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Abstract— Estimating its ego-motion is one of the most

important capabilities for an autonomous mobile platform.
Without reliable ego-motion estimation no long-term navigation
is possible. Besides odometry, inertial sensors, DGPS, laser
range finders and so on, vision based algorithms can contribute
a lot of information. Stereo odometry is a vision based motion
estimation algorithm that estimates the ego-motion of a stereo
camera through its environment by evaluating the captured
images.
In this paper, we want to give an integrated overview of
stereo odometry and the accompanying literature. We want
to emphasize the fact that stereo odometry is a chain of several
single subprocesses where each relies on its predecessor’s
results. A variety of exchangable methods for each of these
subprocesses is available. The key to a more accurate and
efficient stereo odometry lies in an integrated analysis of its
single subprocesses and the many algorithms available.

I. INTRODUCTION

First of all, why do we need stereo odometry in robotics?
Classical odometry that calculates the robot’s movements
from counting the revolutions of the robot’s wheels is often
deceived by wheel slippage, especially in outdoor terrain.
GPS information may not always be available with the
desired quality. Be it because the robot is operating in
areas where GPS transmissions can not be received like
in forests or mines or because the robot happens to be
operating on a planet that has not yet been equipped with
a set of GPS satellites, like on Mars. Cheng et al. [1] give
an interesting insight into the importance of stereo odometry
during NASA’s MER missions with the rovers Spirit and
Opportunity. Other recent applications of stereo odometry
on different types of robots in different environments can be
found in [2] [3] [4] [5] [6] [7] [8] [9].

Stereo odometry can determine the ego-motion of the stereo
camera in all 6 degrees of freedom that are possible in a 3D
world: 3 for translation and 3 for rotation.

The process of stereo odometry follows a certain scheme:

1) Acquire a pair of images from the left and right camera
of our stereo rig.

2) Find interest points (you may also call them features
or landmarks if you prefer) in the images.

3) Calculate the 3D coordinates of those interest points.

4) Match the interest points between images taken from
different viewpoints.

5) Use the matches to calculate the motion (which means

combined translation and rotation) between the two
viewpoints.
A very comprehensive and excellent textbook regarding
stereo vision is Hartley and Zisserman’s Multiple View Geo-
metry in Computer Vision [10]. Many basic but also many
advanced techniques and algorithms are discussed there.

II. FINDING AND MATCHING INTEREST POINTS

Finding interest points in the images is the first step
on our road to stereo odometry. Several approaches and
operators are known and we want to give a short discussion
about them.

The operators used to find interest points have to fulfill
certain demands regarding stability and repeatability. What
is meant by that? Suppose the projection of a distinct
worldpoint (let it be the corner of a desk) is marked as an
interest point in one image. Now after the camera undertook
a certain motion (including translation and rotation) the
same scene is seen from another viewpoint and projected
onto an image by the camera. Of course we expect our
operator to find the projections of the very same world
points to be interest points again, even if we look at the
scene from a different viewpoint. The same is true if the
camera just stands still and does not move. We certainly do
not want the interest points to flicker around in the image.
The most commonly used operator for finding interest
points is the well known Harris operator [11] which has
been proven to be very stable in the above sense by Schmid
et al. [12]. The standard way to match these interest
points between two images is using a similarity measure
of its neighboring pixels, for instance by determining the
correlation between them. See Martin & Crowley [13] for a
comparison of several correlation techniques. Another even
simpler way to measure the similarity of two neighborhoods
in two images is to use a sum-of-absolute-differences
approach where the corresponding pixels from the two
images are subtracted pairwise and the absolute difference
of their greyvalues is summed up. The computation of this
SAD is certainly faster then a naive implementation of a
correlation based method, although Nister et al. [2] argue
that their normalized correlation implementation using
MMX instructions is as fast as SAD.

All these rather simple techniques work well in cases where
the viewpoint between two images did only change a little,



so that no large scale changes or large rotations occured.
If that is the case, however, the standard Harris operator
[11] does not perform well anymore. Dufournaud et al. [14]
introduced a scale adaptive version of the Harris operator.
The application of this new operator to match feature
points between two images that differ by a signigicant
scale change up to factor 6 is described in [15]. This
paper also presents a descriptor that is invariant to rotation
and illumination changes. The presented matching results
are quite impressive, although no discussion regarding
the performance of the proposed method compared to
similar techniques is given in the paper. Jung [16] proposed
a sophisticated point matching algorithm based on the
scale adaptive harris operator. The points are not matched
pairwise, but groupwise. This leads to very stable and
reliable matches. This approach has also been used in [5]
and for SLAM on an airship [17].

Another, maybe better known approach towards scale
invariant feature descriptors is SIFT (scale invariant feature
transform) introduced by David Lowe in [18] and [19]. Both
SIFT and the scale adaptive Harris operator use scale-space
approaches [20] to achieve the desired scale invariance.
First successful tests of using SIFT features in a stereo
odometry framework have been described by Se et al. [21].
Mikolajczyk et al. [22] compared SIFT against other feature
descriptors and proved the expected high stability of SIFT.
A recent novel approach to detect rotation and scale
invariant features has been proposed and evaluated by Bay
et al. [23]. These so called SURF (Speeded Up Robust
Features) are found to be superior to SIFT regarding both
computational time and stability after first tests conducted
by the authors and also outperform the affin invariant
interest point detector proposed in [24].

Other interesting current developements like the work of
van de Weijer et al. [25] search for ways to incorporate
color information into the interest point detection and
matching process, as other methods simply work on a single
grayvalue channel.

As can be seen from this short list of different interest
point detectors and descriptors, a huge variety of algorithms
is available. Usually, a certain tradeoff between quality and
performance needs to be found. The standard method of
using Harris features and a simple SAD matching strategy
is very fast compared to more sophisticated approaches
like SIFT or SURF. On the other hand these rather simple
strategies may spawn many false or inaccurate matches so
that more time has to be spent for outlier removal or during
optimization of the motion estimates later on.

ITII. ERROR MODELING IN STEREO VISION

Given the two images of a stereo camera, several methods
are known to calculate the 3D coordinates for certain pixels
in the images. Scharstein and Szeliski [26] give a compre-
hensive overview of so called dense stereo algorithms that
try to calculate 3D information for every pixel in the image.
We want to take a short look at sparse stereo, i.e. we review

how to calculate 3D information for a single world point
only.

In the last section we repeated a variety of algorithms for
identifying and matching certain feature points between two
images. We can use these algorithms to find corresponding
points between the left and right image in a stereo camera.
Given the corresponding projections x = (u,v)? and x’ =
(u/,v")T of a world point X in the two images of a stereo
camera, how can we restore its 3D coordinates? First, the
internal and external camera parameters (focal length f,
principal point (p;,py)”, and length of the baseline between
the two camera centers B) have to be known. This can be
achieved by calibration (see [27] for exhausive material and
Matlab resources regarding camera calibration). Second, the
images have to be free of disturbances from lens effects and
rectified in a way that the two image planes are coplanar and
the pinpoint camera model [10] can be applied.

If we then write d = u—wu’, we can use the following homo-
geneous equation to get the world point (X/s,Y/s, Z/s)T
from an homogeneous point in so called disparity space
(u,v,d,1)T:
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Here, u and v are the image coordinates of x in the left
image. d is the disparity, d = u — v/, the difference of
the wu-coordinates (horizontal image dimension) of x’ in
the right image and x in the left image. The length of the
baseline is given by B.
If we write this matrix multiplication explicitly and
transform the result into non-homogeneous coordinates, we
yield:
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These equations describe the world point X where the
rays from the left camera center through x = (u,v)”
and from the right camera center through x’ = (u’,v’)T
intersect. Unfortunately, image sensors are of a discrete
nature, they are build from discrete pixels. So there are
no intersecting rays but intersecting pyramid-like bodies in
space. The intersection of these bodies is not a single point
as one might believe after seeing the above equations, but
another body in space. The real coordinate of the sought 3D
worldpoint can be anywhere inside this body. See figure 1
for illustration.

Although many interest point detectors return image
coordinates with sub-pixel resolution, these coordinates are
pertubed by a certain ammount of noise. This noise can
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Fig. 1. The triangulation error under central projection arising from the
discrete nature of imaging devices. The triangulated world point might be
anywhere inside the shaded diamond area.

be modeled to be Gaussian with mean p = (u,v)” and
covariance matrix
2
o; O
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where the o are the standard deviations in pixel coordinates
in z and y direction respectively.
Writing (2) as a vector function f
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we can set the covariance matrix of the input vector to be a
stacked version of (3):
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As f is a nonlinear function of a random vector with mean
(u,v,u’,v")T and covariance ¥, the covariance matrix of the
3D point calculated by f is given according to [10] as

Ysp = JBJT (6)
where J is the Jacobian matrix of f evaluated at
(u,v,u’,v")T:
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An early attempt to include such an error model of stereo
vision into motion estimation algorithms has been published
by Matthies & Shafer [28]. As [28] and [29] point out, this
gaussian error model is just an approximation of the real
random pertubation. However, this approximation is good

enough to be used in a maximum likelihood approach of
stereo odometry presented in [4]. We will come back to that
method during the next section of this paper.

IV. SIMPLE ESTIMATION OF MOTION
PARAMETERS

In the last sections we reviewed how interest points can be

found and matched between two images. Section III showed
how to calculate the 3D coordinate of a world point given
its two projections. We saw how an Gaussian error model
can be retrieved.
Suppose we are given two sets of rigid 3D-points X =
{Xl,Xg, N 7Xn} and Y = {Y17Y2, N ,Yn} where Xz
and Y; are the 3D-coordinates of the i-th interest point before
and after the motion. In the ideal case, there is a unique
solution for the motion parameters R and ¢ so that

However, as both X and Y will be disturbed by some
ammount of noise, we formulate: What is the translation ¢
and rotation R that transforms X into Y so that the mean
squared error €2 given by

1 n
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becomes minimal?

This problem of determining the relative motion that trans-
forms a set of 3D-points into another is well known in the
computer vision community. The literature knows several
solutions, like [30], [31], [32], [33] or [34].

A. A solution based on a singular value decomposition

The method described next was published in [35] and

bases on [31] and [32] but corrects a mistake which led to
wrong results in some degenerated cases.
The idea behind the algorithm is to decouple translation and
rotation. The coordinates of the points X; and Y; relative to
their centroid p, and g, will be equal before and after the
transformation. This is simply because the transformation by
R and t is an euclidean transformation and does not affect
the relative position of the points to each other. They are
moved like one rigid body. Given this information. we can
split the original problem into two parts:

1) Find R to minimize

2 _ 1 2
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2) Then the translation ¢ is given by t = p, — Rjig.

The minimization problem in (10) can be solved using the
singular value decomposition SVD:

1) Calculate the centroids

1 n
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3) Let UDVT be the singular value decomposition of
Yay, SVD(XE,,).

4)
I, if det(U)-det(V) =1
S=9 .. .

diag(1,1,...,-1), if det(U)-det(V) = -1
(14)

5)
R=USVT (15)

6)
t = py — Rt (16)

B. A Solution Based on the Essential Matrix

Another solution to the problem of determining the
motion parameters R and ¢ can be retrieved using the
essential matrix as proposed by [10] and [36].

Given two sets of matched image points =z =
{x1,%2,...,%,} and y = {y1,¥2,-..,¥Yn} the fundamental
matrix F' is defined by

xFy =0 a7

for every pairwise matched (x,y). An overview of several
algorithms for calculating the fundamental matrix can be
found in [10]. They should not be reconsidered here. Once
the fundamental matrix F is known, one can calculate the

essential matrix E:
E=KT'FK (18)

K is the camera calibration matrix which has to be known:
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where f is the focal length and (p.,p,)T is the principal
point. See [10] for details of the underlying pinpoint camera
model.

The sought relative motion parameters R and ¢ are contained
in the essential matrix and can be retrieved like this: The

singular value decomposition of E is given by

SVD(E) = U diag(1,1,0)V" (20)

The translation ¢ is given up to a scale factor and unknown
sign by uz where ug is the third column of U. Rotation
matrix R can be either

R=UuwvT (21)
or
R=UwWTy?T (22)
where
0 -1 0
w=[1 0 0 (23)
0 0 1

So with two possible solutions for each of ¢ and R there are
four ambigious solutions and an unknown scale factor to the
sought motion parameters. However, these ambiguities can
be resolved easily as any arbitrary reconstructed 3D point
will be in front of the second camera (described by R and
t) only for one of the four solutions.

C. A Maximum Likelihood Solution

In section III we reviewed how to formulate a Gaussian
error model for the triangulated 3D worldpoints. The above
methods however did not make use of this error model.
[4] proposed the following maximum likelihood approach
to solve for R and ¢ while taking the uncertainties in the 3D
coordinates of the worldpoints into account. This approach
has also been used during NASA’s MER missions on the
rovers Spirit and Opportunity [1].

Reformulating (8) we can write

where e; is a zero-mean Gaussian error vector with co-
variance matrix Y; as it has been calculated in (6). The
conditional probability for the observations Y; given the
motion parameters 2 and ¢ can be written as

-1
n Tzl T

P(Y1,Y2,...,Yn|R,t) x "3 2i=0Ti (25)
which is a Gaussian distribution. Here
ri=Y; - RX; -t (26)

Obviously, minimizing the exponent will result in a maximi-
zed probability. Thus one has to solve

n
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for the maximum-likelihood estimate of R and ¢. Because
of the involved rotation this is a nonlinear minimization
problem. We linearize it by taking the first order Taylor
expansion with respect to the rotation. We assume O
to be the initial estimate on the rotation angles and Ry
the corresponding rotation matrix. Deriving from (24) we
develop:

Y= RoX; + Ji(© — Op) +t+¢ (28)

J; is the Jacobian of the rotation for the i-th point
evaluated at ©y. The error vector €; now has covariance
¥, = %% + RoX’RE where Y¢ is the measurement
covariance after the motion and Y% before the motion
respectively. After this linearization we can solve (27) using
a linear method. We now use r; = Y;—RoX;—J;(0—0¢)—t
and ii for the covariance.

The reader is referred to [4] and [37] for further details.

A simpler weighted least-squares solution that only takes
the volume of the error ellipsoid provided by ¥ into account



but not its shape, is given in [1] as well:
Here we solve for R and ¢ by minimizing

nﬁl? Z wiriTTi 29)
where r; is as defined in (26) and
w; = (det Xx, +det Xy,) ! (30)

V. OUTLIER REMOVAL - ROBUST ESTIMATION

In the last section we reviewed three different algorithms
that calculated the ego-motion of a stereo camera from two
sets of matched points x; and y; and their corresponding
3D coordinates. All of the above algorithms will only work
if all of the matches are correct and there are no outliers
in the data. What are outliers in the terms of our motion
estimation problem? Remember that we work with pairs of
matched image points (x;,y;). If all matches are correct, or
only affected by Gaussian noise, the above algorithms will
work well. But if some of the matches are wrong, so that x;
and y; are not the projections of the same world point, the
algorithms will fail. We can call these false matches outliers.
However, there are robust methods that can cope with outliers
in the data. So obviously, the above algorithms can not be
used alone, without any sort of improvement, as long as we
have to expect outliers in our matching data.

The literature knows a large number of robust estimation
schemes. RANSAC [38] may be the best known of them.
MSAC or MLESAC [39] or ASRC [40] are examples for
more recent developements in this field.

Unfortunately, a comprehensive comparison of these robust
estimators in a stereo odometry framework has not been
conducted yet. Most robust methods generate a hypothesis
of the sought solution (motion parameters in our case) from
a small set of data points. The methods presented in section
IV and especially the SVD-based method from IV-A are
used as hypothesis generators. A scoring function evaluates
how good that hypothesis fits to the rest of the data. This
is repeated several times, depending on the algorithm. The
best hypothesis is eventually returned as the robust solution.
As this is an iterative process, the more outlier the data
contains, the longer will it take to identify and discard them.
Here we see the importance of a good and stable interest
point identification and matching. Again, we have to find
a certain tradeoff for the overall-process: Using fast interest
point identification and matching algorithms is fast, but most
likely produces many outliers that have to be filtered out by
iterative robust algorithms later. On the other hand, using
more sophisticated algorithms in the first place is slower but
may hardly produce any outliers at all, so that the robust
methods do not have to iterate through the dataset so many
times.

Herein lies the need to consider the whole stereo-odometry
process when comparing and evaluating single algorithms
involved.

A. Outlier Removal Based on Geometric Constraints

An elegant non-iterative way to identify and remove
outliers has been proposed by Hirschmiiller et al. [8]. This

method is based on certain geometrical constraints. Again
consider the world points X = {X;,Xs,...,X,} and
Y = {Y4,Y2,...,Y,}. In a static environment (i.e. no
moving objects observed by the camera) the relative distan-
ces between two transformed points are constant before and
after the motion. So

1Xi = X[l = [Y: — Y| (31)

and

(Xl — XJ)(Yl — Y]) > cos 6 32)

where 6 was set to be 7. If both constraints (31) and (32)
are true for the points with indices ¢ and j then both points
X,; and X; may be correctly matched. If at least one of the
constraints is false, at least one of X; and X is not matched
correctly. As (31) will almost never hold in reality due to
the noise in the 3D coordinates retrieved by triangulations,
the authors give a modified version of this constraint, taking
an error model similar to the one formulated in section III
into account. This error model is the important key to the
usability of this approach; it would not be of any practical
use without an error model of the 3D coordinates.

[8] also discusses how the complexity of finding the largest
self-consistent set of points from X and Y so that the above
constraints hold for all combinations of ¢ and j within this
set. Solving this seems to be a NP-hard problem, but the
authors give a good and fast approximate solution.
Compared to other robust methods for outlier removal
presented next, this approach based on general geometric
constraints of rigid body movement seems to be superior. A
direct comparison has not been conducted yet but the authors
tested their approach with a real-world sequence and found
the outlier detection taking only Ims which is very fast.

B. Using RANSAC to Identify and Remove Outliers

RANSAC [38] is used in many implementations of stereo
odometry to reject outliers. The work of David Nister [41],
[2] but also [3], [9] or [1] and others more are examples of
successful use of RANSAC in a visual odometry scheme.
The method based on a singular value decomposition from
section IV-A can be used as a hypothesis generator for the
ransac scheme.

RANSAC is also used to estimate the fundamental matrix
which is needed for the essential matrix algorithm from sec-
tion IV-B. Hartley and Zisserman [10] describe this approach.

VI. CONCLUSIONS AND FURTHER WORK

As we have seen, stereo odometry is a process consisting
of a chain of several subprocesses. A huge variety of
mostly exchangable algorithms, approaches and theories is
available for each of these subprocesses. This mere variety
makes exhausting comparisons between different sets of
used methods very hard. Although there are some studies
that evaluated several approaches within a single subprocess
(for instance matching or identification of interest points), a
comprehensive combined evaluation of all subprocesses and
their mutual side-effects in a stereo odometry framework has



not been conducted yet. At the moment, such a comparison
involving the approaches mentioned in this paper is carried
out by the authors of this paper, using both simulated and
real-world data. We strongly believe that an integrated
evaluation regarding every single link in the chain of
subprocesses of stereo odometry could help a lot to find
better tradeoffs between quality and efficiency in every
single subprocess and the ones depending on it.
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