method, we plan
to add robust methods to our pose graph solution like Switch-
able Constraints [15] or Dynamic Covariance Scaling [16].
Furthermore, it may be reasonable to replace the EKF, used
for sensor fusion, with an incremental factor graph based so-
lution like iSAM?2 [17]. Especially in the absence of global
measurements, this may be beneficial (see e.g. [18]). In
addition, robust methods — like already stated above — can
be used.

Due to resources and time constraints, we could not use the
possibility of our two robots exchanging environment infor-
mation as shown in other work like [19]. This would reduce
the exploration time to find the mission objects considerably.

9 Literature

[1] N. Siinderhauf, P. Neubert, M. Truschzinski, D. Wunschel,
J. Poschmann, S. Lange, and P. Protzel. Phobos and Deimos

http://wiki.ros.org/navigation

on Mars — Two Autonomous Robots for the DLR Space-
Bot Cup. In Proc. of Intl. Symp. on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS), 2014.

[2] A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Matu-
rana, D. Fox, and N. Roy. Visual odometry and mapping for
autonomous flight using an rgb-d camera. In Intl. Symp. on
Robotics Research (ISRR), 2011.

[3] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d
reconstruction in real-time. In Intelligent Vehicles Symp. (IV),
2011.

[4] S.O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan.
Estimation of IMU and MARG orientation using a gradient
descent algorithm. In Proc. of Intl. Conf. on Rehabilitation
Robotics (ICORR), 2011.

[5] T. Moore and D. Stouch. A generalized extended kalman
filter implementation for the robot operating system. In Proc.
of Intl. Conf. on Intelligent Autonomous Systems (IAS), 2014.

[6] J. Elseberg, D. Borrmann, and A. Niichter. Efficient process-
ing of large 3d point clouds. In Intl. Symp. on Information,
Communication and Automation Technologies (ICAT), 2011.

[7] F. Dellaert. Factor graphs and gtsam: A hands-on introduc-
tion. 2012.

[8] A. Chilian and H. Hirschmiiller. Stereo camera based naviga-
tion of mobile robots on rough terrain. In Proc. of Intl. Conf.
on Intelligent Robots and Systems (IROS), 2009.

[9] A.Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard. OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots, 2013.

[10] B. Siciliano and O. Khatib, editors. Springer Handbook of
Robotics. Springer-Verlag Berlin Heidelberg, 2008.

[11] I. A. Sucan, M. Moll, and L. E. Kavraki. IEEE Robotics &
Automation Magazine.

[12] S. H. Juan and F. H. Cotarelo. Multi-master ros systems.
Technical report, Institut de Robotica i Informatica Industrial,
2015.

[13] D. V. Lu, D. Hershberger, and W. D. Smart. Layered
Costmaps for Context-Sensitive Navigation. In Proc. of
Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[14] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window
Approach to Collision Avoidance. IEEE Robotics Automa-
tion Magazine, 1997.

[15] N. Stinderhauf and P. Protzel. Switchable Constraints for Ro-
bust Pose Graph SLAM. In Proc. of Intl. Conf. on Intelligent
Robots and Systems (IROS), 2012.

[16] P. Agarwal, G.D. Tipaldi, L. Spinello, C. Stachniss, and
W. Burgard. Robust Map Optimization using Dynamic Co-
variance Scaling. In Proc. of Intl. Conf. on Robotics and
Automation (ICRA), 2013.

[17] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert. iSAM2: Incremental Smoothing and Mapping
Using the Bayes Tree. Intl. Journal of Robotics Research,
2012.

[18] S.Lange, N. Siinderhauf, and P. Protzel. Incremental Smooth-
ing vs. Filtering for Sensor Fusion on an Indoor UAV. In
Proc. of Intl. Conf. on Robotics and Automation (ICRA),
2013.

[19] J. Dong, E. Nelson, V. Indelman, N. Michael, and F. Dellaert.
Distributed Real-time Cooperative Localization and Map-
ping using an Uncertainty-Aware Expectation Maximization
Approach. In Proc. of Intl. Conf. on Robotics and Automation
(ICRA), 2015.



