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Abstract— In robotics, non-linear least squares estimation is
a common technique for simultaneous localization and mapping.
One of the remaining challenges are measurement outliers lead-
ing to inconsistency or even divergence within the optimization
process. Recently, several approaches for robust state estimation
dealing with outliers inside the optimization back-end were
presented, but all of them include at least one arbitrary tuning
parameter that has to be set manually for each new application.
Under changing environmental conditions, this can lead to poor
convergence properties and erroneous estimates. To overcome
this insufficiency, we propose a novel robust algorithm based
on a parameter free probabilistic foundation called Dynamic
Covariance Estimation. We derive our algorithm directly from
the probabilistic formulation of a Gaussian maximum likelihood
estimator. Through including its covariance in the optimization
problem, we empower the optimizer to approximate these to the
sensor’s real properties. Finally, we prove the robustness of our
approach on a real world wireless localization application where
two similar state-of-the-art algorithms fail without extensive
parameter tuning.

I. INTRODUCTION

The probabilistic fusion of different kinds of sensor data
is an extensively explored field of research. In robotics,
the special case of simultaneous localization and mapping
(SLAM) was solved by different techniques like Kalman
or particle filter, but the de facto standard are optimization
based algorithms. These algorithms reformulate the sensor
fusion problem into a non-linear least squares optimization.
While the least squares problem contains the probabilistic
relations between sensor data and the states of a system, an
optimization back-end is used to find the most likely system
state. GTSAM [1] and Ceres [2] are just two examples for
the most common optimization back-ends in recent robotic
applications.

Standard least squares optimization is based on the idea
of Gaussian distributed measurement noise with a known
variance. However, many real world applications violate this
essential assumption. Our motivation in this context are GNSS-
based navigation systems like GPS as well as local wireless
localization systems. They suffer form multipath and non-
line-of-sight (NLOS) effects and cause heavy tailed or even
multi-modal error distributions. Although they are bounded
in range, their shape is non-Gaussian and changes with the
properties of the environment like the height of buildings
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Fig. 1. The figure shows the estimated trajectory of our robot, equipped
with a wireless localization system. Non-Gaussian outliers cause a distortion
of the non-robust estimate. The proposed Dynamic Covariance Estimation
(DCE) algorithm offers robustness against erroneous measurements without
manual parameter tuning.

or the position of reflecting objects. Other examples are
optical sensors which can be influenced by bad weather or
challenging lighting conditions and wheel odometry which
can be affected by slipping on difficult grounds. These errors
can not be estimated online without additional sensor data
and possibly distort the estimated system state significantly.

In the past, several algorithms were proposed to improve
the back-end robustness for SLAM applications [3]–[8]. The
majority of them can be divided in two groups, one tries
to model a non-Gaussian error distribution while the other
tries to weight down measurements that don’t fit to a Gauss
distribution.

In [9] we compared representatives from both groups.
While the down weighting is advantageous for small outlier
ratios, the probabilistic modeling approach seems to be a
more general solution. The downside of all algorithms is the
requirement of parametrization, since all of them introduce



at least one additional parameter compared to standard least
squares. Corresponding to the concept of the algorithm, these
parameters describe a probabilistic distribution or can be
arbitrary. While a distribution’s parameter can be estimated
by statistical methods, the arbitrary parameters have to be
tuned manually. Likewise, both can be extremely difficult if
the error distribution vary over time.

In this paper, we want to introduce an approach that com-
bines the robust down-weighting of Switchable Constraints
(SC) with a probabilistic consistent design that is able to
parametrize itself. Hence, we propose the novel Dynamic
Covariance Estimation (DCE) algorithm that does not require
any new parameter compared to standard least squares. We
achieve this by including the variance of the sensor in the
optimization process, as an additional state variable. Similar
to Dynamic Covariance Scaling (DCS), we also provide an
analytically optimized closed form alternative which can be
expressed as an m-estimator. Finally, we validate both variants
with a real world wireless localization system (see Figure 1)
in comparison to SC and DCS.

II. RELATED WORK

With the rising popularity of SLAM in the past decade, a
broad variety of methods were proposed to achieve robustness
against wrong data association and outliers. While SLAM can
be viewed as special case of sensor data fusion, the majority
of these techniques can be applied to general sensor fusion
problems, as we showed in [9] or [10]. The common basis
of these algorithms is (1) which maximizes the probability
of the state variables X for a given set of measurements Z.

X∗ = argmax
X

∏
i

P (xi|zi) (1)

The transformation of this maximum likelihood estimator
for X∗ to a non-linear least squares problem (2)1 is possible
under assuming a Gaussian distribution for P (xi|zi). For
simplicity, we consider the one dimensional case, but the
algorithm applies also to multidimensional problems.

X∗ = argmin
X

∑
i

‖ e(xi, zi)︸ ︷︷ ︸
ei

‖2Σ (2)

Due to the vulnerability of least squares against outliers,
the existing robust approaches modify this equation to limit
or prevent the outliers influence. Max Mixture [6], [11] and
generalized iSAM [7] wrap the error function ei with a
probabilistic model superior to a uni-modal Gaussian. Hence,
it is possible to approximate an arbitrary error distribution
for a wide variability of non-Gaussian measurement noise
to obtain more realistic estimation results. While these class
of algorithms can achieve a high level of robustness, for
sensors with unknown or time-dependent distributions, they
are difficult to parametrize.

The other class of algorithms is introducing an additional
weight wi to scale each error independently2.

1‖ · ‖2Σ is the squared mahalanobis distance with covariance Σ.
2Another valid notation would be ψ

(
‖ei‖2Σ

)
.

X∗ = argmin
X

∑
i

‖wi · ei‖2Σ (3)

These weights can be determined by the optimizer itself
in case of Switchable Constraints (SC) [8], [12], [13] or
calculated as function of ei for Dynamic Covariance Scaling
(DCS) [4], [14], [15] and other m-estimators.

A. Switchable Constraints

SC introduced a novelty for robust lest squares, a weight
(or switch) s that is directly included in the optimization
process. To prevent the trivial solution si = 0 ∀ i a prior
constraint eSP is added for each switch, which leads to (4).
Additionally, a limitation of si between 0 and 1 is required.

X∗,S∗ = argmin
X,S

∑
i

‖si · ei‖2Σ +
∑
i

‖ 1− si︸ ︷︷ ︸
eSP
i

‖2Ξi

 (4)

A critical point of SC is the introduction of the new
parameter Ξ as covariance of the switch prior eSPi . This tuning
constant adjusts the trade-off between robustness against
outliers and the tendency to weight valid measurements down.
Due to the missing probabilistic relation between Ξ and the
distribution of the sensor, this essential value is difficult to
determine and has to be fine-tuned manually. Nevertheless,
there seems to be a certain range of valid values for typical
SLAM datasets [8], but no guarantee can be given that this
also applies to general sensor fusion problems. In fact, in
section VII, we show counterexamples.

B. Dynamic Covariance Scaling

Proposed as improvement of SC, the DCS algorithm applies
an analytical optimization to transform (4) to an m-estimator
similar to (3) while calculating each weight with (5).

si = min

(
1,

2Φ

Φ + ‖ei‖2Σi

)
with Φ = Ξ−1 (5)

Through the closed form, an instantaneous calculation of si
provides a faster convergence while achieving the same level
of robustness compared to original SC. However, it still keeps
the arbitrary tuning variable and all the disadvantages that go
along with manual parameter tuning. In addition, our previous
work [9] showed some potential convergence problems in
sensor fusion applications.

C. Self-tuning M-Estimators

A parameter free solution for some cases is presented in
the work of Agamennoni et al. [3], where a class of self
tuning m-estimators is proposed. With the use of elliptical
distributions, they are able to include the parameter φ of an
m-estimator ψ(·, φ) in the optimization problem. To keep
the log-likelihood and therefore the least squares problem
positive, they add a regularization term ln c (ψ).

X∗, φ∗ = argmin
X,φ

[
n · ln c (ψ) +

1

2

n∑
i=1

ψ
(
‖ei‖2Σ

)]
(6)



For many applications this approach proves to be valid. In
some cases however, using the single parameter φ – instead
of the set of weights si ∈ S of Switchable Constraints –
may be insufficient. Furthermore, the adaptation of φ to a
time-variable distribution is ad hoc not possible. Another
limitation is the selection of m-estimators. DCS and other
fast descending m-estimators have no corresponding elliptical
distributions, so the self tuning can not be applied.

A common problem of many m-estimators in least squares
problems is the bad convergence behaviour in case of
inaccurate or incorrect initialization. Papers like [16], [17]
address this issue but whether these techniques can be applied
to DCS or the self-tuning m-estimators is unclear.

In the following section, we introduce a novel formulation
of a robust least squares algorithm that is closely related to
SC but parameter free and based on the Gauss distribution
itself.

III. DYNAMIC COVARIANCE ESTIMATION

While Switchable Constraints adds a scaling factor to the
error function, our approach scales the variance (or its root, the
standard deviation) of the assumed error distribution directly.
Since the standard deviation also scales the error, this appears
identical at first glance, but it comes with different side effects
on the estimation problem. To get a better understanding, we
have to look at the missing steps between (1) and (2).

The transformation from a maximum likelihood estimator
to a non-linear least squares problem is done by applying the
natural logarithm which results in (7).

X∗ = argmin
X

−
∑
i

ln (P (xi|zi)) (7)

P (xi|zi) =
1√

2πσ2
· exp

(
− e2

i

2σ2

)
(8)

With the probability density function of a zero-mean
Gaussian (8), the log-likelihood for one measurement can be
described as:

− ln(P (xi|zi)) = ln
(√

2πσ2
)

︸ ︷︷ ︸
const.

+
1

2
‖ei‖2Σ (9)

In standard least squares, the constant first part gets
neglected. If we add the standard deviation to the estimation
process on the other hand, this part becomes variable and
has to be included. With this natural regularization term, a
trivial solution like σ =∞ can be prohibited.

To apply this to measurements with a non-constant error
distribution, we replace the constant σ by a set of time
dependent variances σi ∈ σ. This leads to the new problem
formulation in (10) and (11).

X∗,σ∗ = argmax
X,σ

∏
i

P (xi, σi|zi) (10)

− ln(P (xi, σi|zi)) = ln

(√
2πσ2

i

)
︸ ︷︷ ︸

variable

+
1

2
‖ei‖2Σi

(11)

To keep this proposed equation valid for least squares
optimization, we have to guarantee − ln(P (xi, σi|zi)) ≥ 0,
which is not possible for arbitrary σi. Therefore, we set a
lower bound σmin and shift (11) by a corresponding constant
regularization term − ln

(√
2πσ2

min

)
, similar to Rosen et

al. in [7] or the self tuning m-estimators mentioned in II-C.
Through reformulation of (12) and step (13), we get our final
Dynamic Covariance Estimation formulation (14). Equivalent
to SC, DCE can be considered as two separated error functions
where ln ‖σi‖2Σmin

is a non-linear prior.

− ln(P ) ∝ ln

(√
2πσ2

i

)
− ln

(√
2πσ2

min

)
+

1

2
‖ei‖2Σi

(12)

− ln(P ) ∝ ln

(
σi
σmin

)
+

1

2
‖ei‖2Σi

(13)

− ln(P ) ∝ 1

2
ln ‖σi‖2Σmin

+
1

2
‖ei‖2Σi

(14)

Σmin = σ2
min is the pre-defined covariance of our physical

sensor under normal conditions and can be determined
experimentally or read from the datasheet. It is not a new free
parameter since all other algorithms including the non-robust
least squares also require this fundamental parameter. In
consequence, we allow the optimizer to reduce the weight of
erroneous measurements while preventing an overfitting of the
exact ones. An advantage over m-estimator based approaches
is the convex surface of the error term 1

2‖ei‖
2
Σi

which allows a
well-behaved convergence. However, in common with SC, we
have the computational burden of additional state variables.

IV. CLOSED FORM DCE

Similar to the transformation between SC and DCS, through
analytical optimization of DCE a closed form m-estimator
can be provided. The optimization can be described with
(15), where the error value ei is treated as constant.

σ∗
i = argmax

σi

1

2
ln ‖σi‖2Σmin

+
1

2
‖ei‖2Σi

(15)

The maximum of this log-likelihood exists for σi = ±ei.
Under the condition σi ≥ σmin, two cases have to be
differentiated:

σ∗
i =

{
σmin if |ei| ≤ σmin
|ei| if |ei| > σmin

(16)

Through substituting σi in (14) with (16) the resulting
equation describes the closed form m-estimator of DCE
(cDCE).

− ln(P (xi|zi)) ∝

{
1
2‖ei‖

2
Σi

if |ei| ≤ σmin
1
2 ln ‖ei‖2Σmin

+ 1
2 if |ei| > σmin

(17)
With σmin, (17) requires the same probabilistic parameter

as DCE. However, this parameter is quite simple to determine,
as mentioned before.



While the resulting log-likelihood of DCE and cDCE is
identical, there is no guarantee for an identical convergence
behaviour. Since DCE (as well as SC) treats the variance
and the resulting error as separate dimensions during the
optimization, it can converge differently compared to cDCE.
Therefore, we expect a better convergence of DCE similar to
SC (compared to DCS) in our former work [9].

When applying cDCE it is important to remember the trade-
off between robustness and convergence that all m-estimators
share. Compared to DCS, we pushed this compromise closer
to a better convergence but keep a decent level of robustness
as Figure 2 shows.
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Fig. 2. Each error term adds a weighted and squared error to the optimization
process. Robust weight-functions limit the influence of these terms. The
cDCE m-estimator provide less robustness against extreme outliers, but better
convergence properties than DCS.

V. LOCALIZATION AS FACTOR GRAPH

A basic class of sensor fusion problems is the position
estimation based on multiple data sources, generally called
localization. Our Evaluation is focused on a specific case,
where relative wheel odometry is combined with an set of
absolute range measurements to fixed points. To examine the
structure of this estimation problem, we can describe it as
a factor graph as shown in Figure 3. This graphical model
shows the probabilistic connections (small dots) between
the state variables (big circles). In the following section we
explain these connections, also called error functions, that
define our estimation problem.

4x

Fig. 3. Factor graph of the least squares problem. Big circles represent
state variables while small circles are the probabilistic connections between
these variables. The dotted switch or standard deviation variable is only
added for SC or DCE. Note that the framed range and offset factors are
present 4 times.

A. Range Error Model

Through Time-of-Flight measurement, the UWB modules
provide an absolute distance between itself xx,yMod and the
position of our robot xx,yi . In addition to a Gaussian noise
and the NLOS errors, each range measurement zrngi contains
a certain offset cMod

i caused by the physical properties of the
antenna. This antenna offset depends on the orientation and
distance between transmitter and receiver and is estimated
for each module independently. With (18) the corresponding
error function is provided.

erngi =

∥∥∥∥√‖xx,yMod − x
x,y
i ‖

2
+ cMod

i − zrngi

∥∥∥∥2

Σrng

(18)

B. Odometry Model

The state transition between poses as well as the initializa-
tion of new ones is based on a motion model of a differential
drive robot. By using both wheels’ velocity measurement
as input, the error function is given as eodoi . Since a two-
wheeled differential drive robot is non-holonomic, the velocity
perpendicular to the driving direction also has to be considered
to formulate a well-posed estimation problem. We assume
these to have a zero mean, which results in a measurement
vector zodoi = [ vl, vr, vy=0 ]

ᵀ that contains one additional
entry along with the wheel velocities.

eodoi =
∥∥∥T · (xx,y,φi − xx,y,φi−1 )∆t−1 − zodoi

∥∥∥2

Σodo

(19)

The formulation of (19) in the measurement space, requires
a transformation from two consecutive global poses to a set
of differential drive velocities with the matrix T . Therefore,
(20) contains a rotation from a global to a local coordinate
frame combined with the inverse kinematic of a differential
drive robot. xφi denotes the rotational component of the 2D
pose and 2 · dw the distance between both wheels.

T =

1 0 −dw
1 0 dw
0 1 0


︸ ︷︷ ︸
differential kinematic

·

 cosxφi sinxφi 0

− sinxφi cosxφi 0
0 0 1


︸ ︷︷ ︸

rotation

(20)

C. Constant Offset Model

The module specific offset eoffseti is caused by the influ-
ence of the antenna on the electromagnetic wave propagation.
Not only the physical characteristics but also the alignment of
the antennas affect this value. Therefore, a continuous distance
and orientation variation caused by the robot’s movement,
requires also a continuous offset estimation. To ensure the
consistency of cMod

i over time we use a simple constant value
model (21).

eoffseti =
∥∥(cMod

i − cMod
i−1

)
·∆t−1

∥∥2

Σoffset
(21)



Fig. 4. Our robotic system inside the labyrinth, seen from the tracking
system. One UWB module is placed in each corner and one on top of the
robot. The white paper sheets contain two layer of aluminium foil to enforce
NLOS measurements.

VI. EXPERIMENT

To explore the different robustness and convergence prop-
erties, we decided to evaluate our proposed DCE/cDCE
algorithm along with SC and DCS on a real world dataset.
Based on our experience with a synthetic benchmark in
[9], we designed an equivalent setup with one of our small
educational robots [18] that navigates through a labyrinth.
Due to the flat surface, we reduced this to a two-dimensional
localization problem. As ground truth for evaluation, an
optical mono-camera tracking system as introduced in [19]
is used. We adapted this system to the 2D case and achieve
a centimetre-level accuracy, which is sufficient for our
comparison. Our final dataset contains about 15 minutes
of continuous driving.

A. Wireless Localization Dataset

For long term consistent localization, the wheel odometry is
complemented by a set of five wireless ranging sensors. One
on top of the robot and one in each corner of the labyrinth as
seen in Figure 4. Once each time step, the robot measures the
distance to one of the static modules. These ultra-wideband
sensors [20] are ideal to compare robust algorithms, since they
suffer from non-Gaussian error distributions. While they are
inherent robust against multipath effects, they cannot measure
a correct distance if the direct line-of-sight is blocked by
an obstacle. In these NLOS cases, the measured distance is
significantly longer than the real one. The resulting heavy-
tailed distribution is challenging for non-robust optimization.
So the corresponding error function is robustified by our set
of algorithms. Obstacles could be walls, furniture or humans
for indoor applications or entire buildings in satellite based
localization applications. We enforce a decent amount of
NLOS measurements with artificial walls, made of aluminium
foil.
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Fig. 5. These histograms show the error distributions of the wireless distance
measurements to the 4 fixed modules. Due to the geometric differences in
the labyrinth they can differ. All distributions are asymmetric and contain a
different amount of outliers.

B. Parametrization

All factors included in Figure 3 require a covariance
for each dimension of the particular error function. These
are summarized in Table I. A correct parametrization of
these covariances is mandatory for a meaningful comparison.
Hence, we estimated these values very carefully in separate
experiments. By using the visual ground truth, we estimated
the odometry’s standard deviation over several minutes of
driving. The standard deviation of our wireless distance
measurements was determined outdoors in a flat environment.
Under this free space conditions, we were able to measure the
sensors noise. A separate test-drive under LOS conditions the
completed the characterization of the UWB sensors with the
constant offset model’s covariance. The covariance of the used
priors is the only one that we set manually. It represents the
knowledge about the robot’s start state which is limited since
we only know that the robot is somewhere in the labyrinth.

TABLE I
COVARIANCES OF THE ESTIMATION PROBLEM

model error function covariance

distance measurement erng
i Σrng = [0.025 m]2

wheel odometry eodoi Σodo = diag

0.03 m s−1

0.03 m s−1

0.03 m s−1

2

constant offset model eoffseti Σoffset =
[
1 mm s−1

]2
antenna offset prior eprioroffset Σprior

offset = [0.1 m]2

pose prior eposeprior Σpose
prior = diag

 10 m
10 m

2π rad

2



We implemented our least squares problem with the Ceres
solver [2] as optimization back-end. While the growing
estimation problem would violate any real time condition, we
apply a sliding window approach to exclude old state variables
from optimization. The length of the time window balances
the trade-off between computation time and estimation quality.
We choose a length of 10 s to keep the required optimization
time bounded without losing noteworthy precision.

VII. RESULTS

A. Parameter Tuning of SC and DCS

The performance of SC and DCS depends strongly on
the chosen tuning parameter. To show this dependency, we
performed several runs of both algorithms with a differ-
ent parametrization. Figure 6 plots the resulting absolute
trajectory error (ATE) [21] for parameter values between
ξ = 0.001 and 1.6.
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Fig. 6. Our parameter evaluation of SC and DCS shows the absolute
trajectory error for different parameter values ξ. SC applies Ξ = ξ while
DCS uses the inverse Φ = ξ−1. Only a small range between 0.1 and 0.25
offers an optimal performance.

According to our results, DCS and SC converge only for
values of ξ below 0.25. Values smaller than 0.1 don’t break
the optimization process but lead to a performance identical
to the non-robust optimization. In the final comparison, we
used the best parametrization for both algorithms. Hence,
SC uses a Ξ of 0.2 and DCS a Φ of 10. Compared to
the results of DCS in [4] and [14], we got a significantly
smaller range of valid values. In case of SC there is an even
more distinct difference to [22], where a range of 0.3 to
1.5 is recommended. These tests were performed on SLAM
datasets with synthetic error distributions, unclear covariances
and different optimization back-ends, which could explain
some of the discrepancies. Furthermore, our sliding window
approach can be more challenging than the batch optimization
in previous publications.

B. Final Evaluation

Since the performance of SC and DCS depends on the
tuning parameters, we included two parameter sets to our
comparison. We run both with their default parameter of 1.0
and with the prior tuned parameters, which lead to different
results. Our proposed DCE/cDCE algorithms achieved the
same results as the manually tuned SC and DCS versions.

All of these algorithms are able to suppress the influence of
outliers to the resulting estimate. Especially the maximum
trajectory error is reduced by almost 50% as shown in Figure 7.
However, as summarized in Table II, SC as well as DCS fail
to converge on this problem with their tuning parameter
set to 1. Therefore, both algorithms cannot improve the
estimation result over the bare odometry initialization with
the recommended parametrization.

TABLE II
RESULTS OF THE FINAL RUN

Algorithm ATE[m] Time [s]mean max

Odometry Initial 1.7015 4.3317 -
Gaussian 0.0858 0.3060 34.2
DCE 0.0659 0.1671 96.5
cDCE 0.0647 0.1801 52.8
SC (Ξ = 1.0) 1.5795 4.9743 48.6
SC (Ξ = 0.2) 0.0667 0.1693 54.4
DCS (Φ = 1.0) 1.7515 4.3051 34.5
DCS (Φ = 10) 0.0687 0.1806 41.3
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Fig. 7. Absolute Trajectory error of the estimated positions. DCE/cDCE
as well as tuned SC/DCS performed well, but standard SC/DCS failed to
converge.

The accumulated runtime of the sliding window filter given
in Table II was measured on an Intel i7-4770 system. To
mention is the advantage of the closed form algorithms (DCS
and cDCE), both require less computational time then their
respectively alternatives with additional state variables. Also,
DCE and cDCE require more time to converge to a final
solution but compared to the dataset length of 930 seconds,
all algorithms are sufficiently fast.

VIII. CONCLUSION

We introduced a novel robust estimation algorithm which
was designed with a probabilistic foundation and without
the introduction of an arbitrary tuning constant. The basic
idea is to include the covariance of the sensor itself to the
optimization process. Furthermore, we derived a closed form
alternative to our Dynamic Covariance Estimation algorithm,
providing comparable robustness with reduced computational
cost. We compared both variants to the similar Switchable
Constraints and Dynamic Covariance Scaling algorithm on a
real world wireless localization dataset. So we were able to
show the advantage of our parameter free algorithms since SC



and DCS perform only equivalent with extensive parameter
tuning in advance.

In our future work, we will extend this comparison to
different datasets to generalize our observations from this
specific setting. Furthermore, an evaluation of the theoretical
properties of the DCE algorithm will be useful to expose the
relationship between the estimated and the real covariance.
An analysis of possible probabilistic connections between the
individual covariance variables could also be very interesting
in this context.
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