
FASTSLAM USING SURF FEATURES: AN

EFFICIENT IMPLEMENTATION AND

PRACTICAL EXPERIENCES

Peer Neubert, Niko S�underhauf, Peter Protzel

Department of Electrical Engineering
and Information Technology

Chemnitz University of Technology
09111 Chemnitz

Germany
peer.neubert@informatik.tu-chemnitz.de

fniko.suenderhauf, peter.protzelg@etit.tu-chemnitz.de

Abstract: This paper describes how the recently published SURF features can
be used as landmarks for an online FastSLAM algorithm that simultaneously
estimates the robot pose and the pose of a large number of landmarks. An
implementation with particular focus on e�cient data structures like two-stage
landmark data base and special balanced binary trees is described. Practical results
on outdoor data sets at 3 Hz with about 3-6 % error of total traveled distance are
shown.

1. INTRODUCTION

An online solution to the SLAM problem seems
to be a key requirement for the practical (and
commercial) use of robots in large natural environ-
ments. Besides classical approaches that use laser
range �nders or sonar sensors, vision based slam or
visual odometry approaches emerged during the
past years. A recent work that uses visual land-
marks for SLAM is the work of (Barfoot, 2005).
He uses SIFT features by (Lowe, 2004) as stable
and recognizable landmarks but has to use a spe-
cialized FPGA to calculate the features and their
descriptors online.
We seek for an e�cient but powerful SLAM al-
gorithm that is able to work online in outdoor
environments for a longer period of time, without
using specialized hardware. As the recently pub-
lished SURF approach was found to be superior to
SIFT in terms of runtime e�ciency and keypoint
quality by (Bay et al., 2006), it should make an
excellent landmark detector in the sought SLAM
context. To enable the algorithm to run for longer

periods of time and with a huge database of land-
marks, special care has to be taken in the imple-
mentation. Before we present an e�cient way to
handle large amount of landmark data and prove
the algorithm's performance with real-world tests,
we shortly introduce the concepts of FastSLAM
and SURF.

2. RELATED WORK

2.1 FastSLAM

FastSLAM (Thrun et al., 2005) is a particle �lter
based approach to the simultaneous localization
and mapping problem presented in (Montemerlo
et al., 2003). FastSLAM uses the conditional in-
dependence between any two disjoint sets of land-
marks in a map, given the robot pose, to overcome
exponential scaling. The original FastSLAM 1.0
algorithm samples over the robot pose and data
association for a single observed feature. Fast-
SLAM 2.0 improves the sampling step by taking



the measurement into account while sampling a
new pose. By using e�cient data structures Fast-
SLAM requires a map update time of O(M logN),
where M is the number of particles and N is the
number of the landmarks in the map. The authors
of (Thrun et al., 2005) presented some experiences
using FastSLAM with occupancy grid maps. Some
results of using FastSLAM for online visual mo-
tion estimation are presented in (Barfoot, 2005),
where a stereo camera and visual landmarks are
used. They were able to generate position esti-
mates at 3Hz with an error of 4% of totaly traveled
distance. They used a FPGA to extract SIFT fea-
tures from pairs of stereo images, while computing
the rest in software. Our solution achieves similar
good results without special hardware assistance
by using SURF features as visual landmarks.

2.2 SURF

(Bay et al., 2006) presented SURF as a scale-
and rotation-invariant interest point detector and
descriptor. The SURF detector �nds keypoints
by using a so called Fast-Hessian Detector that
bases on an approximation of the Hessian matrix
for a given image point. The responses to Haar
wavelets are used for orientation assignment, be-
fore the keypoint descriptor is formed from the
wavelet responses in a certain surrounding of the
keypoint. (Bauer et al., 2007) showed that SURF
outperforms SIFT in terms of speed and accuracy.

3. USING FASTSLAM WITH SURF

3.1 Adapted FastSLAM

We derive our adapted algorithm from FastSLAM
1.0 that was published by (Thrun et al., 2004).
The biggest change is the number of simultane-
ously observed features. The original algorithm
works theoretically with a single observation per
update step, while we increased this number for
practical reasons (e.g. observing 100 SURF fea-
tures at a time). The weighting step must be
extended to cope with this larger number of land-
marks. A large number of simultaneous observa-
tions makes it possible to reject some outliers.
However, observing more potential landmarks at a
time increases the costs for data association. Data
association is therefore only done once per update
step for the whole set of particles.

3.2 World, Observation and Motion Model

We work in a three dimensional cartesian world
with the origin located at the robot's starting po-
sition. To determine the three dimensional coor-
dinates of the observed landmarks, we extract the

SURF features in both images taken by a stereo
camera. Both sets of features are associated by us-
ing the descriptor and the constraints of epipolar
geometry. The number of outliers produced during
this step is marginal.

Because of coplanar image planes we can use
the following triangulation matrix to get the

three dimensional coordinates
�
x=s y=s z=s

�T
from stereo coordinates

�
u v d 1

�T
by using the

homogeneous equation:0
BB@
x
y
z
s

1
CCA =

0
BB@
1 0 0 �px
0 1 0 �py
0 0 0 f
0 0 �1=B 0

1
CCA

0
BB@
u
v
d
1

1
CCA (1)

Here u and v are the coordinates of the feature in
the left image and d is the disparity, the di�erence
of horizontal coordinates in the left and the right
image. px, py, f and B are internal and external
camera parameters.
To add landmarks to a database of already known
landmarks we need to compute the coordinates
in the world with respect to the robot pose
Xt =

�
x y �

�
. To calculate a landmark's world

coordinates
�
xw yw zw

�T
from local coordinates�

xr yr zr 1
�T

in the robot centered coordinate
system, we can use a simple homogeneous trans-
formation G:

0
@
xw
yw
zw

1
A =

0
@
� sin� 0 � cos� x
cos� 0 � sin� y
0 1 0 0

1
A

0
BB@
xr
yr
zr
1

1
CCA (2)

Because the robot pose may be di�erent for dif-
ferent particles, every particle contains its own
database of landmarks. A landmark is represented
by a mean � and a covariance matrix �. It is
handled by an Extended Kalman �lter.
Hence, a single particle is of the formh �

x y �
�T
1:t

(�;�)1:N

i

In every update step the robot pose Xt =
�
x y �

�
is updated for every particle. First we estimate
the current pose from the odometric sensor's
data

�
�xO �yO ��O

�
. The overall estimated

traversed distance thus is
d =

p
�x2O +�y2O

So we can sample new positions for each particle
by using this data and a random factor following a
normal distribution that re
ects the errors in the
odometric sensors:

xt = xt�1 + d � cos(�t�1 +
1

2
��O) � (� N

�
1; �2x

�
)

yt = yt�1 + d � sin(�t�1 +
1

2
��O) � (� N

�
1; �2y

�
)

�t = �t�1 +��O � (� N
�
1; �2�

�
)

�2x; �
2
y and �2� are the variances of the according

dimension of odometric data.



Fig. 2. A schema of two-stage data association.
A currently observed feature is searched in
the temporary local set. If it is found, we link
directly to the corresponding vertex in the
kd-tree otherwise we search the feature in the
kd-tree.

As common in particle �lters, these particles are
resampled after getting weighted in a second step.
The weighting occurs through consistence with
landmark observations.

3.3 Using SURF Descriptors for Data Association

The original FastSLAM algorithm observes one
single landmark per update step and samples over
robot pose and data association. Our modi�cation
observes a larger number of landmarks simulta-
neously and makes data association once for all
particles. The data association between currently
observed features and landmarks from the data
base is done with the SURF descriptor. To speed
up the data association step, we associate the
currently observed and already known landmarks
in a two-step scheme that is illustrated in �g. 2.
The landmark descriptors are not saved in the
particles but are used to �nd landmark identi�ers
in the data structures shown in �g. 2. These iden-
ti�ers are easy to compute and are used to �nd the
(�;�) pose representation of the landmarks in the
particles. The landmark poses are saved in a tree
structure in the particles. We will have a closer
look at this tree structure later in this section.
The identi�ers are not simple links into that tree
but rather encode the descent that is necessary to
�nd the corresponding landmark pose.
To speed up the data association, the database
of landmark descriptors is split in two parts: A
temporary local set that serves as a kind of cache

for landmarks that have been observed during the
last cylce, and a kd-tree structure for older land-
marks. The descriptors of the currently observed
landmarks are �rst searched in the temporary
local set. If no match is found, the search continues
in the kd-tree. This temporary cache signi�cantly
speeds up the association step because fewer pos-
sible matches have to be checked. Furthermore, it
reduces the number of false matches because land-
marks observed in the last update step get a bigger
chance of being associated in the current step. A
possible drawback however is that the loop closing
performance may decrease because the association
between a currently observed landmark and an
older, already known landmark is penalized. To
avoid this, a very close correspondence (i.e. a small
euclidian distance between the descriptor vectors)
between the observed landmark and the candidate
landmark from the temporary local set is required
before they get associated. In particular, the up-
per limit for an association in the temporary local
set is smaller than in the kd-tree.
Whenever a new landmark has been observed (i.e.
it was neither found in the local set nor in the kd-
tree), a new vertex is created in the kd-tree. This
vertex contains the SURF descriptor (which also
serves as key during the search in the tree) and
the newly created unique identi�er. An entry for
the new landmark is created in the local set as
well. The entry in the local set is linked to the
new vertex in the kd-tree as illustrated in �g. 2.
If a landmark is found in the temporary local
set or directly in the kd-tree, the corresponding
identi�er is saved for the following particle update
step.
Outliers in the data association (i.e. false matches)
are detected on a per-particle basis. A match is
discarded if the di�erence of the estimated posi-
tion and the current measurement is too large.

3.4 The Particles

Each particle contains a balanced binary search
tree for managing the landmark postion estimates.
The tree is balanced by construction and need not
to be reordered. Every vertex includes a position
estimate for a single landmark. Landmarks are
found by their position in the tree, the neces-
sary descent operations can be decoded by very
simple and fast bit operations from the identi�er
described above.

3.5 Resampling

To resample the particle set it is necessary to
weight the particles according to how well the po-
sitions of the observed landmarks and their associ-
ated counterparts from the database correspond.



Fig. 1. Taking two samples P0 and P00 from an origin particle P and afterwarts modifying a vertex in the
binary tree in P00. Therefor a new path is generated in P00 and the rest of the origin tree is appended.

Therefore we weight every association and sum
over these weights. (Thrun et al., 2005) suggests
to calculate the weight for a single observation by

w =
1p

det(2�Q)
e�

1

2
(x��)TQ�1(x��) (3)

where � is the mean of the landmark position
estimate from the data base in the current robot
coordinate system, x is the three dimensional co-
ordinate vector of the observed feature in current
robot coordinate system.
Q is calculated as follows:

Q = H�HT +R (4)

where H is the derivative of the inverted trans-
formation matrix G with respect to the feature
coordinates.
R is the covariance of the measurement, in our
case

R = JSJT (5)

Here S is the covariance caused by the discreetness
of the pixels. We assumed:

S =

0
BB@

1

2
0 0

0
1

2
0

0 0 1

1
CCA

The Jacobian of the current stereo coordinate
calculation matrix in our observation model is
given by J :

J =

0
BBBB@

�
B

d
0

B � (u� px)

d2

0 �
B

d

B � (v � py)

d2

0 0
f �B

d2

1
CCCCA

(6)

with
�
u v d

�T
as stereo coordinates of the current

observation.
Through the resampling step, some new particles

may have been resampled from the same original
particle. To increase speed and avoid too many
copy operations, these new particles share the
same old binary search tree which contains the
landmark positions. That is uncomplicated as long
as the landmark positions in the tree are not
changed by the particles. As this will de�nitively
occur during the update step, the path to the
changed vertex has to be regenerated for the
respective particle. The rest of the tree can simply
be appended. Because the tree is balanced, the
resulting update costs for a single landmark are
O(logN). Figure 1 illustrates how two particles
P0 and P00 share the same tree after resampling.
During the update step, P00 changes the position
estimate of the landmark that is contained in
vertex 3. Therefore, the path from the tree's root
to vertex 3 has to be regenereated for P00. Notice
that the rest of the tree remains unchanged and
is still shared between P0 and P00.

4. PRACTICAL ASPECTS

4.1 Hardware

We tested our implementation on a mobile robot
platform, based on a Pioneer 2AT equipped with
a stereo camera. The computations were done on
an Athlon64 3200+ machine.

4.2 Practical Constraints

The 3D information that can be derived from
a stereo camera are prone to errors. Figures 3
and 4 show how the standard deviations for the
estimated X and Z coordinate for a triangulated
world point rise very fast with increasing distance
from the camera. In general we can say that the
further away a point is from the camera, the larger



Fig. 3. Std. deviation for Z-coordinate (camera
viewing direction) of an observed feature in-
creases fast with rising distance

Fig. 4. Std. deviation for X-coordinate (perpen-
dicular to camera viewing direction) of an
observed feature increases slower than Z-
coordinate with rising distance

the uncertainties are. Hence, we set a maximum
range limit of about 24m by disregarding obser-
vations with dispartiy < 1.
As can be seen from the �gures, the uncertainty
in the direction the camera is facing increases
much faster than in the directions perpendicular
to it. If the camera is facing forward, i.e. in the
direction the robot is moving, we are moving in
the direction of largest uncertainty, which nega-
tively a�ects the accuracy of every visual SLAM
or visual odometry algorithm. The stereo camera
should therefore not be facing into driving direc-
tion, but perpendicular to it. We expect a faster
convergence of landmark position estimation.
Handling unusable pictures, that may occur while
aperture adjustment is performed by the camera
as shown in �gure 5, is another problem at hand.
Unusable images should be detected and handled
carefully, for example by retaining the old local
temporary set and skip the resampling step.

Fig. 5. Missmatches occur in unusable pictures,
features attended for association are marked.

4.3 Practical Experiments and Results

We are able to run the algorithm online, with
about 3 Hz. The e�ective runtime depends on the
number of observed features, in our experiments
we worked with about 120 observations per up-
date step. Another in
uencing value is the total
number of landmarks. Here, our two stage data
association handled a database of up to 16.000
landmarks.
For �rst outdoor experiments we traversed a ca.
30 m long cyclic course on hard ground with a
set of 100 particles. The standard deviations for
the odometry data was estimated to be 10% for
straight forward motion and 30% for rotation.
These estimates are by far worse than the real
odometry errors, but were set to higher values to
prove our algorithm's performance. Odometry was
spoiled with noise by adding systematic errors to
motion estimation for the same reasons (e.g. 15%
of ��O). Figure 6 shows the robot's position es-
timtated by our algorithm, spoiled odometry data,
and ground truth. Ground truth was estimated
from a sensor fusion between real odometry and a
magnetic compass.
The results of several parameter settings with 100
particles decreased the position error from 20-
40% (spoiled odometry) to 3-6% of the traveled
distance. The second test dataset stems from
a 120 m long outdoor traverse. Again, we used
100 particles and added simulated errors to the
odometric sensors to better prove the algorithm's
capabilities.
The resulting errors are comparable to the errors
of the �rst testcase. Figure 7 shows a typical result
for this test: The original way was a closed route
(nearly like the estimation of our algorithm) the
odometric data seems to be far o� and the result of
our algorithm improves position estimation signif-
icantly. A limitation is still the capability for loop
closing. It's e�ected by a too small variance in the
particle set at the time of loop closing.

5. FUTURE WORK

In future work we will adapt the improvements in
position estimation as proposed by FastSLAM 2.0
and fuse odometry data with DGPS information
or visual odometry before using it in the SLAM



Fig. 6. Improvement of odometric sensor data with
our algorithm on a short 30m traverse.

Fig. 7. Comparison of results on an about 120 m
traverse of odometric alone and the particle
with best accumulated weight.

algorithm.
The motion modell will be extended to six degrees
of freedom to acquire a full 3D SLAM approach.
The e�ciency of the data association step can be
improved further by doing a position based associ-
ation. Candidate landmarks that could be possible
matches for a currently observed landmark can be
pre-determined by regarding the current position
estimate and the �eld of view of the camera. Or-

dering the landmarks in an octtree, and a simple
visibility check of an landmark can help reducing
the set of candidate landmarks.
The use of hash-functions to reduce the size of
the global kd-tree (�g. 2) by splitting the set of
landmarks into hash-classes seems to be a promis-
ing approach to accelerate data association when
large databases of features are available.

6. CONCLUSION

We have demonstrated and described several as-
pects of using SURF features for SLAM. We de-
scribed certain aspects of our fast implementation
that uses e�cient data structures. Our SURF-
SLAM implementation runs completely in soft-
ware with framerates of 3Hz. No special hardware
like FPGAs are required. Practical experiences
proved the algorithm's performance and capabili-
ties.

REFERENCES

Barfoot, T.D. (2005). Online visual motion esti-
mation using fastslam with sift features. In:
Proceedings of the International Conference
on Robotics and Intelligent Systems (IROS).
Edmonton, Alberta.

Bauer, Johannes, Niko S�underhauf and Peter
Protzel (2007). Comparing several implemen-
tations of two recently published feature de-
tectors. In: Proceedings of the International
Conference on Intelligent and Autonomous
Vehicles, IAV07. Tolouse, France.

Bay, Herbert, Tinne Tuytelaars and Luc Van Gool
(2006). Surf: Speeded up robust features. In:
Proceedings of the ninth European Conference
on Computer Vision.

Lowe, David G. (2004). Distinctive Image Fea-
tures from Scale-Invariant Keypoints. In: In-
ternational Journal of Computer Vision, 60,
2. pp. 91{110.

Montemerlo, M., S. Thrun, D. Koller and B. Weg-
breit (2003). Fastslam 2.0: An improved par-
ticle �ltering algorithm for simultaneous lo-
calization and mapping that provably con-
verges. In: Proceedings of the Sixteenth Inter-
national Joint Conference on Arti�cial Intel-
ligence (IJCAI). Acapulco, Mexico.

Thrun, Burgard and Fox (2005). Probabilistic
Robotics. The MIT Press. Cambridge, Mas-
sachusetts, London, England.

Thrun, S., M. Montemerlo, D. Koller, B. Weg-
breit, J. Nieto and E. Nebot (2004). Fast-
slam: An e�cient solution to the simultane-
ous localization and mapping problem with
unknown data association. Journal of Ma-
chine Learning Research.


