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Abstract—While many applications of sensor fusion suffer
from the occurrence of outliers, a broad range of outlier robust
graph optimization techniques has been developed for simulta-
neous localization and mapping. In this paper we investigate
the performance of some of the most advanced algorithms
for a simulated wireless localization setting affected by non-
Gaussian errors. With this first analysis we can show some
of the advantages and disadvantages that are connected with
the different concepts behind Max-Mixture, Generalized iSAM,
Switchable Constraints and Dynamic Covariance Scaling.

I. INTRODUCTION

While many sensor fusion applications would benefit from
a robustness against outliers, a variety of robust graph opti-
mization algorithms have been developed for back-ends of
simultaneous localization and mapping (SLAM) systems [1]–
[8]. Primary reason of the demand for this robustness in SLAM
is the existence of false positive loop closures in almost
every place recognition front-end. They are able to cause
catastrophic failures, in typical applications like autonomous
navigation, if non-robust least squares estimation is applied. The
general approach to robustify the optimization process can be
summarized as the rejection of outliers based on the assumption
that the occurrence of wrong loop closures is unpredictable
and arbitrary – but relatively rare. In [9] and [10] the authors
compared a subset of available robust algorithms on different
real and synthetic datasets, without declaring a clear winner.

Although, all of this research was focused on SLAM
problems, the application of factor graphs as a tool for least
squares optimization isn’t limited to these. There is a broad field
of classic sensor fusion problems that formerly was addressed
by filter approaches and benefits from a formulation as graph
optimization problem like shown in [11]. Even closer related
to our work is [12] and [13] where robust back-ends for GPS
based applications were proposed.

The foundation of earlier filter or graph based sensor fusion
and SLAM was to assume a Gaussian distributed error. While
wrong loop closures violate this assumption in SLAM, there
are a couple of effects that can cause the corruption of physical
sensor data: Ultrasonic and wireless ranging sensors suffer from
reflections and wheel based odometry from the possibility to
slip. However, these effects don’t cause arbitrary or unbounded
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errors, but can rather be described with a distribution based
on physical principles. Some of the robust graph optimization
techniques, like Max-Mixture Models [7] or the generalized
iSAM algorithm [8] are able to represent such non-Gaussian
distributions.

In our work, we will investigate in a first synthetic setting
if algorithms that approximate the real error distribution can
achieve better results than such that are developed to reject
arbitrary outliers.

II. ROBUST FACTOR GRAPH OPTIMIZATION

The non-linear optimization of Bayesian networks, embodied
by factor graphs, is a general technique to find the Maximum
A Posteriori estimate for a set of given observations. It involves
the search for a state X∗ that maximizes the probability
P (X|Z), for given measurements Z using a non-linear least
squares estimation:

X∗ = argmin
X

∑
i

‖ e(Xi, Zi)︸ ︷︷ ︸
ei

‖2Σi
(1)

Each of the sum’s elements represents a single factor in this
graph which can have a different non-linear error function
e(Xi, Zi). To optimize (1), a batch solver like Gauss-Newton
or an incremental one like provided by iSAM2 [14] can be
used.

A. Reject Outliers vs. Expect Outliers

Based on the SLAM problem a recent approach to deal
with measurements that violate the Gaussian assumption is
to identify the non-Gaussian outliers within the back-end and
exclude them from the optimization process. In general, these
algorithms handle the classification of outliers and the following
consequences differently. Realizing, Reversing, Recovering
(RRR) [5] and the EM-Algorithm [6] take final decisions binary.
Switchable Constraints (SC) [1] and Dynamic Covariance
Scaling (DCS) [2] instead, give each measurement a continuous
weight to express the affiliation to the class of outliers. Because
binary decisions seems to be unsuited for distributions where
the value range of outliers overlap with the Gaussian proportion,
we restrict our first comparison to SC and DCS.

A similar way, but with different consequences is to describe
the entity of measurements as one complete distribution which
changes the estimation equation (1). While the true distribution
is often unknown, a Gaussian Mixture model (GMM) can



be utilized to describe an empirical approximation. We use
Max-Mixture (MM) [7] and the generalized iSAM algorithm
(GiSAM) [8] to implement the estimation equation for such a
model.

B. Switchable Constraints

In [1] a set of switch variables S with i components si,
representing the affiliation of each measurements Zi to the
group of non-outliers, is added to the state.

X∗,S∗ = argmin
X,S

∑
i

‖ei · si‖2Σi
+
∑
i

‖ 1− si︸ ︷︷ ︸
eSP

‖2Ξi
(2)

The estimation equation (2) includes an additional prior eSP

to prevent the trivial solution si = 0. Central idea of SC is
to let S be part of the optimized values, so the optimizer can
find the best possible choice of each switch variable. The only
free parameter Ξi is the covariance of the switch prior.

C. Dynamic Covariance Scaling

DSC [2] was proposed as an enhancement of SC which
share the same error function but offers the following closed
form solution of si.

si = min

(
1,

2Φi

Φi + ‖ei‖2Σi

)
with Φi = Ξ−1

i (3)

With Φi there is also only one free parameter.

D. Maximum-Mixture

The authors of [7] proposed an algorithm to approximate
the sum operator in a sum of Gaussians error model (4) with
a maximum selector.

P (X|Z) =
∏
i

∑
n

wn√
2Σ2

in

· exp

(
− (ei − µn)

2

2Σin

)
(4)

After applying the negative logarithm, the maximum operator
becomes a minimum inside the least squares estimator:

X∗ = argmin
X

∑
i

min
n

(
1

2
‖ei − µn‖2Σin

− ln

(
wn√
2Σ2

in

))
(5)

Instead of just one, MM involves 3×n free parameters. While
Ξi and Φi are complete new artificial parameters that are hard
to determine, µn, Σn and wn might be easy to estimate for
a given sensor with a static or predictable error distribution.
Otherwise the distribution has to be computed on-line.

E. Generalized iSAM2

Generalized iSAM2 [8] is a general method to incorporate
an arbitrary probability density function P (Xi|Zi) into the
estimation equation as follows:

X∗ = argmin
X

∑
i

∥∥∥∥∥∥
√
− ln

P (Xi|Zi)

ci

∥∥∥∥∥∥
2

(6)

Under the Condition:

ci > maxP (Xi|Zi) > 0 for all Xi (7)

Similar to MM, we use a sum of Gaussian but keep the sum
operator for each factor (8). So we can achieve an exact solution
instead of approximating it with a maximum selector.

P (Xi|Zi) =
∑
n

wn√
2Σ2

in

· exp

(
− (ei − µn)

2

2Σ2
in

)
(8)

Based on (8) the parameter ci has to satisfy the condition:

ci >
∑
n

wn√
2Σ2

in

(9)

The required parameters are identical to Max-Mixture.

III. EXPERIMENTS

Our experimental set-up mimics a wireless localization
system which suffers from non-Gaussian errors. Multipath
effects through reflections are a typical physical phenomenon
that is causes such outliers. This occurs with GPS in urban
canyons as well as with wireless indoor localisation in cluttered
environments and lead to large distortions in classic Gaussian
estimators. Therefore, we define a scenario which is based on
the same physical principles to evaluate the performance of
the different algorithms under artificial conditions. Along with
SC, DCS, MM and generalized iSAM we use a non-robust
factor graph as baseline of our Benchmark. All experiments
were performed with the GTSAM framework.

A. Dataset

Our experiment is based on the Manhattan-World dataset [15].
We decided to use synthetic instead of real GPS measurements
to focus our work on the multi-modal multipath error only.
Therefore, we will have full ground truth throughout all
simulations. Since the dataset contains a factor graph based of
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Fig. 1: Test data based on Manhattan-World dataset ”m3500”. The ground
truth path (blue line with circle markers) and the virtual satellites (red crosses)
are used to calculate a set of four range measurements for each position.
Afterwards Gaussian noise is added. For a specific proportion of measurements
the calculated distance represent a reflection on the virtual walls (dotted line)
instead of the the shortest connection.

odometry and loop-closures, we transformed it to a ranging
scenario to fit our needs. We started with the bare odometry
and created ground truth data knowing that all coordinates are
integers. Both trajectories can be seen in figure 1 together with
the virtual satellites. The virtual walls around the trajectory
are used to generate non-line-of-sight (NLOS) measurements.



For each determined NLOS ranging the distance is calculated
using the shortest possible reflection on the outer walls.

With all this, we now create range measurements from each
satellite to each ground truth pose. To vary the error distribution
we are able to change the amount of Gaussian noise and the
likelihood of reflected measurements independently.

B. Error metric and parametrization

Our comparative metric is the root mean square error (RSME)
of all 2D positions which is similar to the ATE [16] that is used
in both SLAM related comparisons [9] and [10]. To evaluate the
robustness of each algorithm, we perform several simulations
with increasing NLOS ratios from 0 up to 50 percent of all
measurements. This exceed the outlier proportion of former
publications by far, although the impact of each is significantly
smaller due the absolute character of position measuring. To
minimize the influence of a specific random initialization on
the error distribution we reiterated each experiment 20 times
with different random seeds and calculated our error metrics
over all runs.

Through the perfect ground truth, the error distribution can
be precalculated and approximated with a GMM like shown in
(2). The mixture model’s parameters can be applied to Max-
Mixture as well as generalized iSAM. Despite DCS and SC
work with their only parameter fixed, they also benefit from the
off-line GMM estimation through their Gaussian component
which is set to the LOS part of the GMM. The non-robust
graph uses the covariance of a fitted 1-component Gaussian
model for optimal performance.
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Fig. 2: The resulting error distribution (blue) of a run with 25% NLOS
measurements can be easily fitted with a 2-component Gaussian mixture
model (orange).

The GTSAM implementation of iSAM2 which we use,
provides a Gauss-Newton optimizer as well as the Dog-Leg
trust region method. According to our observation the choice
of the optimizer can considerably impact the results, so we
decided to apply the optimizer with the best RSME results
independently for each algorithm. Therefore, all algorithms
except generalized iSAM use Gauss-Newton instead of Dog-
Leg. This irregularity might be caused by the Jacobian (see
Figure 3) that changes its sign and crosses zero which is caused
by the exact GMM’s implementation. While Gauss Newton gets
stuck when the Jacobian comes close to zero, the approximated
quadratic term of Dog-Leg can still improve the estimation.

IV. RESULTS

Figure 4 summarizes the results after 20 runs with our
simulated localization problem for each NLOS ratio. The
random error distributions are identical for each algorithm
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Fig. 3: The Jacobians of the compared algorithms for an one-dimensional
example. The GiSAM implementation with a GMM leads to first error
derivation with a changing sign. SC’s Jacobian can not be plotted due its
two-dimensional structure.
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Fig. 4: Comparison of the resulting mean/median/max RSME for the tested
algorithms with different NLOS ratios. Due to the huge range of values, mean
and max error are scaled logarithmically. Except for the results of DCS all
outperform the non-robust solution over the whole parameter set. Altogether
generalized iSAM shows the best performance especially for higher ratios of
reflected measurements.

but were recalculated every iteration. Although we show the
median and maximum RSME too, the mean error is our main
performance criterion.

A. Switchable Constraints

For smaller NLOS ratios up to 25%, SC keeps the RSME
quite low and provides the best median performance together
with DCS. Additionally the maximum error in this range is the
smallest overall. Even in the run with 50% outliers it decrease
the error significantly compared to the non robust solution.



This is remarkable if you remember that SC is based on the
decision if a measurement is a outlier or not, which is difficult
under this conditions.

B. Dynamic Covariance Scaling

While achieving a low mean RMSE in low NLOS conditions
close to SC, the algorithm fails at higher ratios in such a drastic
way it raises doubts that it’s identical to SC. A deeper look to
the results supports the idea, that the inconsistent performance
could be caused by local minima in which the optimizer gets
stuck. The strong down weighting of greater errors causes
a very fast descending first derivation which inhibits the
optimizer in his progress. Moreover, in our experiment it tends
to be not able to recover from this minima during further
iterations. Especially for high NLOS ratios, the time consuming
optimization process for the additional variables in SC seems
to prevent this phenomenon. But for final conclusions further
work on this topic is required.

C. Maximum-Mixture

In its coarse trend the Max-Mixture approach resembles the
non robust Gaussian factor graph with a much smaller influence
of the ascending NLOS proportion. Although it can’t improve
the performance for small ratios, the robustness for high ones
around 50% exceed even SC. The maximum error however is
slightly increased compared to the Gaussian baseline but the
effect to the mean RSME seems bounded.

D. Generalized iSAM2

The GiSAM algorithm with a mathematically exact imple-
mentation of a GMM appears to be the best in this scenario.
Generalized iSAM can’t reach results of SC and DCS at NLOS
ratios between 0% and 10% but shows remarkable low error
values at higher ratios. Also the maximum RSME is close to
the Gaussian factor graph.

V. CONCLUSION

SC, MM and GiSAM have shown their capability to improve
factor graph based sensor fusion with non-Gaussian errors. SC
with rejecting as well as MM/GiSAM with modelling outliers
are able to decrease the RMSE compared to the non-robust
graph. While the rejection works better at small outlier ratios
the modelling does it at high. Generalized iSAM provides the
best total performance but has an awfully complex Jacobian
which works only with the Dog-Leg optimizer. Our further
research will try to improve this through the integration of
other mathematical models for error distributions.

DCS on the other hand seems to have serious issues with
high NLOS ratios. A high amount of outliers that are bounded
their range is nothing that occur in typical SLAM scenarios,
so it’s possible that previous comparisons like [10] doesn’t
noticed this difference to SC. In addition the structure of range
only measurements leads to probability distributions in shape
of intersecting circles with multiple local minima in case of
DCS. Based on the results of our experiment the algorithm
seems to be not suitable for this kind of problem.

Also, we have to notice that the maximum error of the most
robust algorithms is higher than the one of the non-robust
factor graph. This effect occurs at all outlier ratios and could
be a problem for critical applications where a single wrong
estimation can cause damage to the system or its environment.
The recording of a real dataset is another next step to verify
the characteristics of our simulation and this first results.

Finally it should be mentioned that SC and DCS were
tested with fixed parameters and MM and GiSAM require
a estimation of the underlying distribution. To combine an
on-line distribution estimation with a factor graph would be
another important improvement. The first step in this direction
is already done with [13]. However, their work addresses only
unimodal zero-mean distributions with a huge amount of off-
line learning.
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