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I. I NTRODUCTION

A precise localization estimate is essential for planetary
rovers, in order to make sure that the environment models
built by the rover is spatially consistent, or that the planned
motions are properly executed, be they determined au-
tonomously by the rover or uploaded from Earth. Odometry
is prone to be mislead by slippages, and inertial sensors
have a very low signal/noise ratio for rovers evolving
slowly on non-flat terrains: an additional mean to estimate
the rover displacements is required to ensure a precise
position estimate.

Estimating the rover motions by tracking pixels in con-
secutive stereo frames, now often referred to as “stereovi-
sual odometry”, has proven to be a good solution. Various
approaches have been proposed in the literature [8], [7],
[10], [1]1, and such an approach has been successfully
applied several times with the rover Opportunity. The main
advantage of such an approach is that it is totally inde-
pendent of the rover motions: provided the environment
is textured enough (which is the case in all the planetary
environments from which ground images have been cap-
tured up to now), the algorithms are able to estimate the
rover displacements with a sometimes surprisingly good
precision.

Stereovisual odometry calls for three distinct steps:

1) establishment of matches in consecutive frames;
2) determination of the 3D coordinates of the matched

pixels for the two considered frames - along with
an estimate of their covariances if possible (stereovi-
sion);

3) and finally numerical estimation of the 6 displace-
ment parameters - along with the corresponding
covariances if possible.

Given a solution for the first two steps (and the literature
is plenty of approaches for that purpose (to obtain the
results presented in this paper, we used the algorithm
presented in [4] for feature selection and matching), the
third step is the one that determines the precision of the
motion estimates. For that purpose, several optimization
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1This list is far from being exhaustive

techniques are adapted, and thorough experimental com-
parisons are required to determine their precision. In this
paper, we discuss various approaches for this issue, and
experimentally compare some of them. The paper describes
on-going work, and only some preliminary experimental
evaluations are provided.

Section II presents the Maximum Likelihood Estimation
proposed by [10] to estimate the motion between two con-
secutive stereo frames. Section III presents two solutions
based on bundle adjustment, and experimentally compares
them. Section IV presents a way to estimate the motion
using a Kalman filter based Simultaneous Localization And
Mapping approach, and some conclusions are sketched at
the end of the paper.

II. M AXIMUM L IKELIHOOD ESTIMATION FOR TWO

FRAMES MOTION

Whenever we triangulate a pair of matched image points
x and x′ to a 3D world pointX, we introduce an uncer-
tainty on the coordinates ofX. This uncertainty arises from
the discrete nature of our sensor (each image consists of
single, discrete pixels, see figure 1) and uncertainties in cal-
ibration (length of the baseline etc.) and camera alignment.
The resulting uncertainty is commonly modeled as zero-
mean Gaussian, although this is just an approximation [9],
[5]. Algorithms for Visual Motion Estimation can either
simply ignore this error model or exploit it to produce more
reliable results. How to achieve that is shown in the rest
of this section.

Let Xi and X′i be the observed (triangulated) world
coordinates of the i-th landmarkbeforeand after a robot
motion. Thus we can write:

X′i = RXi + T + ei (1)

where T is the true translation of the robot motion and
R is the true rotation matrix.ei is a zero-mean Gaussian
error vector with covariance matrixΣi that models all the
different uncertainties that may arise.Σi has to be obtained
by the measurement (triangulation) process.
The conditional probability for the observationsX′i given
the motion parametersR andT can be written as

P(X′1,X
′
2,...,X

′
n|R,T ) ∝ e−

1
2

∑n

i=0
rTi Σ−1

i
ri (2)



Fig. 1. The triangulation error under central projection arising from the
discrete nature of imaging devices. The triangulated world point might be
anywhere inside the shaded diamond area.

which is a Gaussian distribution. Hereri = X′i−RXi−
T . Obviously, minimizing the exponent will result in a
maximized probability. Thus one has to solve

min
R,T

n∑
i=0

rTi Σ−1
i ri (3)

for the maximum-likelihood estimate ofR and T . Be-
cause of the involved rotation this is a nonlinear mini-
mization problem. We linearize it by taking the first order
Taylor expansion with respect to the rotation. We assume
Θ0 to be the initial estimate on the rotation angles andR0

the corresponding rotation matrix. Deriving from (1) we
develop:

X′i ≈ R0Xi + Ji(Θ−Θ0) + T + ẽi (4)

Ji is the Jacobian of the rotation evaluated atΘ0. The
error vectorẽi now has covariancẽΣi = Σ′i + R0ΣiRT0
whereΣ′i is the measurement covarianceafter the motion
andΣi beforethe motion respectively.

After this linearization we can solve (3) using a linear
method. We now useri = X′i −R0Xi − Ji(Θ−Θ0)− T
and Σ̃i for the covariance.

The authors tested their approach in practice and
observed a super-linear error growth [11]. They pointed
out that the position error grows with the square root of
the traveled distance while the orientation error grows as
O(d

3
2 ) where d is the traveled distance. Therefore the

error in orientation dominates the position error. This
behavior makes the use of an absolute orientation sensor
critical for long distance navigation.

The authors further describe their method for robust
estimation, including an optimized feature selection (based
on the F̈orstner interest operator [2]) and several techniques
for outlier rejection. In combination with these methods the
proposed estimation algorithm yields good results: After

traversing approximately 20 meters and taking images
every 10 cm the estimated robot pose was off by 1.2%
from the ground truth provided by GPS.

III. B UNDLE ADJUSTMENT

Bundle Adjustment provides a solution to the following
problem: Consider a set of world pointsXj is viewed
from a set of cameras with camera matricesPi. Each
camera projectsXj to xij = PiXj , so thatxij are the
image coordinates of the j-th world point in the i-th image.

What are the ”optimal” projection matricesPi and world
coordinatesXj so that the summed squaredreprojection
error is minimal?

Thus we want to solve

min
Pi,Xj

∑
ij

d(PiXj , xij)2 (5)

whered(x,y) is the Euclidean distance between image
pointsx andy.
Equation (5) can be extended to a weighted least-squares
formulation, such as

min
Pi,Xj

∑
ij

wij d(PiXj , xij)2 (6)

where the weightswij may be chosen according to the
variancesσ2

ij of the measured image coordinatesxij .

As we see from the equations above, Bundle Adjustment
is a non-linear minimization problem providing a maximum
likelihood estimate for both cameras and structure parame-
ters if the measurement noise is considered to be zero-mean
Gaussian. It can be solved using iterative non-linear least
squares methods such as Levenberg-Marquardt.

Bundle Adjustment (BA) is usually used as a final
optimization step after good initial estimates forPi and
Xj have been obtained by other methods. It is, however,
possible to use BA as the only algorithm for camera and
structure reconstruction if attention is payed to certain
issues.

A short reflection about the complexity and compu-
tational costs instantly reveals a distinct problem of the
Bundle Adjustment approach: Each of the world pointsXj

has 3 degrees of freedom that have to be estimated. Each
of the projection matricesPi has 11 degrees of freedom
in general and still 6 DOF when the camera calibration is
known. Thus, a reconstruction overn world points andm
cameras requires a minimization over3n+6m parameters,
which can become practically intractable very quickly with
growing n andm.



A. Sparse Bundle Adjustment

However, an efficient solution to the problem has been
proposed by [3] and implemented by [6].

Solving (5) with Levenberg-Marquardt involves iterative
solving of normal equations of the form

JTJδ = JT ε (7)

where J is the Jacobian of thereprojection function
f(a,b) = x̃. f takes a = (aT1 ,a

T
2 , . . .a

T
m)T and

b = (bT1 ,b
T
2 , . . .b

T
n )T as parameters and returns

x̃ = (x̃T11, x̃
T
12, . . . x̃

T
mn)T . Here ai is the 6-Vector of the

currently estimated parameters of thei-th camera,bj is
the 3-vector with the parameters of thej-th world point
respectively. The projected image coordinates of world
point j in the i-th image (according toai and bj) are
given by x̃ij .

The JacobianJ of f is made up of entries∂x̃ij/∂ak
and ∂x̃ij/∂bk. One may notice, that∂x̃ij/∂ak = 0
unless i = k and similar ∂x̃ij/∂bk = 0 unless j =
k. This is simply because the projected coordinates of
world point j in the i-th image are not dependent on any
camera’s parameters but thei-th and they neither depend
on any other world point but thej-th. Given this, one
verifies that J contains large blocks with0-entries. In
other words,J has a sparse structure. TheSparse Bundle
Adjustment(SBA) implementation as presented by [6] takes
advantage of that very structure and thus enables SBA to
solve huge minimization problems over many thousands
of variables within seconds on a standard PC. The C
source code is freely available (under the terms of the
GNU General Public License) on the author’s website
http://www.ics.forth.gr/˜lourakis/sba .

B. Visual Motion Estimation using SBA

The SBA implementation solves the minimization
problem as stated in (5), not considering any uncertainty
of whatever kind, assuming calibrated cameras and
monocular image information.

In that way, the algorithm is dependent on good initial
estimates of both structure parameters (the 3D positions
of the features points) and camera poses. Without these
information SBA still estimates consistent values for
structure and camera parameters that are accurate up to
a scale factor. That means, theproportions of movement
and 3D structure will be as in reality, but not the absolute
values.

We extended the original SBA implementation in a
way that it can handle stereo data input directly. We
therefore had to change some internal algorithms and
data structures, so that the routines take 4-vectorsxij

instead of 2-vectors. The additional two entries to these
vectors are the image coordinates in the (right) stereo
image. This way, we do not necessarily have to provide
proper initial estimates for the world pointsXj or the
camera posesPi. Although this impressively demonstrates
the power of Bundle Adjustment, it is of course not
an reasonable approach and should not be used in
any seriously motivated application. Instead, we should
provide BA with initial estimates for the camera pose
acquired by odometry or other sensor systems like inertial
navigation systems, compass, or GPS and initialize the
3D coordinates of the feature points by triangulation.
Starting with reasonable initial estimates speeds up
the optimization process significantly and may detain
the optimization from stepping into a false local minimum.

Besides the extension to stereo input, we also imple-
mented a simple iterative outlier rejection method. Af-
ter SBA finished its minimization loop with the solu-
tions P∗ and X∗, there is still anresidual error εij =
d(P ∗i X∗j , xij)2 left for every xij . A simple outlier re-
jection is to discard allxij where |εij − ε| > kσε for
any k > 0 where ε is the mean of all residual errors
and σε is the corresponding standard deviation.k = 1.5
was chosen empirically. After the so determined outliers
have been removed from the input data, SBA is restarted
using P∗ and X∗ as initial estimates. The procedure is
repeated for a fixed number of iterations or until no more
outliers are found. This process helps decreasing the mean
residual error and is in many cases sufficient to discard
outliers arising from false or bad matches. However, as
the experiments showed, it is a fairly naive approach,
computationally expansive, may fail sometimes, and should
therefore not be used in practical applications. Instead, we
favor a more robust outlier rejection method, based on
RANSAC.

After all these modifications, were able to use SBA for
visual motion estimation in two different ways:

1) Sliding Window SBA
2) full SBA
1) Sliding Window SBA: The simplest and fastest

estimation method is estimating structure and motion
parameters between two consecutive stereo frames only.
The overall motion is obtained by simple concatenation
or ‘chaining’ of the single estimates. Intuitively one will
expect this to be fairly inaccurate, as possible small errors
will accumulate quickly.

To avoid the problems of simple chaining, we im-
plemented a sliding window SBA approach. Instead of
optimizing for two consecutive images only, we choose
a n-window, e.g. a subset ofn images which we perform
SBA upon. The pose and structure parameters estimated in
this way are used as initial estimates in the next run, where
we slide the window further one frame.



Fig. 2. Simple chaining of consecutive stereo frames and bundle adjusting
a window of size 4.

With that basic sliding window approach, we would
bundle adjust every consecutiven-window in the sequence
of the obtained images, even if the robot has not or only
very little moved while the images of the window were
taken. Therefore another idea is to only include those
images into the window, which pose are more than a
certain threshold away from the pose of their respective
predecessor in the window. The final algorithm can be
summarized as follows:

1) Starting from imageIi find the closest imageIi+k so
that the motion betweenIi andIi+k exceeds a certain
threshold. This can be determined by pairwise SBA
betweenIi and Ii+k or, of course, using odometry
data.

2) Add Ii+k to the window
3) Set i = i + k and repeat from 1. until there are

sufficient many (n) images in the window
4) bundle adjust the window using the poses obtained

in step 1 as initial estimates

In this way a window size of two corresponds to the
simple chaining approach.

2) Full SBA: Full SBA optimizes the whole bundle
of obtained images at once. It determines camera poses
and structure parameters for all recorded frames in one
big optimization loop. Although this should intuitively
yield the best results, it is, due to its complexity, an off
line (batch) method not usable to continuously update the
robot’s position as he moves along.

C. Experimental Results

During all experiments we used the triangulated world
coordinates as initial estimates for the world points, but
did not initialize the camera poses. Instead, we assumed
the cameras did not move at all. The outlier rejection was
enabled and limited to 10 iterations.

1) Indoor Data: We use here an indoor sequence of 39
images. The trajectory was approximately 3 meters long
and moved around a corner in a corridor. The baseline of
the stereo bench is 8cm.

No ground truth was available for this dataset. We
therefore have to compare the different sliding window
approaches against the full SBA solution which can

serve as a pseudo ground truth. 662 feature points were
identified and tracked during the 39 stereo frames. The
average point was visible for 5 consecutive images.

Table I summarizes the position errors in cm ordered by
window size and motion threshold. The error is the distance
between the estimated position at the end of the run and
the ground truth (full SBA) end position.

movement threshold in cm
window size 0 10 15 17 20 25 30 35 40

2 3.44 2.65 0.75 1.81 1.04 2.14 1.69 0.77 1.81
3 2.65 2.78 0.72 2.29 1.13 1.74 1.14 0.95 1.78
4 2.64 2.33 0.61 2.06 0.56 1.99 1.06 0.73 2.56
5 2.22 2.62 0.48 2.36 0.84 1.02 1.00 1.12 3.60
6 2.28 2.35 0.49 2.05 0.56 1.64 1.18 1.19 3.68
7 1.77 2.26 0.55 1.91 0.87 3.23 1.42 2.24 3.06
8 1.95 1.69 0.78 2.24 0.64 2.80 1.36 1.06 3.05
9 1.04 1.49 0.92 1.37 0.29 3.19 1.42 1.06 2.92

TABLE I

POSITION ERRORS IN CM FOR INDOOR DATA COMPARED FOR WINDOW

SIZES AND MOTION THRESHOLDS
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Fig. 3. Several trajectories for the indoor dataset. The thick black line
is the full SBA that served as ground truth.

The robot moved approximately 3 meters around a
corner of a corridor. We can observe the highest position
errors to be approximately 1% of the traveled distance,
most are well below the 1% level. The differences between
the single results are not significant.

As a rule of thumb you see that the most simple
approaches (window size 2 and zero motion threshold)
yield the worst results. It is reasonable to expect bigger
windows to give better results, as long as enough points are
visible throughall of the window’s images. The same can
be said about the motion threshold. It should be chosen as



big as possible, taking care that enough points can still be
matched between the images in the window. The window
size is further limited by available computation time. If
the algorithm should run online (what it is supposed to
do), window sizes above 5 or 6 may become intractable,
depending on your hardware and the overall processor load.

2) Outdoor Data: The outdoor dataset consisted of
80 images2, taken with a stereovision bench made of
two 640x480 greyscale Point Grey Dragonfly camera
with 2.8mm Rainbow lenses, and a baseline-length of
approximately 8 cm. Ground truth data was extracted
from using a Leica ”total station” surveying instrument
that measured the position of 4 reflective prisms attached
to the rover. The robot moved approximately 10 Meters,
turning left and right during the motion but following a
relatively straight trajectory. Between 18 and 308 feature
points were visible in each image, with 106 in average.
Each point was visible in only 4 consecutive images in
average.

a) Sliding Window SBA:The outdoor dataset was
tested with window sizes between 2 and 6 and the same
motion thresholds as above. As the results between the
different window sizes do not differ much, we just give
the minimum, maximum and mean error ordered by motion
threshold in table II.

motion
threshold min. max. mean error

0 22.30 22.61 22.37
10 22.37 23.35 22.67
15 22.03 22.33 22.18
17 22.49 22.97 22.68
20 22.07 23.01 22.53
25 22.48 24.05 23.11
30 23.19 24.37 23.76
35 23.04 24.27 23.29
40 23.57 24.76 24.32

TABLE II

DISTANCE FROM THE GROUND-TRUTH END POSE IN CM FOR SLIDING

WINDOW SBA

The average deviation from the ground truth position
for all tested methods was approximately 23 cm (2.3 % of
traveled distance). As we see, the error tends to increase
slightly with increasing motion threshold above 20 cm
because fewer feature points can be matched between two
consecutive images and the quality of the matches drops
with increasing movement between the images. However,
the differences between the different parameter settings
are not significant. They are far below 1% of the traveled
distance. The camera was mounted very close to the ground
and was tilted down, so only few feature points were
identified (and successfully tracked) in a feasible distance

2We would like to acknowledge Max Bajracharya from JPL for
providing us with that data

from the robot to compare the different window sizes and
motion thresholds.
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Fig. 4. Several trajectories for the outdoor dataset. The thick black line
is the full SBA that served as ground truth.

b) Full SBA: The position estimated by full SBA
was 20.48 cm away from the ground truth position which
is slightly better than the above results, as we expected.
The estimation involved 2129 3D points and 8462 image
projections. 6947 parameters had to be estimated (3 for
each 3D point and 7 for every camera pose). Our imple-
mentation took 6 iterations to detect and remove outliers.
On a 1GHz P3 machine running Linux, the algorithm
finished in 4.5 minutes. This rather long time is caused
by the computationally expansive simple outlier rejection
method and the stereo-extension forcing us to use SBA in
the inefficient ’simple driver’ mode. The required runtime
may be reduced if more care is taken for runtime efficiency.

3) Conclusion: Both tested datasets did not show
significant differences among the different parameter
settings. However, as a rule of thumb one should not use
simple chaining (resp. window size 2) as the error tends
to be higher than with window sizes 3 or 4. Window sizes
above 4 or 5 do in general not help to improve the result,
as feature points may in average not be tracked for more
than 5 images. This, of course, is highly dependent on
your matching and tracking algorithm, image quality and
the environment. Larger windows increase computation
time drastically, so a tradeoff between computational costs
and accuracy has to be considered.

The error, 2.3 % of traveled distance for the outdoor
data, proves SBA to be a feasible method for visual motion
estimation. In further work, the methods should be refined
to make them more robust against outliers arising from
false matches. This should help decreasing the error and,
if implemented efficiently, can even decrease overall com-
putation time. A possible way to achieve this is to use SBA
in a RANSAC approach to estimate hypothesizes and refine
the final solution on the resulting inlier set. The techniques
we presented here (sliding window, motion threshold) may
of course be used further in such an approach.

IV. STEREOVISUAL ODOMETRY USING EKF

Extended Kalman Filter is a well known optimization
framework which we apply to Visual Motion Estimate
problem. The goal is to estimate current robot poseXr

using a set of observationszi = [x, y, z]t from landmarks



identified in the current stereo frame. EstimateXli of
landmark i must be included in the filter state in order
to apply update using observationzi. Either the landmark
is already in the filter, and update can be directly applied,
or the landmark is firstly observed, and in this case it must
be added to the filter.

Similarity with the EKF based solution to SLAM prob-
lem (Simultaneous Localization And Mapping) is not an
accident. However some differences can be underlined:

1) In the stereovisual odometry problem, we are not
concerned neither with building a large map of the
environment nor closing loops, which is a hard issue
in SLAM.

2) Stereovisual odometry targets outdoor robot naviga-
tion and must run without any odometry measures.

As a consequence of(1) the number of landmarks esti-
mated in the filter can be kept constant so as to guarantee
a constant time complexity of the algorithm. The state of a
landmark can be safely removed from the filter, along with
its covariance and cross covariances, when this landmark
is lost by the feature tracking algorithm.

Because of(2), usual EKF prediction based on odometry
used in SLAM does not hold. Instead a prediction model
of the robot must used:

• Models such as ”constant pose”, or ”constant speed”
are very simple and can really meet our needs.

• Also a physical model of the robot can be defined,
which would use some inputs such that voltage of
the motors. This kind of model must be studied on
a per robot basis, and they often require a tedious
preliminary parameters identification. We do not favor
this solution for a rover.

V. D ISCUSSION

Some points of comparison between SBA and EKF
solution to stereovisual odometry are given, as well as a
simple extension to deal with linearization problem which
will arise with the EKF.

EKF based approach has the benefit of not requiring the
tuning of the size of a sliding window, EKF optimization
process takes into account all information available with
the current features, whereas SBA is limited by the slid-
ing window. Within the tested experimental setup, it was
demonstrated that windows larger than 3 frames do not
increase quality of the result. This number is intuitively
influenced by the uncertainty of the measure, which ap-
pear in the weights of the reprojection error, and by the
parameters of the camera (resolution, field of view) which
appear in the projection matrixPi. When measures are less
accurate, sliding window should be increased.

On the one side EKF gives an incremental solution and
is well suited to real-time implementation, on the other
side linearizations must be handled with care to prevent
the filter from diverging.

origin

local frame

Fig. 5. Robot and landmarks estimated in a local frame, empty circles
landmarks are not visible any more and have been taken off the local
map.

While the robot is moving, uncertainty of the estimated
pose is growing since no global pose estimator is available.
Large uncertainty on estimated variables leads to EKF
divergence because of linearizations computed at poorly
estimated variable mean value. To cope with this problem,
estimated pose of the robot can be ”reset” from time to
time, when uncertainty is getting too large. The ”reset”
operation consists in changing the reference frame of
the current estimated variables (robot pose and current
landmarks) to the frame defined by the current robot pose.
As a result, the new pose of the robot is[0] with null
uncertainty, also uncertainty on the landmarks poses in the
new frame is decreased thanks to the correlations with robot
pose. In the meantime, variableT lf0 is keeping track of the
transformation from origin to current local frame, along
with its covariancePT lf0

, so that robot pose and uncertainty

can be computed in the reference frame.(T lf0 , PT lf0
) is

updated at each ”reset”,T lf0 is composed with the old robot
pose, andPT lf0

is computed consistently. Fig 5 illustrates
the local map and the different frames.

Finally, let’s note that the stereovision bench setup has
a big impact on the precision of the motion estimates
provided, whatever the numerical solution is chosen. For
instance, experimental results not presented here confirm
the intuitive fact that a bench oriented perpendicularly to
the rover direction of motion (looking sidewards, or even
downwards) yields better motion estimates than a bench
looking forward. Image resolution and focal length are also
parameters of interest to determine.
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