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Abstract—Our paper proposes to adapt recent advances in the
SLAM literature (Simultaneous Localization and Mapping) to
the problem of multipath mitigation in GNSS-based localization.
We argue that such localization problems can be modelled as
factor graphs and solved using efficient nonlinear least squares
approaches that exploit the sparsity inherent in the problem
formulation. This way, satellite observations that are subject to
multipath errors can be understood as outliers in the optimization
problem and recently developed approaches for robust graph
optimization can be applied to mitigate these effects.

I. INTRODUCTION

SLAM (Simultaneous Localization And Mapping) has been
a very active and almost ubiquitous problem in the field
of mobile and autonomous robotics for over two decades.
For many years, filter-based methods have dominated the
SLAM literature [1], but a change of paradigms could be
observed recently, that led the developments away from
filters towards optimization-based methods. Although such
optimization-based approaches are known to the community
since the work of Lu and Milois in 1997 [2], they have
only recently begun to become more popular as efficient
algorithms for solving the underlying optimization problems
are now available. The most prominent recent examples have
been g2o [3] and iSAM2 [4]. In contrast to filter-based
methods, optimization-based approaches build upon efficient
algorithms for nonlinear least squares optimization that exploit
the sparsity inherent in the SLAM problem. This way, large-
scale SLAM problems containing several 10k variables (poses,
landmarks) and constraints (observations, loop closings) can
be solved in a matter of seconds on standard hardware.

However, it is commonly known that least squares methods
are not by default robust against outliers. In SLAM, such
outliers arise mostly from data association errors like false
positive loop closures etc. In recent previous work [5], [6] we
developed an approach for robust optimization for pose graph
SLAM problems in the presence of such outliers.

This paper discusses the applicability of this robust graph-
based optimization to the problem of GNSS1-based localiza-
tion. As we will see, the general idea of altering the topology
of a factor graph during the optimization (or the equiva-
lent probabilistic interpretation of adapting the information
matrices associated with some of the constraints during the
optimization) that was developed in [5], is rather universal and

1Global Navigation Satellite System, e.g. GPS, Galileo, GLONASS.

can be applied in other optimization-based problem domains
where outliers can occur.

The outliers in the scenario of GNSS-based localization are
miscalculated pseudoranges that are caused by so called mul-
tipath effects. These multipath affected pseudorange measure-
ments play the same critical role in GNSS-based localization
as false positive loop closure constraints and data association
errors play in the SLAM scenario.

In the following, the GNSS-based localization problem is
shortly introduced, before we demonstrate how it can be ex-
pressed as a least squares optimization problem and modelled
using a factor graph. We then explain how to apply the robust
optimization method developed earlier and show results from
simulation as a proof of concept.

II. THE GNSS-BASED LOCALIZATION PROBLEM

From a roboticist’s perspective, GNSS-based localization
is a 3D localization problem with range-only observations
to distant landmarks. The landmarks in this scenario are the
satellites which are uniquely identifiable via their transmitted
PRN code. The positions of the observed satellites / landmarks
in space are known since each satellite transmits ephemeris
parameters which describe its orbit.

The ranges from the receiver to the satellites are not
observed directly, but rather calculated from the signal transit
time. This is done by comparing the timestamp that is included
in the received signal and specifies when the signal was sent
from the satellite, with the local time at the receiver in the
moment the signal is received: ρ = c · (trecieve− ttransmit) where
c is the speed of light. The quantity that is to be estimated
from these pseudoranges ρ is the location of the receiver in
3D space, thus x = (x, y, z)T. Since the state space has three
degrees of freedom, in one would expect three observations to
be sufficient to solve the problem.

However, the pseudoranges are subject to a number of
possible error sources. The most important are:

• receiver clock errors
• ionospheric and tropospheric propagation errors
• satellite clock and ephemeris errors
• multipath errors
Receiver clock errors have probably the largest implications

on the design and working principles of GNSS systems. They
occur because it is not possible (or at least not feasible
for economic reasons) to keep the receiver clocks exactly



Fig. 1. The multipath problem in an urban canyon: The direct line of sight
(red line) from the satellite to the receiver on the ground is blocked by a
building. The signal reaches the receiver via a reflection (blue line), causing a
range error of the observed pseudo-range. Since GNSS localization is based on
measuring the pseudo-range between the sender and the receiver, the position
estimate is distorted.

synchronised to the transmitter clocks. The dilemma is solved
elegantly by including the unknown receiver clock error into
the state space that is to be estimated: x = (x, y, z, δclock)T.
This way, the correction term δclock covers for the differences
between the GPS time used by the satellites and the local
receiver time. Since now there are four unknowns that have
to be estimated, a minimum of four pseudorange satellite
observations are necessary.

A common challenge for GNSS-based localization is the
multipath problem, that occurs for instance in urban areas with
high buildings blocking the direct line of sight to at least some
of the available satellites. This scenario is also referred to as
urban canyon. Fig. 1 illustrates the basic problem: Although
the direct line of sight to a satellite is blocked, its signal
may still reach the receiver on the ground via one or several
reflections on building structures or the ground. Since the
signal path is longer for the reflected signal, ranging errors
occur that can either prolongate the observed pseudo-range
or, due to correlation effects, shorten it [7, ch. 5.5]. Multipath
effects can also occur when the direct line of sight is free.
In this situation, the signal is received directly, but is also
reflected on a building or another structure in the vicinity of
the receiver. Hence the signal is received multiple times which
leads to correlation errors.

III. MULTIPATH IDENTIFICATION AND MITIGATION –
RELATED WORK

Different approaches for multipath mitigation are known to
the literature. [7] divides the approaches into different strate-
gies: Spatial processing techniques try to optimize the receiver
antenna design (e.g. using choke ring antennas or antenna
arrays) to decrease the possibility of receiving a reflected
signal or incorporate information gained by long-term obser-
vations (spanning from on day to another). The second type
of techniques mentioned by [7] are time-domain approaches
that try to identify multipath errors by post-processing and
evaluating the received signals from the satellite in the receiver.
These approaches are rather low-level and operate on the radio
signal level.

It is curious that RANSAC-like algorithms [8] seem to have
only recently found their way into the GNSS-community [9],
[10]. Roughly similar approaches have been summarized under
the term RAIM (Receiver Autonomous Integrity Monitoring)
but appear to have mostly expected only a single outlier
among the satellite observations [10] which is inadequate
given the increasing number of usable satellites, especially
when considering multi-constellation applications. [11] how-
ever discusses the application of RAIM in the occurrence
of several simultaneous satellite failures. [12] proposes to
actively determine occluded satellites with the help of an
omnidirectional infrared camera mounted on the vehicle.

IV. MODELLING THE GNSS-BASED LOCALIZATION
PROBLEM AS A FACTOR GRAPH

Factor graphs are bipartite undirected graphs and have been
proposed by [13] as a general tool to model factorizations of
large functions with many variables into smaller local subsets.
The idea can be applied to probabilistic problems like SLAM
or GNSS-based localization. The key idea is that a joint prob-
ability distribution can be expressed as a product over several
single factors (of course adhering the conditional dependencies
etc.), e.g. P (X|U,Z) =

∏
i P (xi|ui,xi−1) ·

∏
i,j P (xi|zj)

where xi are for instance the vehicle states, ui are control
inputs and zj are measurements of any kind.

Factor graphs contain two types of nodes: one for variables
and the other for probabilistic constraints (the factors). In the
context of GNSS-based localization, one type of node repre-
sents the unknown vehicle state variables xt, while the other
type of node encodes the relations (conditional probabilities)
between them (e.g. via a motion model) or the pseudorange
measurements. Fig. 2 illustrates this concept.

In the following we explain the state space vertex and a
number of factors suitable for the problem of GNSS-based
localization.

A. The Vehicle State Vertices

The state space contains at least the 3D position of the
vehicle as well as the receiver clock error, leading to a state
space that is at least 4-dimensional:

x ∈ R4 = (x, y, z, δclock)T (1)

This state space may be extended by jointly estimating the
vehicle orientation θ, velocity v, rotation rate ω or the clock
error drift δ̇clock, depending on the requirements and which
other sensors are used. Estimating the vehicle acceleration a
or road curvature 1/r would also be possible.

B. The Pseudorange Factor

A number of satellites are observed from every vehicle state
xt, each providing a pseudorange measurement ρtj . Given
the receiver position xx,y,zt and the position of the observed
satellite xSAT

tj , the expected pseudorange measurement is given
by the measurement function

h(xt, j) = ‖xSAT
tj − xx,y,zt ‖+ δEarthRotation + δAtmosphere + xδ

clock

t

(2)
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Fig. 2. Two vehicle state nodes with their associated pseudorange factors
(green). In the most general graphical model (a), there are no connections
between the vehicle state nodes, since they are considered conditionally
independent. In (b), a state transition or motion model factor joins two
successive vehicle nodes.

The terms δEarthRotation and δAtmosphere correct ranging effects
caused by the earth’s rotation and atmosphere (ionospheric and
tropospheric propagation errors). δEarthRotation is given by

δEarthRotation = ωEarthx
SAT
tj · yt − ySAT

tj · xt
c

(3)

with ωEarth the earth’s rotation rate and c the speed of light.
If we assume the measured pseudorange ρtj is given by

the measurement function h(xt, j) plus a zero-mean Gaussian
error term, thus

ρtj = h(xt, j) +N (0,Σtj) (4)

then the error function of a single pseudorange factor is given
as

‖epr
tj‖

2
Σtj

= ‖h(xt, j)− ρtj‖2Σtj
(5)

with Σtj the covariance associated to the pseudorange mea-
surement ρtj . Notice that minimizing above error over xt cor-
responds to maximizing the likelihood function L(ρtj |xt) ∼
N (h(xt, j),Σtj).

C. The State Transition Factor

Besides the obligatory pseudorange factors, additional fac-
tors can be modelled to incorporate more information or sensor
data. A possible way to account for the receiver clock error is
to model it as either constant over time, i.e. δClock

t+1 = δClock
t +λ

where λ is a zero-mean Gaussian. Another possibility is to use
a a constant drift model, i.e.

δClock
t+1 = δClock

t + δ̇Clock
t ∆t+N

(
0, σClock

t

)
(6)

δ̇Clock
t+1 = δ̇Clock

t +N
(
0, σClockDrift

t

)
(7)

For the latter case, the error function associated with the state
transition factor is

‖est
t ‖2Σst

t
=

∥∥∥∥(δClock
t + δ̇Clock

t ∆t

δ̇Clock
t

)
−
(
δClock
t+1

δ̇Clock
t+1

)∥∥∥∥2
Σst

t

(8)

Σst
t = diag(σClock

t , σClockDrift
t ) is, as usual, the covariance

matrix associated with the state transition factor at time t.

D. The Motion Model Factor

A variety of motion models can be applied in the context of
vehicle localization or motion estimation. For instance, [14]
lists and evaluates six different types. As an example, the
constant velocity and turn rate model (CTRV) is used here

to formulate a motion model factor. Notice however that any
other model from [14] could be used as well.

For the CTRV model, the vehicle state space has to be
extended to include the vehicle orientation θ, the velocity v
and the turn rate ω. Following [14], the motion model operates
in 2D space only, thus does not affect the z coordinate of the
vehicle. Therefore, the orientation is specified by only one
angle, instead of three angles or a quaternion.

With the motion model function fCTRV, the vehicle state xt
evolves as

xt+1 = fCTRV(xt) +N (0,Σmm
t ) (9)

Given this, we can define the motion model factor’s error
function as

‖emm
t ‖2Σmm

t
= ‖fCTRV(xt)− xt+1‖2Σmm

t
(10)

with xt = (x, y, z, δClock, θ, v, ω)T and fCTRV defined as:

xt+1 = fCTRV(xt) = xt+



xv
t

xω
t

(
sin(xθt + xωt ∆t)− sin(xθt )

)
xv
t

xω
t

(
cos(xθt )− cos(xθt + xωt ∆t)

)
0
0

xωt ∆t
0
0


(11)

if xωt 6= 0. Otherwise we have:

xt+1 = fCTRV(xt) = xt +



xvt cos(xθt )∆t
xvt sin(xθt )∆t

0
0
0
0
0


(12)

E. The State Prior Factor
With reliable odometry information (i.e. forward velocity

and yaw rate in this scenario) available from the vehicle’s
internal sensors, we can incorporate them using state prior fac-
tors. For instance, if the state is xt = (x, y, z, δClock, θ, v, ω)T

as defined above, we can define the state prior factor to be

‖estp
t ‖2Σstp

t
= ‖xt − ζt‖2Σstp

t
(13)

Where ζt contains the available prior information for the
vehicle state at time t. Notice that if only some of the
entries in the prior ζt are actually available (e.g. only v and
ω), the entries in the information matrix associated with the
unavailable entries can simply be set 0 so that they will not
have any influence during the optimization.

F. Solving for the Maximum a Posteriori Solution
When only the pseudorange measurements are given, the

maximum a posteriori solution for a single vehicle state xt is
found by solving the least squares problem

x∗
t = argmin

xt

∑
j

‖epr
tj‖

2
Σtj

(14)



Similarly, we can solve for a set of vehicle states X = {xt}:

X∗ = argmin
X

∑
tj

‖epr
tj‖

2
Σtj

(15)

Any additional factors that account for further measure-
ments and sensor data can be easily incorporated by extending
the error function. For instance to incorporate motion model
and state transition factors, we solve

X∗ = argmin
X

∑
tj

‖epr
tj‖

2
Σtj

+ ‖emm
t ‖2Σmm

t
+ ‖est

t ‖2Σst
t

(16)

and so forth.

V. TOWARDS A PROBLEM FORMULATION ROBUST TO
MULTIPATH ERRORS

If multipath observations occur, some of the pseudorange
observations are outliers to our least squares optimization
problem. It is generally known that least squares methods are
by default not robust against such outliers and that even a
single outlier can have catastrophic effects on the estimation
result.

Our main idea to increase the robustness of the optimization
is that the topology of the factor graph representation should
be subject to the optimization instead of keeping it fixed. This
is achieved by introducing another type of hidden variable into
the problem formulation: A switch variable stj is associated
with each factor that could potentially represent an outlier. The
optimization now works on an augmented problem, searching
for the joint optimal configuration of the original variables
and the newly introduced switch variables, hence searching
the optimal graph topology. These ideas were developed in
the context of SLAM in [5], [6]. We describe their application
to the GNSS-based localization problem in the following.

A. The Switched Pseudorange Factor

By combining the pseudorange factor from section IV-B
with the newly introduced switch variables, we gain the
switched pseudorange factor:

‖espr
tj ‖

2
Σtj

= ‖Ψ(stj) · (h(x, j)− ρtj)‖2Σtj
(17)

The function Ψ is called the switch function. This switch
function is defined as Φ : R → [0, 1], i.e. it is a mapping
from the continuous real numbers to the interval [0, 1], defined
on R. Different switch functions can be defined, e.g. a step
function, or a sigmoid. However, our experiments in earlier
work showed that a simple linear function of the form

ωtj = Ψlin
a (stj) : R→ [0, 1] =


0 : stj < 0
1
astj : 0 ≤ stj ≤ a
1 : stj > a

(18)

with parameter a = 1 is a suitable choice.
The idea behind the switch variables is that the influence

of a pseudorange measurement can be removed by driving
the associated switch variable stj to a value so that ωtj =
Φ(stj) ≈ 0. Notice that it is not possible to use the weights
ωtj directly as variables in the optimization, since they are

(a) (b)

Fig. 3. (a) A vehicle state vertex with three switched pseudorange factors
espr (green), the associated switch variables and their prior factors esp (black).
(b) Illustration of a more complex factor graph. The switch variables are
connected by switch transition factors eswt (yellow) and the state transition
factors est (blue) connect the state vertices.

only defined on the interval [0, 1], which is not suitable to
the applied least squares optimization approaches that require
continuous domains.

The influence of the switch variables can be described
and understood in two equivalent ways: In the topological
interpretation, a switch can enable or disable the constraint
edge it is associated with, thus literally remove it from the
graph topology. In the probabilistic interpretation, the switch
variable influences the information matrix of the factor it is
associated with and can drive it from its original value to
zero, thus increasing the covariance associated with this factor
until infinity. It has been shown that both interpretations are
equivalent [5].

To prevent the optimization from simply rejecting all pseu-
dorange observations, an additional switch prior factor is
needed that anchors each switch variable stj at its initial value
γtj . It is defined as:

‖esp
tj‖

2
Ξtj

= ‖stj − γtj‖2Ξtj
(19)

Combining these two factors leads to the extended robust
problem formulation:

X∗ = argmin
X

∑
tj

‖espr
tj ‖

2
Σtj

+ ‖esp
tj‖

2
Ξtj

(20)

Fig. 3 illustrates this extended formulation for a single vehicle
state variable. Notice how each pseudorange measurement is
associated with its own switch variable.

B. The Switch Transition Factor

In contrast to the switch variables in the pose graph SLAM
problem, the switch variables in the GNSS-based localization
problem are not independent: If a satellite j is observed from
two successive vehicle locations xt−1 and xt, then stj is
likely to be equal to st−1,j . We can capture this conditional
dependence and model P (sij |st−1,j) as a Gaussian with

P (stj |st−1,j) ∼ N
(
st−1,j ,Σ

swt
tj

)
(21)

which leads us to the switch transition factor

‖eswt
tj ‖2Σswt

tj
= ‖stj − st−1,j‖2Σswt

tj
(22)
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Fig. 4. The estimated vehicle trajectories from the simulation. The ground
truth is plotted in green. The conventional least squares estimate (blue)
produces many gross errors due to the simulated multipath observations. In
contrast, the proposed robust estimate (red) is able to very accurately retrieve
the driven trajectory.

that can be easily incorporated as an additional factor into
the overall optimization problem. Using the switch transition
factors, we would solve

X∗ = argmin
X

∑
tj

‖espr
tj ‖

2
Σtj

+ ‖esp
tj‖

2
Ξtj

+ ‖eswt
tj ‖2Σswt

tj
(23)

for the maximum a posteriori estimate of X . More factors (e.g.
a motion model) can be incorporated in the same convenient
way.

VI. PROOF OF CONCEPT

To show the feasibility of the proposed robust optimization
approach for multipath mitigation, we set up a simple sim-
ulation environment in Matlab and implemented the factors
mentioned above using the publicly available g2o [3]. In the
simulation, a vehicle is driven on a double-8-shaped trajec-
tory while observing a number of satellites. These satellite
observations are randomly spoiled by gross pseudorange errors
to simulate multipath effects. Fig. 4 shows the ground truth
trajectory in green and the trajectory estimate that results from
a conventional least squares solution in blue. This conventional
solution used the pseudorange factors epr as defined in IV-B.
The large trajectory errors resulting from the simulated mul-
tipath observations are clearly visible in Fig. 4. The RMSE
(root mean squared error) from the ground truth is 7.99 m but
the maximum deviation is almost 180 m.

When replacing the pseudorange factors with the proposed
switched pseudorange factors, the estimation results improve.
The mean error decreases to 1.54 m and only a single position
is still under the influence of multipath errors: This single
outlier is responsible for the maximum error of 154.14 m.

The best result in the simulation was achieved when
combining the switched pseudorange factors with the state
transition model. This successfully removed all outliers from
the dataset and results in a mean and maximum error of 1.32 m
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Fig. 5. Estimation errors for the conventional least squares and the proposed
robust solution (red) for every vehicle pose.

and 4.67 m respectively. The detailed results and the required
times until convergence are summarized in Table I.

The superior quality of the proposed robust solution in com-
parison to the conventional least squares estimate is apparent
from Fig. 5 that compares the individual position errors for
every vehicle pose.

VII. CONCLUSIONS AND OUTLOOK

As we have seen, since finding the solution for the posi-
tion of the GNSS receiver on the ground is a least squares
problem, it can be conveniently modelled as a factor graph.
Furthermore, the proof of concept revealed that the general
idea of making the topology of the factor graph subject to the
optimization process can be beneficially applied in the GNSS-
based localization domain. By associating a switch variable to
each of the pseudorange measurements, the optimization is
able to identify and remove multipath observations that would
otherwise severely bias the position estimate.

While the results presented above are merely a proof of
concept and the simulation environment is rather prototypical
and does not capture the complex real-world effects and
dependencies of measurement errors, we feel that the achieved
results are sufficient to motivate further work on the proposed
ideas. In the future we will therefore work towards evaluating
the proposed approach on a real-world dataset.

In its general structure, the GNSS-based least squares
localization problem is not different from the problems we
encounter in SLAM. In fact, it shares the same inherent
sparsity of the SLAM problem and can therefore be solved
efficiently by applying the same tools, like g2o [3] or iSAM
[4]. A key difference to the SLAM problem however is that
GNSS-based localization is usually understood as an online
problem, i.e. it has to be solved while new measurements and
observations arrive. In SLAM, we are sometimes satisfied with
an offline or batch solution, after all the data has been gathered.
However, since efficient methods for incremental optimization-
based smoothing are available (especially iSAM and iSAM2
[4]), we can solve the GNSS-based localization problem online
if it is required and still keep the factor graph representation
to apply the robust approach that we proposed.



TABLE I
POSITION ERRORS AND CONVERGENCE TIME FOR THE FIGURE-8 DATASET.

Method Used Factors Median [m] Mean [m] Max [m] Time [s]

non-robust optimization epr 1.65 7.99 179.58 0.4
robust optimization espr, esp 1.35 1.54 154.14 7.5

espr, esp, est 1.32 1.39 4.67 9.6

Fig. 6. By extending the factor graph illustrated in Fig. 3(b), one can
incorporate factors between the vehicle variable and a known map (pink).
It would even be possible to exchange information between several other
vehicles in the surrounding (using vehicle-to-vehicle communication) and
model these additional constraints with inter-vehicle factors (cyan). The other
depicted factors are pseudorange factors (green), switch priors (black), switch
transition factors (yellow), state transition (blue) and motion model factors
(red).

The application of efficient and robust optimization-based
approaches to the problem of GNSS-based localization may
have strong potential that should be actively pursued in future
research. As we have seen in this paper, factor graphs are a
powerful tool that allow convenient modelling of vehicle states
and satellite observations and the probabilistic constraints be-
tween them. Additional information, like from a priori known
maps can be easily incorporated into this framework by intro-
ducing additional factors. Also in the context of multi-vehicle
or cooperative localization where information is exchanged
between vehicles or additional roadside devices, factor graphs
and efficient robust optimization-based solvers that perform
incremental smoothing may be a feasible alternative to filter
approaches commonly used today.

Fig. 6 illustrates an exemplary factor graph with two vehi-
cles x

[1]
t and x

[2]
t . Both vehicles can exchange information

by means of vehicle-to-vehicle communication in order to
perform cooperative localization. This mutual information
exchange (e.g. mutual distance measurements by radar or
visual sensors or shared pseudorange information) can be
incorporated by additional inter-vehicle factors. Furthermore,
since high-resolution maps of the road layout are readily
available, this a priori information can be incorporated as well
using additional map factors. In the most naive approach,
these factors can penalize a position estimate if the vehicle
is located off a drivable road. Preliminary results from the
simulation showed promising behaviour in that the map factors
constrained vehicle position estimates to lie on the drivable

road surfaces. These promising ideas will have to be pursued
further and evaluated in future work.

Finally, the more general question of filtering vs.
optimization-based smoothing for information fusion will have
to be discussed in future work.
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