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Abstract—We describe a low-cost multirotor Unmanned Aerial
Vehicle (UAV) testbed as a solution for typical challenges in
system identification and control design which are dominant in
early stages of multirotor research. Our main contribution is the
development of an easy-to-use interface for rapid prototyping of
control strategies within Matlab Simulink by using a self-made
mono-camera tracking system for global position and orientation
measurements. The system works with active markers on the UAV
for fast and robust tracking capabilities within a wide range of
illumination conditions. Its accuracy is evaluated theoretically as
well as in practical experiments including runtime considerations.
Following the idea of an easy-to-use hardware setup to support
smaller research groups without access to expensive motion
capture systems, the implemented software will be published as
open source.

I. INTRODUCTION AND RELATED WORK

One of our research projects focuses on enabling micro
aerial vehicles to autonomously operate in GPS-denied en-
vironments, especially in indoor scenarios. Autonomous flight
in confined spaces is a challenging task for UAVs and calls
for accurate motion control as well as accurate environmental
perception and modelling. The design of accurate motion
control can only be achieved by knowing the specific system
model and system parameters of the UAV at hand. Therefore, a
global position and orientation measurement system is needed
to realize a system identification and continue with further
work in designing suitable control algorithms. Again, for eval-
uating the control performance, a ground truth measurement
is needed.

Our paper explores the possibility to use a single camera
in combination with active markers for recording ground
truth data as basis for further work. The tracker can be
used in a variety of research projects where ground truth
pose information is necessary. Possible applications reach
from system identification and control design to evaluation
of visual odometry and sensor fusion. Our Matlab Simulink
interface provides additional capabilities for fast workflow and,
in particular, real-time pose information of the tracking system.
So, our Simulink blocks can be effectively used for hardware-
in-the-loop experiments.

This work has been funded by the European Union with the European
Social Fund (ESF) and by the state of Saxony.

Our work is mainly inspired by [1] and [2]. The authors
of [1] present a visual tracking system based on identically
constructed active markers. Likewise they are aiming to build
a cost-efficient tracking system with an easy setup. However,
their system uses two webcams in a stereo camera setup
to reconstruct pose and position of the quadrotor. We argue
that the system can easily be simplified by using a single
camera only to get an even more transportable system without
the time-consuming calibration of a stereo camera system.
In addition, we have implemented the interface to Matlab
Simulink which was inspired by the authors of [2]. They used
ROS [3] in combination with the ROS-Matlab bridge [4] to
interface a VICON motion capture system [5] with Matlab
for their experimental evaluation. Concerning the expensive
motion capture system they used, we argue that the precision
and working space provided by our low-cost system are
sufficient for many applications. Furthermore, the source code
of our system will be provided.

II. HARDWARE

Multirotor UAVs have become very popular in the research
community over the last view years. The availability of UAVs
at affordable prices and a growing open source community
may play a significant role. We decided to use a commer-
cially produced system from Ascending Technologies for our
research, so we don’t have to worry about low-level control
and hardware design. Hence our testbed is designed for use
with a Hummingbird [6] or a Pelican UAV, but it can be used
for any kind of small multirotor vehicles as well.

In Fig.1, an overview with focus on all involved hardware
components of our system is shown. A detailed description of
each component will be given in the following.

The camera is the main component for successfully de-
tecting the active markers. We are using a uEye UI-5240SE
color camera from the company IDS-Imaging. One key fea-
ture is the GigE connectivity for fast image transfer with a
maximum image frequency of 50 Hz resulting in a sufficiently
high measurement frequency. The camera has a resolution of
1280× 1024 pix with the capability of vertical and horizontal
pixel binning for reducing the image size and increasing
the sensor’s sensitivity to light. A global shutter and the
possibility to measure the exact time an image was taken – by a



Fig. 1. The image shows the main parts of the tracking system. The Ethernet
camera with tripod is visible on the right side of the image. A checkerboard
is used to initially calculate the rotation and translation of the camera relative
to the ground level. Additionally the Hummingbird quadrocopter can be seen
above the checkerboard. It is equipped with the three differently coloured
active markers.

synchronized internal clock – are two other important features
for getting measurements of the high dynamic quadrotor
movements. By mounting a CS-mount lens with a focal length
of 3.5 mm, we get a horizontal and vertical field of view (FOV)
of 85◦ and 75◦.

A common Intel R© CoreTM2 Quad 2.66 GHz desktop PC
is used as ground station running all processes like image
processing, ROS nodes and Matlab. For serial communication
with the UAV, we use an XBeePro radio module.

The Hummingbird and Pelican UAV we use for our ex-
periments is equipped with three differently coloured active
markers. Each marker consists of one LED with a luminous
flux between 2 lm and 5.5 lm depending on its wave length
and 360◦ angle of radiation. A diffusor is used for spreading
the LED’s light equally, so the marker can easily be detected
within the image. As the authors of [1], we used ordinary table
tennis balls. Since the active markers are emitting light in a
constant intensity, the camera’s automatic gain and exposure
modes are deactivated and the exposure time is selected
manually. In this way we ensure the robust marker detection
within the camera image.

We mounted the second XBeePro radio module onto the
UAV and connected it with the UAV’s low level processor
(LLP) for serial communication with the ground station.

III. TRACKING SYSTEM

Besides the already presented hardware components, the
tracking system consists of several software components as
outlined in Fig.2. The following sections provide an overview
of these components including their working principle.

A. Image Processing

As a first step we need to find the correct locations of the
markers’ projections within the image. Therefore, we transfer
the image into the HSV space. Then, we use specific thresholds
for every marker and every HSV plane to get three binary
images for each marker. For each marker, we link the binary
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Fig. 2. The diagram outlines a complete system overview including the
flow of information. Our QCTrackingInterface calculates the position and
orientation measurement, while ROS and IPC is used for communication with
our special Matlab Simulink blocks. The blocks can be used both ways, for
receiving the measurement information and sending information back into
the ROS framework. Finally, the AscTec driver relays the generated control
commands to the quadrotor.

images by a logical and operation and do a morpological
opening to reduce image noise. The remaining areas in the
linked binary image are labeled and analyzed separately. Each
found area is only considered as marker, if the following
assumptions are met:

• area has a minimum number of pixels
• the roundness value of the area is bigger than a certain

threshold
• the radius of the area lies within a minimum and maxi-

mum value.

If more than one candidate is found, the candidate which
is located nearest to the last found marker position will be
selected.

For runtime considerations, we optimized the image pro-
cessing by introducing search windows for each marker. The
idea is to process only a little part of the image, where
the marker was found recently. Each search window will
constantly grow in size, unless the marker is found in the
current image or the search window already covers the whole
image. This will be the case, if no marker is found within
five successive iterations. On the other hand, the window will
collapse to its smallest size again, if the marker is found.

B. 3D to 2D Correspondence

While the image processing step is giving us 2D informa-
tion of the marker positions within the image, we are more
interested in the markers’ 3D pose. This task is also known
as the three-point-perspective-pose estimation problem [7] or
perspective-three-point (P3P) problem, where we have three
non-collinear world points, which are forming a triangle with
known dimensions, and their corresponding image points. The
task is to calculate the pose of the triangle within the camera
frame. To accomplish this, we need at least six constraints
to get a solution for the six free parameters of the orientation
and position. Each point-to-image correspondence will provide
us with two constraints [8] and will lead to a maximum of



four possible solutions for the P3P problem. Which camera-
to-triangle configuration will cause a specific number of am-
biguities, is explained by the authors of [9].

For calculating the camera pose, we used the PnP algorithm
provided by the computer vision library OpenCV [10]. This
iterative method can be used not only for the above stated P3P
problem, but also for the more general PnP problem where we
have more than three correspondences. The used algorithm
minimizes the reprojection error between the observed image
points and the projected image points. Regarding the ambigu-
ity of the solution it is necessary to set a good initial guess for
the pose, and as long as the markers are tracked consecutively,
the optimization will not run into a wrong solution.

As the initial guess is important for a correct solution of the
PnP optimization, we used the closed form equations of [11] to
get all possible solutions. Afterwards we can rule out the three
wrong solutions by calculating the reprojection error and by
using some constraints of our system, e.g. the quadrotor’s z-
axis will always point more or less towards the ground because
we don’t want to fly loopings.

As we are interested in the world positions and orientations
of the tracked device, we need to calibrate the camera pose
within the world frame. This can be easily realized by using
the same PnP algorithm while positioning a checkerboard
within the field of view of the camera as can be seen in Fig.1.

C. Theoretical Accuracy

Since we want to use the tracking system as ground truth
sensor, we need some information about the systems accuracy.
Unfortunately, we do not have a better tracking system for
comparative ground truth measurements, so we decided to
do some theoretical considerations for the expected standard
deviation of the camera’s pose through back-propagation [8].
Here, the camera’s covariance matrix within the camera frame
is given by ΣC

cam =
(
JT Σuv,iJ

)−1
. J is the partial derivative

(Jacobian) of the projection function f with respect to the
camera’s rotation and translation and Σuv,i is the i-th image
point’s covariance matrix (i = 1, 2, 3).

As the accuracy of our system is strongly depending on
the relative position between camera and markers, we need to
calculate the camera’s covariance matrix for several positions
within the working space. For every position we get a new
Jacobi matrix for calculating the camera’s covariance matrix.
As we are interested in the pose accuracy within the world
frame, we have to transform the covariance matrix. Therefore,
we used the same camera pose as in our experiments. The
results can be seen in Fig.3. According to this calculations, a
typical position of one metre in front of the camera will lead
to a position standard deviation of σ =

√
σ2
x + σ2

y + σ2
z =

0.5 cm. As the distance is growing to two metres, the position
accuracy will grow to σ = 1.5 cm.

Besides the strong dependency on the position between
camera and markers, the tracking system’s accuracy depends
strongly on the relative orientation between both components.
If the camera is positioned directly above the UAV, there will
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Fig. 3. The diagram shows the theoretically determined uncertainty in terms
of the absolute one-sigma error for various positions of the active markers. Red
crosses indicate the points within the camera’s field of view. For comparison,
the simulation parameters are chosen to match the real-world experiments
closely: The camera has a tilt of 35◦ towards the ground plane and a height
of 1.6m above ground level. Additionally the intrinsic parameters of the real-
world camera where used. The calculations are based on a pixel uncertainty
of σu, σv = 0.5 px and are carried out for several x and y positions within
the world frame. The height of the active markers was set to a constant value
of 1m.

be a better position accuracy, but less accuracy in the orien-
tation measurements. Likewise the orientation measurements
are better, if the camera is positioned in front of the quadrotor.
Then, the position accuracy will decrease, especially in the
camera frame’s z-direction.

D. Communication

The tracking system provides its measurements through a
ROS interface. Besides the current measurements of rotation,
translation and velocity within world and body frame, it
provides a timestamp. The timestamp is the exact time, the
image was taken by the camera according to the camera’s
internal clock. This can become very handy, for example if
the system is used for system identification.

IV. MATLAB SIMULINK INTERFACE

We extended our visual tracking system by an interface
for Matlab Simulink to get a rapid-prototyping system for
testing new control designs. Basically, our system provides
two different types of Simulink blocks. Type 1) offers access
to ROS messages, so the block consists of output ports only.
Type 2) offers the possibility to send ROS messages, so the
Simulink block consists only of input ports. Currently, there
are two blocks of type 1) and one of type 2). The latter
is used for sending new control commands to the quadrotor
via the AscTec driver [12]. One of the other blocks provides
measurements of the UAV through accessing the AscTec driver
and the other one provides the measurements of the tracking
system.



A. Working Principle of the Simulink Blocks

As ROS has no capability to communicate with Matlab
directly, we have to use an additional communication layer.
Here, the IPC bridge [4] offers us a way for linking a
ROS topic with Matlab and vice versa. To get it working,
we only need to write interface definitions for each ROS
message we want to publish or to which we want to subscribe
through Matlab. The interface definitions can be found in our
repository.

The Simulink blocks itself are implemented as S-Function
blocks with a constant and parameterizable sampling time.
For communication with ROS, they integrate the IPC bridge
functions for subscribing to a topic and listening to a topic.
Additionally, type 1 blocks forward the ROS messages’ time-
stamp for using it as delay measurements within Matlab.
The timestamps can also be forwarded to the type 2 blocks
to determine the whole runtime for one ROS message. For
example, we get a new measurement of the Tracking System
which has the exact timestamp of image capturing. This
measurement is then forwarded into a Simulink model where
we can incorporate the time delay into control algorithms
or forward it again to use the time delay within the ROS
framework. There, it can become handy to determine the time
between measurement and resulting control command.

As real-time capabilities are essential for hardware-in-the-
loop experiments, the model should provide it. Since this is
not the default behaviour of a Matlab Simulink model, we
used a simple soft real-time block [13] and added warnings,
if the model’s runtime is slower than real-time.

B. Timings

The previously described time measurement capabilities can
easily be used to get time delays of each of the tracking
systems’ component. Table I shows the result of several system
iterations on a standard Intel R© CoreTM2 Quad 2.66 GHz
desktop PC. As can be seen, the biggest time delay of
30 ms is caused by the image acquisition and processing.
The main reason can be found within the image transfer
time from camera to PC. Additionally, the sampling time
of the Simulink blocks determines a big part of the overall
runtime. For transferring new commands to the UAV, time
measurement was not possible, but it should be at least 3 ms
taking the packet size and serial communication bandwidth of
57 600 baud into consideration.

V. RESULTS

In the following two experiments, we will demonstrate the
system’s capabilities in real-world conditions. Therefore, we
performed an experiment for validating the system’s accuracy
and an experiment for demonstrating the functionality of the
whole system. Additionally, we describe another use-case in
[14], where we used the system for evaluating a new optical
flow based Extended Kalman Filter (EKF) design for our
quadrotor system.

TABLE I
DELAY TIMES, BROKEN DOWN TO THE SYSTEM’S COMPONENTS

Task Delay

Image acquisation and processing 30ms

Make measurements available as IPC message < 1ms

Measurements are provided as block output (worst-case is
10ms, corresponding to the block’s sampling time)

< 10ms

New commands are processed and sent as IPC message
via input block (delay corresponds to sampling time)

10ms

Make commands available in ROS < 1ms

Send commands to UAV (over XBee)
(theoretical transmission time, best-case)

> 3ms

In total ≈ 50ms

A. Accuracy of the Tracking System

Besides the calculation of the tracking system’s theoretical
accuracy (see section III-C), we wanted to validate the real-
world performance. This is hard to achieve without a superior
measuring system, so we decided to use a Pan-Tilt-Unit (PTU)
for approaching several poses with the high accuracy of the
PTU. We used a PTU-D46-70 from FLIR Motion Control
Systems with a resolution of 0.013◦ and mounted the quadrotor
on top of it, as can be seen in Fig.4. With this setup, we
are able to approach known poses and calculate the end
effector’s pose by applying forward kinematics. This was done
by implementing a model of the PTU within the Robotics
Toolkit for Matlab [15]. This model is shown together with
the other components in Fig.5.

Fig. 4. Complete setup for system performance evaluation. The quadcopter
is mounted on top of the PTU-D46, which is used for high precision approach
of several poses.

The downside of the described setup is that we need to
calibrate frame transformations of the whole system (see table
II) to extrapolate the markers’ pose within the world frame.
Of course, we can measure all parameters manually, but this
is difficult and inaccurate, especially for the rotations. So we
decided to use the Manifold Toolkit for Matlab [16] to get the
calibration parameters.

Unfortunately, it is inevitable to use the tracking system’s
measurements itself for doing the calibration, as can be seen



TABLE II
INVOLVED TRANSFORMATIONS FOR ACCURACY EXPERIMENT.

Parameter Transformation between Value

TWPb const. world and PTU base unknown
TPbPe dyn. PTU base and end effector forward kinematics
TPeB const. PTU end effector and body unknown
TWB dyn. body and world tracking system

in the involved transformations. However, this is the only way
we can think of for getting some clue of the performance.
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Fig. 5. Schematic view of the experiment with camera, PTU, checkerboard
as used for calibration, quadrotor and the active markers. All poses are based
on the real-world parameters of the experiment. The frame in the lower left
side is showing the camera image.

For the calibration we used the markers’ image positions
as input and did a series of measurements with several pan
and tilt configurations. The pan started at −40◦ and ended at
40◦ with a resolution of 20◦. For each pan configuration we
traversed the tilt position from −20◦ to 20◦ with a resolution
of 20◦. The camera parameters where determined previously
and hold constant within the calibration procedure.

After calibration, we can use the transformation parame-
ters and calculate the expected pose for a given PTU joint
configuration. So the second measurement series is used for
calculating the error between the predicted pose and the mea-
sured pose by the tracking system. This time we run through
pan configurations from −40◦ till 40◦ with 1◦ resolution and
a tilt configuration from −20◦ till 20◦ with 1◦ resolution and
collected three measurements at each configuration. Histogram
plots of the position and orientation error can be seen in
Fig.6. In short, we reached a mean position error of 3.2 mm
with a standard deviation of 2.4 mm and a mean orientation
error of 0.9◦ with 0.62◦ standard deviation. Of course, the
results depend on the PTU’s position within the camera
frame, as visualised in Fig.3. Here the distance between the
quadrotor’s starting position and the camera frame’s origin
was 1.6 m. If we calculate the theoretical accuracy as de-
scribed in section III-C, we will get a standard deviation of

σtrans =
√
σ2
x + σ2

y + σ2
z = 9.5 mm for the translation and

σrot = 1◦ for the orientation.
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Fig. 6. Resulting error histogram of the accuracy experiment. Orientation
error is shown on the left and position error on the right side.

B. Velocity Controller

With this example, we want to demonstrate the capabilities
of the whole system. Our aim is to design a velocity controller
to stabilize the quadrotor within the tracking system’s working
space. As a little reminder: if we don’t have a working velocity
or position controller, the quadrotor will immediately drift
into some direction, as we raise the thrust values. So we
have to generate roll, pitch, yaw and thrust commands for
the quadrotor to overcome this unwanted behaviour.

As already mentioned, we connected an XBee module to
the serial interface of the quadrotor. This enables us to send
the desired steering commands, as soon as we enable the
quadrotor’s automatic flight mode switch. This switch is a
build in function of the quadrotor and provides a kind of safety
system. As long as the switch is deactivated, the system will
only use the commands given by the remote control.
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Fig. 7. Velocity (top) and height (bottom) plot of the velocity controller’s
results. We added four disturbances from manual pushing of the quadrotor,
as can be seen around times: 37 s, 47 s, 55 s and 63 s.



For the controller’s implementation, we used Simulink and
our new communication blocks IPC↔ROS, as can be seen
in Fig.8. On the left side, we have the blocks for receiving
measurements from the tracking system and the quadrotor’s
internal data and, on the right side, the output block publishes
new control commands to a ROS topic. The quadrotor’s
internal data is only used to get the sate of the previously
mentioned autonomous flight-mode switch for enabling and
disabling our controller.

The controller itself is built up of four independent PI
controllers, where the controllers for roll, pitch and thrust use
the body’s velocity as input and the yaw component of the
measured body rotation is used as input for the yaw controller.
So, strictly speaking, the yaw controller is more a position
controller.

For getting good controller parameters, we did a system
identification with Matlab’s System Identification Toolbox and
determined the parameters through iterative optimization over
the integral criterion of the system model’s output.
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Switch of remote control is active!

When disabled, the internal parameters of

the controller will be reseted to initial values.

overrideBits
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ROS send CtrlInput
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Controller
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p_W

overrideBits
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Fig. 8. Model of the simple velocity controller as used for the experiment.
The controller submodel consists of four PI controllers for roll, pitch, yaw
and thrust.

Finally, we tested the controller with and without external
distortions. The first case’s results are plotted within Fig.7. We
pushed the quadrotor two times to the side and two times we
pulled it upwards. As can be seen, the quadrotor is stabilizing
its velocity very quickly. Only little oscillating behaviour
remains, which is caused either by some time delay, not so
optimal controller parameters or the nonlinear structure of the
system itself. Obviously, we need a more sophisticated con-
troller for better results. Anyway, the implemented controller
works as expected. Without external distortions, we got a mean
velocity error of ¯|v|Bx = 52 mm s−1, ¯|v|By = 57 mm s−1 and
¯|v|Bz = 23 mm s−1. The standard deviation of the velocity is
σvx = 76 mm s−1, σvy = 82 mm s−1 and σvz = 63 mm s−1

over a time of 100 s. All values are provided within the
quadrotor’s body Frame B.

VI. CONCLUSIONS AND FURTHER WORK

Our work demonstrated and described a cost-efficient mono-
camera tracking system and its performance. Regarding the
measurement frequency and accuracy it is well suited for
several applications where ground truth measurements are
needed. Future work will concentrate on extending the sys-
tem’s working space by tuning some of its parameters and
adding one or more cameras. As the current system is working

perfectly, it will be used for future work in control design, filter
design and system identification.

The source code of the described system is available to the
community as part of our ROS package at http://www.ros.org/
wiki/tuc-ros-pkg.
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