Siinderhauf, N., Konolige, K., Lacroix, S. & Protzel, P. (2005). Visual Odometry using Sparse
Bundle Adjustment on an Autonomous Outdoor Vehicle. In Levi, Schanz, Lafrenz, Avrutin
(Hrsg.), Tagungsband Autonome Mobile Systeme 2005, Reihe Informatik aktuell, Springer Verlag,
S. 157-163.

Visual Odometry Using Sparse Bundle
Adjustment on an Autonomous Outdoor Vehicle

Niko Siinderhauf!, Kurt Konolige 2, Simon Lacroix 3, Peter Protzel!

ITechnische Universitat Chemnitz
Fakulat fir Elektrotechnik und Informationstechnik
niko.suenderhauf@informatik.de
peter.protzel@etit.tu-chemnitz.de
2SRI International, Menlo Park, USA
konolige@ai.sri.com
SLAAS/CNRS, Toulouse, Frankreich
simon.lacroix@laas.fr

Abstract. Visual Odometry is the process of estimating the movement
of a (stereo) camera through its environment by matching point features
between pairs of consecutive image frames. No prior knowledge of the
scene nor the motion is necessary. In this work, we present a visual odom-
etry approach using a specialized method of Sparse Bundle Adjustment.
We show experimental results that proof our approach to be a feasible
method for estimating motion in unstructured outdoor environments.

1 Introduction

Estimating the motion of a mobile robot is one of the crucial issues in the SLAM
problem. Besides odometry, inertia sensors, DGPS, laser range finders and so on,
vision based algorithms can contribute a lot of information. Visual Odometry
approaches have recently been used in different ways [1] [2]. However, the basic
algorithm behind these approaches is always the same: The first step is detect-
ing feature points (or interest points) in the images. This is usually done using
the Harris Corner Detector [3] which has profen to be a very stable operator in
the sense of robustness and invariance against image noise [4]. The second step
is to match interest points between the left and right images of a single stereo
frame and between two consecutive frames. This matching can be done using a
correlation based method as in [1].

After interest point detection and successful matching we can go on and deter-
mine the motion the camera undertook between two pairs of images. A variety
of methods is available, but in this paper we will concentrate on a method called
Sparse Bundle Adjustment.

2 Sparse Bundle Adjustment

Bundle Adjustment provides a solution to the following problem: Consider a set
of world points X is seen from a set of cameras with camera matrices P;. Each

camera projects X; to x;; = P;X, so that x;; are the image coordinates of the
j-th world point in the i-th image.

What are the ”optimal” projection matrices P; and world coordinates X; so
that the summed squared reprojection error is minimal?

Thus we want to solve
Ifglélj Z d(PlX], Xij)2 (1)
ij

where d(x,y) is the Euclidean distance between image points x and y.

Bundle Adjustment is a non-linear minimization problem which can be solved
using iterative non-linear least squares methods such as Levenberg-Marquardt.
A very efficient solution to the problem has been proposed by [5] and imple-
mented by [6].

Solving (1) with Levenberg-Marquardt involves iterative solving of normal equa-
tions of the form

JT35 =JT¢ (2)
where J is the Jacobian of the reprojection function fap) = X. f takes a =
(af,al,...al)T and b = (b bl ... bI)T as parameters and returns X =

(x5, x%,,...xL)T, Here a; is the 6-Vector of the currently estimated parame-

ters of the i-th camera, b; is the 3-vector with the parameters of the j-th world
point respectively. The projected image coordinates of world point j in the i-th
image (according to a; and b;) are given by X;;.

X1

X
14
X1

X24
X31

X34
camera parameters feature
pPa rameters

Fig. 1. Structure of a sparse Jacobian matrix for a bundle adjustment problem con-
sisting of 3 cameras and 4 feature points. The gray entries are all zero.

The Jacobian J of f is made up of entries 0%;;/0ay and 0%;;/0bs. One may no-
tice, that 0%;;/0ay, = 0 unless ¢ = k and similar 0%;;/0bj, = 0 unless j = k. This
is simply because the projected coordinates of world point j in the ¢-th image
are not dependent on any camera’s parameters but the i-th and they neither
depend on any other world point but the j-th.

Given this, one verifies that J contains large blocks with O-entries (see figure 1).
In other words, J has a sparse structure. The Sparse Bundle Adjustment (SBA)
implementation as presented by [6] takes advantage of that very structure and
thus enables SBA to solve huge minimization problems over many thousands of
variables within seconds on a standard PC. The C source code is freely available
(under the terms of the GNU General Public License) on the author’s website
http://www.ics.forth.gr/ lourakis/sba.

3 Visual Motion Estimation using Sparse Bundle
Adjustment

Sparse Bundle Adjustment (SBA) as implemented in [6] solves the minimization
problem as stated in (1), not considering any uncertainty of whatever kind, as-
suming calibrated cameras and monocular image information.

We extended the original SBA implementation in a way that it can handle stereo
data input directly. We therefore had to change some internal algorithms and
datastructures, so that the routines take 4-vectors x;; instead of 2-vectors. The
additional two entries to these vectors are the image coordinates in the (right)
stereo image. This way, we do not necessarily have to provide proper initial esti-
mates for the world points X; or the camera poses P;. Although this impressively
demonstrates the power of Bundle Adjustment, it is of course not an reasonable
approach and should not be used in any seriously motivated application. Instead,
we should provide SBA with initial estimates for the camera pose acquired by
odometry or other sensor systems like inertial navigation systems, compass, or
GPS and initialize the 3D coordinates of the feature points by triangulation.
Starting with reasonable initial estimates speeds up the optimization process
significantly and may detain the optimization from stepping into a false local
minimum.

Besides the extension to stereo input, we also implemented a simple iterative
outlier rejection method. After SBA finished its minimization loop with the so-
lutions P* and X*, there is still an residual error €;; = d(P;Xj, x;;)% left for
every x;;. A simple outlier rejection is to discard all x;; where |e;; — €| > ko, for
any k > 0 where € is the mean of all residual errors and o, is the corresponding
standard deviation. kK = 1.5 was chosen empirically. After the so determined out-
liers have been removed from the input data, SBA is restarted using P* and X*
as initial estimates. The procedure is repeated for a fixed number of iterations or
until no more outliers are found. This process helps decreasing the mean resid-
ual error and is in many cases sufficient to discard outliers arising from false or
bad matches. However, as the experiments showed, it is a fairly naive approach,
computationally quite expansive, and may fail sometimes. We therefore favor a
more robust outlier rejection method, based on RANSAC.

After all these modifications, were able to use SBA for visual motion estima-
tion in two different ways:

1. Sliding Window SBA

2. full SBA

Sliding Window SBA The simplest and fastest estimation method is esti-
mating structure and motion parameters between two consecutive stereo frames
only. The overall motion is obtained by simple concatenation or ‘chaining’ of
the single estimates. Intuitively one will expect this to be fairly inaccurate, as
possible small errors will accumulate quickly.

To avoid the problems of simple chaining, we implemented a sliding window SBA
approach. Instead of optimizing for two consecutive images only, we choose a n-
window, e.g. a subset of n images which we perform SBA upon. The pose and
structure parameters estimated in this way are used as initial estimates in the
next run, where we slide the window further one frame. With that basic sliding
window approach, we would bundle adjust every consecutive n-window in the
sequence of the obtained images, even if the robot has not or only very little
moved while the images of the window were taken. Therefore another idea is to
only include those images into the window, which pose are more than a certain
threshold away from the pose of their respective predecessor in the window. The
final algorithm can be summarized as follows:

1. Starting from image I; find the closest image I, so that the motion between
I; and I;1 exceeds a certain threshold. This can be determined by pairwise
SBA between I; and I;, or, of course, using odometry data.

2. Add I;y to the window

3. Set i =i+ k and repeat from 1. until there are sufficient many (n) images
in the window

4. bundle adjust the window using the poses obtained in step 1 as initial esti-
mates

In this way a window size of two corresponds to the simple chaining approach.

Full SBA Full SBA optimizes the whole bundle of obtained images at once. It
determines camera poses and structure parameters for all recorded frames in one
big optimization loop. Although this should intuitively yield the best results, it
is, due to its complexity, an off line (batch) method not usable to continuously
update the robot’s position as he moves along.

4 Experimental Results

During all experiments we used the triangulated world coordinates as initial es-
timates for the world points, but did not initialize the camera poses. Instead, we
assumed the cameras did not move at all. The outlier rejection was enabled and
limited to 10 iterations.

We tested our algorithms on a dataset of 80 images acquired in an outdoor envi-
ronment using a stereovision bench made of two 640x480 greyscale cameras with

2.8mm lenses and a baseline of approximately 8cm. We would like to acknowl-
edge Max Bajracharya from JPL for providing us with the images and data.
Ground truth data was extracted from using a Leica ”total station” surveying
instrument. Between 18 and 308 feature points were visible in each image, with
106 on average. Each point was visible in only 4 consecutive images on average.

Sliding Window SBA The dataset was tested with several window sizes and
motion thresholds.

The average deviation from the ground truth position for all tested methods was
approximately 23 cm (2.3 % of traveled distance). The error tends to increase
slightly with increasing motion threshold above 20 cm because fewer feature
points can be matched between two consecutive images and the quality of the
matches drops with increasing movement between the images. However, the dif-
ferences between the different parameter settings are not significant. They are
far below 1% of the traveled distance. The camera was mounted very close to
the ground and was tilted down, so only few feature points were identified (and
succesfully tracked) in a feasible distance from the robot to compare the different
window sizes and motion thresholds.

motion
threshold min. max. mean error

0 22.30 22.61 22.37
10 22.3723.35 22.67
15 22.03 22.33 22.18
17 22.49 22.97 22.68
20 22.07 23.01 22.53
25 2248 24.05 23.11
30 23.19 24.37 23.76
35 23.04 24.27 23.29
40 23.5724.76 24.32

Table 1. Distance from the ground-truth end pose in cm for sliding window SBA

Full SBA The position estimated by full SBA was 20.48 cm away from the
ground truth position which is slightly better than the above results, as we ex-
pected. The estimation involved 2129 3D points and 8462 image projections.
6947 parameters had to be estimated (3 for each 3D point and 7 for every cam-
era pose). Our implementation took 6 iterations to detect and remove outliers.
On a 1GHz P3 machine running Linux, the algorithm finished in 4.5 minutes.
This rather long time is caused by the computationally expansive simple outlier
rejection method and the stereo-extension forcing us to use SBA in the inefficient

Fig. 2. Several estimated trajectories for the outdoor dataset. The thick black line is
the ground truth.

‘simple driver’ mode. The required runtime may be reduced if more care is taken
for runtime efficiency.

We also tested the algorithms with a sequence of indoor images. The results
there were even better than for the outdoor sequence, mainly because feature
points were visible longer and could be matched more accurately.

5 Conclusions and Further Work

The error, 2.3 % of the traveled distance for the outdoor data, proves SBA to be
a feasible method for visual motion estimation. The tested datasets did not show
significant differences among the different parameter settings. However, as a rule
of thumb one should not use simple chaining (resp. window size 2) as the error
tends to be higher than with window sizes 3 or 4. Window sizes above 4 or 5 do
in general not help to improve the result, as feature points may in average not
be tracked for more than 5 images. This, of course, is highly dependent on your
matching and tracking algorithm, image quality and the environment. Larger
windows increase computation time drastically, so a tradeoff between computa-
tional costs and accuracy has to be considered.

In further work, the methods will be refined to make them more robust
against outliers arising from false matches. This will help decreasing the error
and, if implemented efficiently, can even decrease overall computation time.

A possible way to achieve this is to use RANSAC [7] to estimate hypotheses for
motion between two consecutive frames.

We can use three 3D point correspondences (from before and after the motion)
to determine a least squares estimate of the 6D motion parameters as shown in
[8] or [9]. A RANSAC approach will then be able to find a consistent estimate
of the motion parameters, preventing the negative influence of outliers in the
3D point data. SBA can then be used to refine the solution on the resulting
inlier sets of several consecutive frames at once. The techniques we presented
here (sliding window, motion threshold) should of course be used further in such
an approach.

Visual Odometry should also be fused with other motion-estimating sensors

or methods, such as DGPS or laser-scanmatching. To achieve this (using an
Extended Kalman Filter) it is necessary to acquire the covariance matrix of
SBA’s results. This, in return, can be achieved by propagating the covariance
matrix of the initial estimates (structure and motion) through SBA. In its current
implementation, SBA uses the identity matrix as covariance matrix for the world
points. It should be possible to use any arbitrary covariance matrix instead (see
[6]). As pointed out in [5] in Algorithm A6.4, the covariance matrix for the
camera parameters is the pseudo-inverse of SBA’s internal matrix S. One can
use the matrices V and U in the implementation to calculate S as given in [5].

Another interesting idea is to exploit knowledge about the robot’s current
environment in the feature selection process. For instance feature points on ob-
jects that are known to be moving could be discarded. Feature points may also
be weighted in the estimation process by the type of terrain they are seen on.
Points on concrete or asphalt may be more reliable and useful than points found
in high grass (which is likely to move due to the wind). Finally, the feature de-
tection and selection process itself could be modified. For instance the methods
presented in [10] could improve feature quality significantly.

References

1. David Nister, Oleg Naroditsky, and James Bergen. Visual odometry. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2004), pages 652-659, 2004.

2. C. Olson, L. Matthies, M. Schoppers, and Maimone Maimone. Robust stereo ego-
motion for long distance navigation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR-00), pages 453-458, Los Alami-
tos, June 13-15 2000. IEEE.

3. M. Stephens C. Harris. A combined corner and edge detector, 1988.

C. Bauckhage C. Schmid, R. Mohr. Evaluation of interest point detectors, 2000.

5. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

6. M.ILA. Lourakis and A.A. Argyros. The design and implementation of a
generic sparse bundle adjustment software package based on the levenberg-
marquardt algorithm. Technical Report 340, Institute of Computer Sci-
ence - FORTH, Heraklion, Crete, Greece, Aug. 2004. Available from
http://www.ics.forth.gr/ lourakis/sba.

7. Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381-395, June 1981.

8. Shinji Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Trans. Pattern Anal. Mach. Intell., 13(4):376-380, 1991.

9. K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squares fitting of two 3-d point
sets. IEEE Trans. Pattern Anal. Mach. Intell., 9(5):698-700, 1987.

10. David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. In

International Journal of Computer Vision, 60, 2, pages 91-110, 2004.

=~

