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Abstract— Localizing a mobile robot in a given map is a
crucial task for autonomy. We present an approach to localize a
robot equipped with a camera in a known 2D or 3D geometrical
map that is augmented with semantic information (e.g., a
floor plan with semantic labels). The approach uses semantic
information to mediate between the visual information from the
camera and the geometrical information in the map. Moreover,
semantic information is robust to appearance changes like
lighting conditions. Instead of solely relying on salient semantic
landmarks (i.e., “things” like doors) we also exploit “stuff’’-
like semantic classes such as wall and floor. The presented
localization approach builds upon the idea of computing a
semantic segmentation of an incoming camera image using
a Convolutional Neural Network and subsequent matching
to semantic views synthesized from a map. We give details
about the algorithmic approach on how to semantically segment
images, synthesize images from the semantic 2D or 3D map,
the matching between images from both sources, and the
integration in Monte Carlo localization. Further, we provide a
set of proof-of-concept experiments and evaluate the influence
of the selected set of semantic classes. To work towards the
usage of hand-drawn sketches as input map, we also evaluate
the robustness of the presented approach to map distortions.

I. INTRODUCTION

The ability to recover and maintain knowledge about the
own position in the world is essential for mobile robots. The
usage of a priori known maps can significantly facilitate this
task, reducing the SLAM problem to a pure localization.
Moreover, if we can use cameras for this localization task,
the expected sensor costs are small and we can also transfer
this capability to other mobile sensor devices than robots. But
where do the maps for visual localization come from? Instead
of mapping the environment with cameras in advance, in this
paper, we work towards exploiting other sources of maps:
known 2D floor plans and hand-drawn top-view sketches of
the environment. To allow for comparison with the actual
camera view, the maps are augmented with semantic infor-
mation about walls, doors, and other objects.

The way we use the robot’s current camera image and the
map information for localization is partially inspired by the
navigation system of desert ants presented by Moller [1]. As
climatic conditions doesn’t allow the usage of pheromone
traces, desert ants developed a vision-based navigation ap-
proach: Before they leave their nest’s location, a snapshot
(home view) of the environment is taken. After an ant has
finished the foraging, it has to find its way back to the nest.
Therefore, it starts to compare the home view with synthetic
views: distorted current views that are obtained by trans-
forming the current image into possible motion directions
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— the most similar image pair then indicates the correct
homing direction. Details on a technical realization of the
ant algorithm on mobile robots are provided by Méller [2].
In the here presented approach to localization using the
given quite different modalities (a 2D plan and a visual
sensor), we exploit recent advances in Deep Learning to
assign pixel-wise semantic information to images. Semantic
information serves as an intermediate layer between a current
camera image and a geometrical map in order to facilitate the
matching between both modalities. Semantic labels represent
the world in a rather abstract manner; this prevents a camera-
map matching algorithm from being sensitive to appearance
changes caused by lighting or rotation (e.g., swivel chair).
For a 2D map, semantic information about walls, floor, win-
dows, etc. can be automatically extracted from construction
plans or feasibly drawn into 2D floor plans by humans.
Humans can also easily integrate additional semantic classes
like furniture or plants. Starting from this 2D map, we create
a semantic 3D map using knowledge about the occurring
classes. Localization is done in a Monte Carlo manner using
synthesized semantic views from this map. A future use
case would be a human operator sketching the path for a
robot’s delivery task on a tablet and adding some semantic
information, encoding information like: “Follow that way
and go left after the third tree”.
In this paper, we
« present an approach to localization in given 2D semantic
maps using synthesized semantic images and ConvNet-
based semantic segmentations from a robot’s camera
« describe the implementation in a Monte Carlo localiza-
tion system
o provide proof-of-concept experiments as well as an
evaluation of influences of chosen semantic classes and
robustness to geometrical map errors

II. RELATED WORK

The task of localizing camera images within a given map
by image synthesis can be addressed in different ways.
Our previous work [3] uses the geometrical information
of a map for a depth image synthesis at desired positions
with a subsequent comparison to a current greyscale cam-
era view. Instead of using distance information of a map
directly, Wolcott and Eustice [4] use a map enhanced with
intensity information to synthesize greyscale-similar images
for a subsequent comparison to the current view, and the
approach of Pascoe et al. [5] builds upon a map with colour
information for image synthesis. Caselitz et al. [6] show
an alternative approach for the matching of a given map
with a current camera image: Instead of using the map to



Fig. 1.
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Left: Accurately hand-drawn 2D semantic top-view map of an indoor environment, consisting of 10 different object classes. Annotated are the

14 ground truth positions of the robot during our real world experiments. This map is used to generate a 3D semantic pointcloud (centre), in which 2D
semantic panorama images are synthesized (top right). Bottom right: Camera images are fed into a CNN for image segmentation, resulting in a semantic
panorama image of a real world scene. Comparison of both semantic panoramas yields a image similarity and enables localization.

generate synthesized images, they used the camera image
stream to reconstruct the environment’s geometrical structure
for a subsequent point cloud matching.

Another way of localization within a given map is to ex-
ploit the semantic information of the environment. Kuiper’s
spatial semantic hierarchy paradigm [7] uses semantic in-
formation as a topological map. Vasudevan et al. [8] add se-
mantic information to observed objects (doors and household
objects) in order to build a hierarchical topological-semantic
map, with which they can annotate places (e.g., office,
corridor). Another approach is landmark-based localization.
Atanasov et al. [9] and Anati et al. [10] use object detectors
to recognize landmarks, which are annotated in the given
map, followed by particle filter localization. Our work is
closest related to [10]. Through the application of a soft
object detector, they generate a heatmap with semantic in-
formation about the occurring objects for a set of panoramic
camera images and compare them with the expected heatmap
at each particle location. In contrast, we propose a camera-
based semantic localization algorithm which does not rely
on specific, distinctive object classes, but rather works with
non-expressive classes like wall and floor. Furthermore, we
evaluate the robustness of our systems towards distortions of
the given semantic map. This opens a variety of use cases like
localization within a human-made sketch of the environment.

III. ALGORITHMIC APPROACH

Fig. 1 illustrates the involved steps. Starting from a 2D
floor plan with semantic labels, a 3D map is created. For
an assumed camera pose, we can synthesize a label image.
Given a camera image taken from the real robot pose, we can
compute a second label image using a semantic segmentation
algorithm. By comparing the two label images, we can evalu-
ate the assumed robot pose. This approach directly integrates
in the well-know Monte Carlo localization (e.g., see [11]
for an introduction): each sample provides an assumed robot
pose that can be evaluated using the above approach.

A. Synthesizing images from a given 2D semantic map

The task is to localize a robot within a 2D semantic map.

The map can be automatically generated (e.g. from floor
plans), augmented by humans (e.g., with the semantic labels)

or completely hand-drawn. In the later presented experi-
ments, a simple, colour-coded 2D map of the environment
is used (each class has a different colour). Given a 2D floor
plan, such a map can be easily created by a human with some
basic image editing software. All objects occurring in the
real world can be freely drawn within the map. Each object
class (e.g., wall, floor, table) is represented by a different
colour and is associated with a class-label and a minimum
and maximum height. With this information, the 2D semantic
map can be converted into a 3D semantic point cloud. A 2D
semantic map and the corresponding 3D point cloud of an
indoor environment are shown in Fig. 1.

To synthesize an image given this 3D point cloud (with
associated semantic class labels) and a requested camera
pose, we follow the straight forward approach described in
[3]: Each 3D point’s distance is projected onto a unit sphere
centred at the requested camera pose. The azimuthal and
polar angles are discretized to the target image resolution.
By keeping only the class label of the point with minimal
distance for each direction, this spherical grid corresponds to
the synthetic label image; pixels without projected 3D points
are set to NaN values. In contrast to the representation used
in [10], this allows for seeing multiple objects on the vertical
image axis. Again, see Fig. 1 for an example.

This preliminary approach is easy to implement but its
runtime is linear in the number of 3D points. Presumably,
the runtime could be improved by the usage of computer
graphics techniques including ray tracing algorithms and
efficient data structures like k-d trees or octrees.

B. Semantic image segmentation

To be able to compare synthesized semantic images with
real world images, we need to associate semantic information
to each pixel in an image. This is a well known task,
called semantic segmentation, for which the currently best
performing methods build upon Deep Learning techniques.
We use the “Pyramid Scene Parsing Network (PSPNet)”
[12], which bases on a Convolutional Neural Network and
achieved first rank in ImageNet scene parsing challenge
2016. We used an out of the box CNN, trained on the
ADE20k dataset [13], which includes 150 object classes,



containing both indoor and outdoor class instances. Given an
image as input, the PSPNet associates each pixel with one of
the 150 object classes. Afterwards, the resulting semantically
segmented images are transformed into spherical coordinates
in order to correspond to the synthesized-semantic-image
shape and thus enabling a holistic image comparison between
both images (see Fig. 1).

C. Holistic image comparison

We decide to use a holistic image comparison instead of
landmark based approaches, since we also want to exploit
often occurring, less-expressive classes like walls or floor
(“stuff” in contrast to “things” [14]) for localization. Conse-
quently, a key component of our approach is an expressive
similarity metric for a holistic comparison of semantic im-
ages. Therefore, a weight matrix is used that scores each
assignment of pixels of the 150 ADE20k classes used by the
PSPNet to pixels with classes present in our 2D semantic
map. Currently, the values of the weight matrix are set
empirically based on the following three key concepts:

1) Soft class matching: Full similarity between matching
classes (e.g., desk and table) results in a score of 1,
whereas partial similarity between related classes (e.g.,
chair and sofa) results in a score between 0 and 1.

2) Weighted class significance: Often occurring classes
(e.g., wall or floor) are not expressive, leading to a
smaller score between 0 and 1.

3) Class matching penalty: Overlapping of two contra-
dicting classes leads to a score between -1 and 0. Pe-
nalization of, e.g., overlapping floors and walls results
in a precise distance measurement to nearby walls.

Synthesized and segmented images are compared pixel-wise
with the following score function:

Zpixels Wi, j
Zpi:vels
where w;; is the weight/score for the linkage between class
1 from a segmented image and class j from a synthesized

image. With a similarity of 1, the two images are identical.
Negative similarities are set to 0.

similarity =

6]

D. Monte Carlo localization

Algorithm 1 gives details on how the described image
synthesis and comparison approach integrates in Monte Carlo
localization. The main loop in line 3 processes each image
and applies the described image synthesis and comparison. A
semantic segmentation .J; is computed for the current camera
image I; (line 4). We use two different strategies to generate
a particle heading direction.

1) Odometry heading: Either we sample for each particle

(the loop starting in line 6) odometry and compare
a synthesized semantic image S with the semantic
segmentation .J; using equation 1 (line 17).

2) Visual compass: Or we apply for each particle an
image comparison between .J; and multiple S with
different directions and use the direction with highest
image similarity as the particles direction (similar to a
visual compass).

Algorithm 1: Semantic Monte Carlo localization

Data: Semantic 3D map M, image sequence I7.,, odometry
measures Uy.p,
Result: Particle set P, each p; € P is a robot pose

// initialize particle set
1 P <« initParticles()
Scache < prepareSynthImageCache(M)
// process each image
for t=1:ndo
J¢ < computeSemanticSegmentation(/)
Eqche < prepareSimilarityEvaluationCache(M)
foreach p; € P do
// sample motion from odometry
7 p}‘ < applyOdometry(p;, Ut)
// query cache for existing similarity
evaluation E of this pose

»

= 7 T NN

8 if isinCache(E.qche, p}‘ ) then
9 E + queryCache(E qche, p;.")
10 else
// query cache for existing
synthesized image
11 if isInCache(SmChe,p}l) then
12 ‘ S « queryCache(Scache, PY)
13 else
14 S < synthesizelmage(M, p“;')
15 Seache —insertinCache(S,yche, S, pY)
16 end
// compare images
17 E < comparelmages(J¢, S)
18 Ecqche <insertinCache(E.qche, pY, E)
19 end
// obtain sampling weight from E
20 wj — getWeight(£)
21 end
// importance sampling
22 P <+ importanceSampling(w, P)
23 end

Both strategies are described in detail in [3] and are evaluated
in section IV. The resulting similarity is used to compute
a weight w; for the particle resampling in line 22. For
resampling, we use the low variance sampler from [11].

A major bottleneck for runtime could be the image synthe-
sis (particularly since we use the straight forward approach
described in section III-A). To keep runtime feasible, the
above algorithmic listing includes two caching stages to
exploit the property that many particles are very close to
each other: S ,che stores all already synthesized images, its
lifetime corresponds to the lifetime of the map. The second
cache E.qcpe holds the comparison result for a synthesized
image and a current camera image. It is cleared with each
new camera image. To effectively use these caches, we have
to discretize the set of possible poses. Dependent on the
application, the synthesized images could also be computed
offline in advance. In our experiments, we precompute syn-
thesized images at a spatial resolution of 10cm in z and y
direction and 3° in angular direction.

IV. EXPERIMENTAL SETUP
In order to evaluate the robustness of our algorithm against
map distortions and the selected semantic classes, we applied

our semantic Monte Carlo localization approach in a set of
proof-of-concept experiments.



A. Experimental setup

An indoor scene with two labs, some smaller rooms and a
corridor serves as experimental environment. Building upon
an existing floor plan, we created a metrically exact semantic
2D map and manually augmented it with a set of basic object
classes. With the idea of a hand-drawn map in mind, we
constrained the number of classes in our semantic map to
10: wall, dividing wall, floor, door, window, table, chair,
cupboard, sideboard, and sink. The resulting semantic map is
shown in Fig. 1. For our proof-of-concept experiments, we
collected camera images, odometry and ground truth pose
data of our mobile robot at 14 different positions (see Fig. 1).

For data acquisition, we used a skid-steering mobile
robot equipped with a uEye UI-1240ML-C-HQ RGB camera
mounted on a pan-tilt unit; details on our mobile robot can
be found in [15]. By using a wide-angle lens, the camera
captures images with 76° vertical and 95° horizontal field
of view. Since the pan-tilt unit can be moved in the range
of approx. —90° to +90°, we were able to capture multiple
images at one location to enhance the field of view. For each
robot position, 7 camera images are semantically segmented,
transformed into spherical coordinates, and stitched into a
single 268° panoramic image. A high number of camera
images is used to avoid distortions at the image borders of
raw images (without rectification).

The choice of the weight matrix in the holistic image
matching is crucial. As the classes wall and floor appear
more often in an indoor environment, the score for a correct
match was reduced from 1 to 0.25, whereas, more expressive
classes have higher impact on the similarity score. A match
between wall/dividing wall and floor is scored with —1.
Thereby the image similarity receives a huge penalty if the
edges between floor and wall do not match in both images,
leading to a localization with correct distances to nearby
walls. Furthermore, we apply soft class matching as ADE20k
contains many similar classes, e.g., chair, armchair, seat,
swivel chair, stool, bench, sofa, etc.. All these classes need
to be linked to our general class chair, with a matching score
between O and 1. For our proof-of-concept experiments,
the matching scores (and thereby the weight matrix w) are
chosen empirically, following the design guidelines presented
in section III-C. As a baseline, we use an identity matrix, in
which all scores between classes are either O or 1. Complete
weight matrices are available upon request.

We conduct the following experiments:

1) Local and global localization. We run all setups on
two tasks: (1) “local” localization with known initial
position and 500 particles in the particle filter and (2)
“global” localization with unknown start position and
2000 particles. We choose a high number of particles
for the known initial position case, since we need
to apply high uncertainty (0=0.5m) to our robot’s
odometry due to the severe map distortions (see Fig. 2).

2) Visual compass vs. odometry heading.

3) Scaling of the semantic map with factors ranging
between 1.1 and 1.5 in one direction and 0.91 and

0.67 in the other direction (see Fig. 2).

4) Shear of the semantic map in both directions with a
factor between 0.1 and 0.5 (see Fig. 2).

5) Variation of classes in the map with three cases: (1)
construction basic: containing wall, dividing wall and
floor; (2) construction extended: containing case (1)
and door and window; (3) furniture: containing table,
chair, cupboard, sideboard and sink.

6) Variation of panoramic field of view with following
steps: 50°, 100°, 150°, 200° and 268°.

We conduct 10 runs of each experiment to account for the
stochastic nature of Monte Carlo localization. We use the
Euclidean distance to the ground truth position for evaluation
metric and compare against plain odometry measures of our
mobile robot.

Fig. 2.

Left: Original 2D semantic map (see Fig. 1) is shown dark blue.
The five overlaid images depict a map sheared with factors ranging between
0.1 and 0.5. Right: The same for scaled maps with factors ranging from
0.91 to 0.67 in x direction and 1.1 to 1.5 in y direction.

B. Experimental results

Evaluation results of the presented approach using the
visual compass and odometry heading strategy are shown
in Fig. 3 (left). Both strategies result in lower maximum
and average pose error than the plain odometry. The visual
compass based strategy achieves high localization accuracies
with distances to ground truth positions constantly below
30cm, at some locations close to zero. Since our holis-
tic image comparison depends on a reasonable alignment
between synthesized image S and segmented image Ji,
the multiple sampled directions in visual compass result
in more precise and repeatable localizations. Comparison
of average particle distance and average weighted distance
shows, that our image similarity metric is feasible, since
particles with a higher weight are closer to ground truth
positions than particles with a lower weight. In some (not
shown) experiments the odometry heading strategy provided
better results, presumably due to visual aliasing that can
occur for the visual compass method. In summary, the visual
compass strategy achieves the overall better results and is
therefore used in all following experimental results.

The influence of map scaling (see Fig. 2) is shown in the
first row of Fig. 4. As expected, errors rise with growing
scaling factors. Up to a scaling by factors 1.40 & 0.71, a
reliable localization, with considerably smaller errors than
robot’s odometry, is possible. Global localization is achieved
within the first three images for all cases.
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Unmodified semantic map 0.160 m (0.023 m) 0.120 m (0.020 m) 0.260 m
0.267m (0.034 m) 0.176 m (0.033 m) 0.488 m
Scaling by 1.20 & 0.83 3.036 m (0.078 m) 0.363m (0.052 m) 1.052m
Scaling by 1.30 & 0.77 6.836 m (0.671m) 0.569m (0.073 m) 1.625m
Scaling by 1.40 & 0.71 8.376 m (1.565m) 0.686 m (0.097 m) 2.197m
Scaling by 1.50 & 0.67 8.352m (1.991 m) 1.176 m (0.122m) 2.768 m
Shearing by 0.10 0.287m (0.028 m) 0.165m (0.026 m) 0.632m
Shearing by 0.20 1.396 m (0.039 m) 0.391m (0.042m) 1.213m
2.956 m (0.060 m) 0.534m (0.056 m) 1.808 m
Shearing by 0.40 3.441m (0.152 m) 0.790m (0.079 m) 2.407m
Shearing by 0.50 4.063 m (0.388 m) 1.234m (0.118 m) 3.006 m
200° field of view 0.160 m (0.024 m) 0.126 m (0.023 m) 0.260 m
150° field of view 0.852m (0.169 m) 0.189m (0.023 m) 0.260m
100° field of view 0.969 m (0.210m) 0.284 m (0.026 m) 0.260 m
50° field of view 1.712m (0.082m) 0.367m (0.051 m) 0.260m
Classes construction ext. 0.174m (0.024 m) 0.186 m (0.024m) 0.260 m
Classes construction basic 1.956 m (0.025m) 0.252m (0.027m) 0.260 m
Classes furniture 2.674m (1.069 m) 0.678 m (0.266 m) 0.260m

Fig. 3.

Left: Results for particle heading strategies visual compass and odometry heading (described in III-D) applied to the unmodified semantic map.

Each blue (green, yellow) curve shows the median result of the (x,y) pose error of the particle with the highest weight (weighted average particle distance,
average particle distance) over ten runs and is augmented with boxplots for each image of the sequence (25th and 75th percentiles, whisker scale is 1.5,
outliers are shown as circles). Right: Comparison of highest weight particle, minimal distance particle and odometry by means of mean Euclidean distance
to ground truth positions over ten runs under usage of the visual compass method for local localization.

The influence of map shearing (see Fig. 2) is shown in the
second row of Fig. 4. Our semantic Monte Carlo localization
achieves small localization errors and high repeatability up
to a shearing with factor 0.4. A shearing factor of 0.5 leads
to severe localization error fluctuations between single runs.
Furthermore, localization gets lost in the last three images.
This is caused by ambiguous image similarity results for
image 12, leading to different resulting paths. Nevertheless,
global localization is achieved for all cases within first three
images. Summarizing, our semantic Monte Carlo localiza-
tion achieves remarkably good localization results for map
shearing with factors up to 0.4.

The influence of horizontal field of view is shown in
the third row of Fig. 4. With only 50° field of view, a
wide fluctuation between localization errors are observable,
since information provided by the image is very limited.
Still, our semantic Monte Carlo localization algorithm is
able to localize from an unknown initial position, as in
all other cases. With more than 150° the image contains
enough information for a reliable localization. Summarizing,
a large field of view panoramic image is crucial for reliable
localization results.

The influence of classes within the semantic map is
shown in the fourth row of Fig. 4. Localization with only
furniture classes did not work in this experiment: Without
walls, the synthesized images contain a lot of objects from
adjacent rooms, which are not present in the real camera
images (since there are walls, of course). Furthermore a lot
of information is missing in scenes, for which our robot
mainly observes walls and floor. On the other hand, walls,
dividing walls and floor (“construction basic*) offer enough
information for a coarse but reliable localization in the
margin of our robot’s odometry. With additional information
from classes window and door (”construction extended®),
localization accuracies rise as expected. Summarizing, our
semantic Monte Carlo localization depends on the classes
wall and floor, which offer enough information for a rough

localization and prevent confusing views into adjacent rooms.
Additional classes facilitate a precise localization.

The achieved localization results are summarized in Fig. 3
(right). The baseline approach, an identity matrix for image
comparison, is sensitive for map perturbations, thus reliable
results are only achieved within slightly modified maps. The
minimal particle distance shows, that the ground truth posi-
tion is not lost in most cases, but the particles rather diverged
into multiple clusters. Sometimes the highest weight particle
is located in a cluster far from the ground truth position
because the identity matrix leads to ambiguous similarity
measurements. Therefore, the choice of the weight matrix is
essential for our semantic Monte Carlo localization, since it
considerably improves robustness against map perturbations.

V. DISCUSSION

In this paper, we presented a semantic Monte Carlo
localization algorithm based on holistic image comparison
of a synthesized map view and the result of a semantic
image segmentation. A set of prove-of-concept experiments
showed its ability to localize a mobile robot, equipped only
with a RGB camera and odometry sensors, within a given
2D semantic map. Furthermore, we applied a wide range
of perturbations to the given semantic map, in order to
investigate our system’s robustness. Experimental results are
promising, since reliable local and global localization is
achieved in a wide range of map deformations. Additionally,
our semantic Monte Carlo localization algorithm does not
depend on distinctive classes or landmarks, but rather on
common classes like walls and floor, with which it achieves
a rough localization. Also, our system depends on a large
field of view panoramic image.

Currently, a key part of our localization algorithm, holis-
tic image comparison, is handcrafted and uses empirically
chosen parameters (e.g. weight matrix w). Presumably, our
system could greatly benefit from better image similarity
measurements, e.g., using (supervised) learning of class
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Fig. 4. First row: Results for synthetic scaling of the original semantic map (see Fig. 2). Second row: Results for synthetic shearing of the map (see

Fig. 2). Third row: Results for different horizontal field of views. Fourth row: Results for variation of classes in the semantic map with three cases (see
IV-A for more information). Each orange curve shows the (x,y) pose error of the robot’s odometry. Each blue respectively yellow curve shows the median
result of the (x,y) pose error of the particle with the highest weight over ten runs and is augmented with boxplots for each image of the sequence (25th
and 75th percentiles, whisker scale is 1.5, outliers are shown as circles) in the case of local respectively global localization.

weights and mutual influences. Further, the evaluation of the
different strategies for heading direction estimation (visual
compass or odometry) motivates the development of a com-
bined approach as direction for future work.

Based on the achieved results, our future work aims at
applying our semantic Monte Carlo localization algorithm to

real

world scenarios. One promising use case is localization

in truly hand drawn sketches, since our localization algorithm
is robust against map deformations, enabling a variety of
applications in human robot interaction, e.g. navigation of
autonomous transportation robots in a construction site based
on a sketch of the surroundings. Another reasonable use case
is localization within a building based on fully automatic
preprocessed floor plans.
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