
Bauer, J., Sünderhauf, N., & Protzel, P. (2007). Comparing Several Implementations of Two Recently Published Feature
Detectors. In Proc. of the International Conference on Intelligent and Autonomous Systems, IAV, Toulouse, France.

COMPARING SEVERAL IMPLEMENTATIONS
OF TWO RECENTLY PUBLISHED FEATURE

DETECTORS

Johannes Bauer, Niko Sünderhauf, Peter Protzel

Department of Electrical Engineering
and Information Technology

Chemnitz University of Technology
09111 Chemnitz

Germany
johannes.bauer@5pm.de

{niko.suenderhauf, peter.protzel}@etit.tu-chemnitz.de

Abstract: Detecting, identifying, and recognizing salient regions or feature points
in images is a very important and fundamental problem to the computer vision
and robotics community. Tasks like landmark detection and visual odometry,
but also object recognition benefit from stable and repeatable salient features
that are invariant to a variety of effects like rotation, scale changes, view point
changes, noise, or change in illumination conditions. Recently, two promising new
approaches, SIFT and SURF, have been published. In this paper we compare and
evaluate how well different available implementations of SIFT and SURF perform
in terms of invariancy and runtime efficiency.

1. INTRODUCTION

Recently, two promising approaches to detect
salient regions in images have been published:
SIFT, Lowe (2004) (Scale Invariant Feature Trans-
form) and SURF, Bay et al. (2006) (Speeded Up
Robust Features). Both approaches do not only
detect interest points or so called features, but
also propose a method of creating an invariant
descriptor. This descriptor can be used to (more
or less) uniquely identify the found interest points
and match them even under a variety of disturbing
conditions like scale changes, rotation, changes in
illumination or viewpoints or image noise. Exactly
this invariancy is most important to applications
in mobile robotics, where stable and repeatable vi-
sual features serve as landmarks for visual odom-
etry, SLAM, or support object recognition. Of
course, there was and still is a variety of other
methods available that claim to achieve the same
goals.

Comparative work done by Mikolajczyk and
Schmid (2005) is a good reference for a list of
different other interest points detectors and de-
scriptors and proves that SIFT outperforms other
algorithms in terms of invariancy. The authors of
SURF, Bay et al. (2006), in return claimed SURF
to be superior to SIFT in terms of runtime effi-
ciency while still yielding comparably good results
with regards to feature point quality.
We felt a need to compare SIFT against SURF
using images taken in a natural outdoor envi-
ronment, as this is the environment our robots
operate in. We also wanted to compare different
available implementations of SIFT to reveal pos-
sible differences in their performance. This paper
presents our results.



2. COMPARED FEATURE DETECTORS
AND DESCRIPTORS

We compared and evaluated three different im-
plementations of SIFT and two different SURF
parameter settings.

• SIFT
· original implementation by David Lowe
· SIFT++
· LTI-lib SIFT

• SURF
· SURF
· SURF -d

2.1 Harris Corner Detector

In addition to the different SIFT and SURF imple-
mentations, the Harris Corner Detector by Harris
and Stephens (1988) was used as a comparison
how a very naive approach would perform in the
given test cases. It is a well known feature point
detector and has been used for many years in
computer vision. It only detects interest points in
the image but does not calculate a descriptor. A
very simple and naive strategy, that formed the
descriptor from the raw grey values of the pixels
in a certain neighborhood of the identified interest
point was chosen.

2.2 Original SIFT by Lowe

The SIFT algorithm as published by Lowe (2004)
includes both a keypoint detector and descriptor.
Keypoint detection is done by building a scale-
space representation of the original image. (See
Lindeberg and ter Haar Romeny (1994) for an
introduction into scale-space theory.) This is
achieved by repeatedly convolving the image with
a Gaussian function. A Difference of Gaussian
(DoG) approach combined with interpolation over
the scale-space leads to the locations of stable
keypoints in that scale-space representation of the
image. After that localization, each keypoint is
assigned an orientation, which leads to the desired
rotation invariancy. The keypoint descriptors are
calculated from the local gradient orientation and
magnitudes in a certain neighborhood around the
identified keypoint. The gradient orientations and
magnitudes are combined in a histogram repre-
sentation, from which the descriptor is formed as
a normalized vector of 128 elements.
Se et al. (2002) and Lowe (2004) demonstrated
how SIFT can be used for object recognition or
vision based SLAM.
Lowe’s original implementation is freely available
as a closed-source library written in C from Lowe’s

website 1 .

2.3 SIFT++

SIFT++ is a free and open C++ implementation
of the SIFT detector and descriptor and can
be downloaded from the author’s homepage 2 . It
has been developed by Andrea Vedaldi from the
Vision Lab of the University of California. A free
and open Matlab version of SIFT is also available
from the same author.

2.4 LTI-lib SIFT

LTI-lib 3 is a LGPL-licenced C++ library that
contains algorithms and datastructures frequently
used in computer vision. LTI-lib includes routines
for image processing, linear algebra, classification
and clustering as well as visualization and drawing
tools. Two classes implement the SIFT detector
and classificator: lti::pyramidLocationSearch
and lti::loweGradientFeature.

2.5 SURF

SURF (Speeded Up Robust Features) has been
recently published by Bay et al. (2006). Like
SIFT, the SURF approach describes a keypoint
detector and descriptor. Keypoints are found by
using a so called Fast-Hessian Detector that bases
on an approximation of the Hessian matrix for a
given image point. The responses to Haar wavelets
are used for orientation assignment, before the
keypoint descriptor is formed from the wavelet
responses in a certain surrounding of the keypoint.
The descriptor vector has a length of 64 floating
point numbers but can be extended to a length
of 128. As this did not significantly improve the
results in our experiments but rather increased
the computational costs, all results refer to the
standard descriptor length of 64.
SURF is available as a precompiled library, where
the core algorithm is closed source. It can be
downloaded from the author’s website 4 .

2.6 SURF -d

SURF -d is the normal SURF algorithm with
initial image resolution doubling activated.

1 http://www.cs.ubc.ca/˜lowe/keypoints/
2 http://vision.ucla.edu/˜vedaldi/code/siftpp/siftpp.html
3 http://ltilib.sourceforge.net
4 http://www.vision.ee.ethz.ch/˜surf/



3. EVALUATION

We tested all of the above algorithms with a
dataset of images to confirm and evaluate their
invariancy against

• rotation
• scale change
• image noise
• change in lighting conditions
• change of view point

The dataset of images was created from natural
outdoor scenes. Starting from an initial image, the
images were altered according to the performed
test, i.e. they were rotated or the camera zoomed
closer to the object etc. Feature points and their
descriptors were determined in the initial and the
secondary images. As both SIFT and SURF de-
scriptors can be interpreted as integer or floating
point vectors respectively, the matching strategy
was to find the descriptor from the initial image
that had the smallest euclidean distance to a given
descriptor in one of the secondary images. A small
tool written in Python (fig. 1) was used to de-
termine which of the found matches were correct.
The total number of correct matches was recorded
for the evaluation as well as the ratio of correct
and incorrect matches. The later one tells more
about the quality of the implementation than the
mere number of keypoints. Finally, the runtime
efficiency was compared by measuring the time
the algorithms took for identifying and matching
the keypoints.

Fig. 1. This tool was used to determine the correct
and incorrect matches.

3.1 Image Dataset

Figures 2 to 4 show the images that were used in
the several test cases.

Fig. 2. The initial image used during the test for
rotation invariance. It was rotated in steps of
30◦.

Fig. 3. The images used for the scale invariancy
test. Image 5 was chosen as the initial image,
i.e. the keypoints found in all other images
were matched with the ones from image 5.

3.2 Results

The first thing that became obvious during the
tests was that the total number of keypoints is
generally higher for SIFT and SIFT++ than it is
for SURF or SURF-d. However, the quality of the
matches is almost equal for the four implementa-
tions (SIFT, SIFT++, SURF, and SURF-d), with
small advantages for the two SIFT algorithms.
The LTI-lib implementation of SIFT seems to
be erroneous or at least does not follow Lowe’s
original algorithm as close as SIFT++ does: The
ratio of correct matches was usually far worse for
LTI-lib SIFT than for Lowe’s SIFT or SIFT++.
As expected, the naive Harris approach was not
able to compete against the other approaches. Due
to the deficiencies of Harris and LTI-lib SIFT we
are not going to mention their results in detail
here.



Fig. 4. A series of images used for the noise
invariancy test showing increasing amount of
noise.

The test for rotation invariance was passed with-
out problems by the remaining four implementa-
tions, as expected. The ratio of correct matches
was well above 95% for all algorithms. Figure 5
illustrates the results of the rotation test.
Scale changes hardly influence the matching qual-
ity of the original SIFT implementation. Figure 6
shows the quality of the matches found by SURF
and especially SIFT++ drops at the highest scale
change while Lowe’s original SIFT algorithm stays
well close to the 100% margin. As expected, the
total number of matches decreases with increasing
scale change.
As can be seen from figure 7, image noise does
hardly influence the high quality of keypoint
matching but increasing noise significantly re-
duces the total number of matched keypoints
by all algorithms (except standard SURF which
shows only a slight decrease). All approaches per-
formed almost identically well, the ratio of correct
matches was around 100% to 95%.
All algorithms can cope with changing illumi-
nation conditions up to a certain extend where
simply not enough keypoints are generated. This
breakdown is clearly visible in figure 8. Illumina-
tion level 8 corresponds to the initial image. Level
0 is the darkest image, where hardly any feature
was found, except for SIFT++. The illumination
changes were not generated artificially, but the
images were rather taken during sunset.
Changing the viewpoint, i.e. observing an ob-
ject under a different angle, has a large negative
impact to all algorithms. The total number of
matched features drops significantly even after
viewpoint changes of only 10 degrees. This early
breakdown may be caused by the motif that was
used during the test (again a natural scene with a

tree and some bushes beneath it), as the authors
of SIFT and SURF report viewpoint invariancy of
up to 30 degrees.

Fig. 5. Results of the test for rotation invari-
ance. Notice that Lowe, SURF, SURF-d and
SIFT++ yield almost identically good re-
sults. LTI-lib is notably worse, Harris per-
forms out of the question.

Fig. 6. Results of the scale invariancy test.



Fig. 7. Results of the scale invariancy test.

Fig. 8. Results of the test of invariance to changing
illumination conditions.

4. CONCLUSION

During all of our tests, Lowe’s SIFT and SIFT++
performed best in terms of match ratio and total
number of correct matches. Regarding the ratio of
correct to incorrect matches, SURF -d and SURF
followed very closely. Although they usually pro-
duce fewer keypoints, this is not a disadvantage

Fig. 9. Results of the viewpoint invariancy test.

in our eyes: In many applications there is simply
no need for 300 feature points per image. What
is more important is that the feature points can
be calculated quickly and that they can be recog-
nized and matched with feature points from other
images in an efficient way.
Fig. 10 plots the number of correctly found
matches per second for all of the conducted tests
and algorithms. It can be clearly seen that both
versions of SURF are more performant than SIFT
and produce much more correct matches per time
interval. So although the quality and total num-
ber of the created keypoints and their descriptors
are slightly better for SIFT, one has to pay for
this with a disproportionate increase in comput-
ing time. As, in our opinion, the better runtime
performance outweights the slightly better feature
quality, we switched to using SURF instead of
SIFT in several of our projects like visual odom-
etry or large-scale visual FastSLAM as it is de-
scribed in Neubert et al. (2007).
To conclude, we showed that SURF is indeed
superior to SIFT and all its different implementa-
tions. If for some reason SIFT is preferred anyway,
the open SIFT++ implementation is a good alter-
native to the closed original library version. The
LTI-lib implementation of SIFT seems erroneous
and should not be used.

REFERENCES

Herbert Bay, Tinne Tuytelaars, and Luc Van
Gool. Surf: Speeded up robust features. In



Fig. 10. A series of images used for the noise
invariancy test.

Proceedings of the ninth European Conference
on Computer Vision, May 2006.

C. Harris and M. Stephens. A combined corner
and edge detector. In Proceedings of the Alvey
Vision Conference 1988, pages 147–151, 1988.

T. Lindeberg and Bart M. ter Haar Romeny. Lin-
ear scale-space. In Bart M. ter Haar Romeny,
editor, Geometry-Driven Diffusion, pages 1–
77, Dordrecht, Netherlands, 1994. Kluwer Aca-
demic Publishers.

David G. Lowe. Distinctive Image Features from
Scale-Invariant Keypoints. In International
Journal of Computer Vision, 60, 2, pages 91–
110, 2004.

Krystian Mikolajczyk and Cordelia Schmid.
A performance evaluation of local
descriptors. IEEE Transactions on
Pattern Analysis & Machine Intelli-
gence, 27(10):1615–1630, 2005. URL
http://lear.inrialpes.fr/pubs/2005/MS05.

Peer Neubert, Niko Sünderhauf, and Peter
Protzel. Fastslam using surf features: An effi-
cient implementation and practical experiences.
In Proceedings of the International Confer-
ence on Intelligent and Autonomous Vehicles,
IAV07, Tolouse, France, September 2007.

Stephen Se, David G. Lowe, and Jim Little.
Mobile Robot Localization and Mapping with
Uncertainty using Scale-Invariant Visual Land-
marks. In International Journal of Robotics
Research, 21, 8, pages 735–758, 2002.


