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Multipath Mitigation in GNSS-based Localization
using Robust Optimization

Niko Sünderhauf, Marcus Obst, Gerd Wanielik and Peter Protzel

Abstract— Our paper adapts recent advances in the SLAM
(Simultaneous Localization and Mapping) literature to the
problem of multipath mitigation and proposes a novel ap-
proach to successfully localize a vehicle despite a significant
number of multipath observations. We show that GNSS-based
localization problems can be modelled as factor graphs and
solved using efficient nonlinear least squares methods that
exploit the sparsity inherent in the problem formulation. Using
a recently developed novel approach for robust optimization,
satellite observations that are subject to multipath errors can be
successfully identified and rejected during the optimization pro-
cess. We demonstrate the feasibility of the proposed approach
on a real-world urban dataset and compare it to an existing
method of multipath detection.

I. INTRODUCTION

A common challenge for GNSS-based localization is the
multipath problem that occurs for instance in urban areas
with high buildings. Although the direct line of sight to a
satellite is blocked by a building, its signal may still reach
the receiver on the ground via one or several reflections
on building structures or the ground. Since the signal path
is longer for the reflected signal, ranging errors occur that
can either prolongate the observed pseudorange or, due to
correlation effects, shorten it. Multipath effects can also
occur when the direct line of sight is free. In this situ-
ation, the signal is received directly, but is also reflected
on a building or another structure in the vicinity of the
receiver. Hence the signal is received multiple times, leading
to correlation errors. The observations that are subject to
multipath effects can be considered outliers that can severely
bias the least squares estimate of the receiver’s position.
Even a single multipath measurement can lead to a defective
position estimate. The problem gets worse if one considers
that in urban environments not only one, but several satellite
observations might be affected by multipath effects.

Our paper transfers recent advances in robust optimiza-
tion from the field of SLAM (Simultaneous Localization
and Mapping) in robotics to the domain of GNSS-based
localization. In our recent work [1] [2] we addressed the
problem of outliers in pose graph SLAM and developed a
novel least squares formulation that is robust against such
outliers. The approach proposed there is very versatile and
can be applied to other least squares problems where outliers
have to be expected. Therefore we can successfully transfer
the gained insights from SLAM into the domain of GNSS-
based localization.
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Fig. 1. Estimated vehicle trajectory in an urban scenario. While the
conventional estimate (blue) based on the pseudorange readings from a
consumer-class GPS receiver is extremely biased due to multipath errors,
the robust estimation method proposed in this paper is able to detect and
reject these outlier observations. The resulting trajectory estimate (red) is
much closer to the ground truth (green).

Our paper demonstrates how multipath observations can be
identified and rejected during the least squares optimization
that solves for the position estimate, without additional
a priori knowledge or additional sensor information. We
provide an introduction to factor graphs and how the GNSS-
based localization problem can be expressed using such a
graph structure. This will help to understand the key idea
of the proposed robust optimization scheme. Fig. 1 presents
results acquired from a real-world dataset and compares our
proposed solution against a highly accurate ground truth
and a different method for multipath detection developed in
related work.

II. MULTIPATH IDENTIFICATION AND MITIGATION –
RELATED WORK

Different approaches for multipath mitigation are known
to the literature, besides hardware-related approaches like
using special antenna designs (e.g. choke ring) or antenna
arrays. For instance [3] discusses the application of RAIM
(Receiver Autonomous Integrity Monitoring) while [4] ex-
plores RANSAC-like algorithms. [5] proposes to actively
determine occluded satellites with the help of an omnidi-
rectional infrared camera mounted on the vehicle.

[6] and [7] propose to identify multipath observations
by using information about the local building structure, i.e.
a database of building positions and dimensions. Given an
estimate on the receiver’s position on the ground, raytracing
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Fig. 2. Two vehicle state nodes with their associated pseudorange factors
(green). (a) in the most general graphical model, there are no connections
between the vehicle state nodes. In (b), a state transition factor joins two
successive vehicle nodes.

approaches can determine whether the direct line of sight to
a received satellite is blocked by a building (and thus the
signal was received via a reflection, causing multipath range
errors). Clearly this method is well suited for multipath signal
rejection, but requires considerable additional knowledge
about the environment and a good initial guess of the
receiver’s position on the ground to perform the raytracing.

III. FACTOR GRAPHS

Factor graphs are bipartite undirected graphs and have
been proposed by [8] as a general tool to model factorizations
of large functions with many variables into smaller local
subsets. The idea can be applied to probabilistic problems
like SLAM or GNSS-based localization. The key idea is that
a joint probability distribution can be expressed as a product
over several single factors (of course adhering the conditional
dependencies etc.), e.g.

P (X|U,Z) =
∏
i

P (xi|ui,xi−1) ·
∏
i,j

P (xi|zj) (1)

where xi are for instance the vehicle states, ui are control
inputs and zj are measurements of any kind.

Factor graphs contain two types of nodes: one for variables
and the other for the probabilistic constraints or factors. The
edges in the graph therefore nicely capture the dependencies
between the variables. In the context of GNSS-based local-
ization, one type of nodes represents the unknown vehicle
state variables xi, while the other type of node encodes the
relations between them (e.g. via a state transition model)
or the pseudorange measurements. Fig. 2 illustrates this
concept.

IV. MODELLING THE GNSS-BASED LOCALIZATION
PROBLEM AS A FACTOR GRAPH

The least squares optimization problem that has to be
solved when estimating the receiver position from a number
of satellite observations can be easily modelled as a factor
graph. In the most simple formulation, the vehicle position
estimates are treated as conditionally independent. However,
this notation can be extended by introducing motion models
or other state transition relations.

Fig. 2 illustrates possible layouts of the factor graph for the
GNSS-based localization problem. Remember that the large
nodes represent the unknown variables, hence the sought
state estimates and the small nodes represent the probabilistic
factors that govern these variables. The vehicle state nodes
and a few possible factors are explained in the following.

A. The Vehicle State Vertices
The state space contains at least the 3D position of the

vehicle and the receiver clock error, leading to a state space
that is at least 4-dimensional:

x ∈ R4 = (x, y, z, δclock)T (2)

This state space may be extended by jointly estimating the
vehicle orientation θ, velocity v, rotation rate ω or the clock
error drift δ̇clock, depending on the requirements and which
other sensors are used. Estimating the vehicle acceleration a
or road curvature 1/r would also be possible.

B. The Pseudorange Factor
A number of satellites are observed from every vehicle

state xt, each providing a pseudorange measurement ρtj .
Given the receiver position xx,y,zt and the position of the
observed satellite xSAT

tj , the expected pseudorange measure-
ment is given by the measurement function

h(xt, j) = ‖xSAT
tj −xx,y,zt ‖+δEarthRotation +δAtmosphere +xδ

clock

t

(3)
The terms δEarthRotation and δAtmosphere correct ranging effects
caused by the earth’s rotation and atmosphere (ionospheric
and tropospheric propagation errors). δEarthRotation is given by

δEarthRotation = ωEarthx
SAT
tj · yt − ySAT

tj · xt
c

(4)

with ωEarth the earth’s rotation rate and c the speed of light.
If we assume the measured pseudorange ρtj is given by the

measurement function h(xt, j) plus a zero-mean Gaussian
error term, thus

ρtj = h(xt, j) +N (0,Σtj) (5)

then the error function of a single pseudorange factor is given
as

‖epr
tj‖

2
Σtj

= ‖h(xt, j)− ρtj‖2Σtj
(6)

with Σtj the covariance associated to the pseudorange
measurement ρtj . Notice that minimizing above error over
xt corresponds to maximizing the likelihood function
L(ρtj |xt) ∼ N (h(xt, j),Σtj).

C. The State Transition Factor
Besides the obligatory pseudorange factors, additional

factors can be modelled to incorporate more information
or sensor data. A possible way to account for the receiver
clock error is to model it as either constant over time, i.e.
δClock
t+1 = δClock

t +λ where λ is a zero-mean Gaussian. Another
possibility is to use a a constant drift model, i.e.

δClock
t+1 = δClock

t + δ̇Clock
t ∆t+N

(
0, σClock

t

)
(7)

δ̇Clock
t+1 = δ̇Clock

t +N
(
0, σClockDrift

t

)
(8)

For the latter case, the error function associated with the state
transition factor is

‖est
t ‖2Σst

t
=

∥∥∥∥(δClock
t + δ̇Clock

t ∆t

δ̇Clock
t

)
−
(
δClock
t+1

δ̇Clock
t+1

)∥∥∥∥2
Σst

t

(9)

Σst
t = diag(σClock

t , σClockDrift
t ) is, as usual, the covariance

matrix associated with the state transition factor at time t.



TABLE I
AVAILABLE OPTIMIZATION-BASED BACK-ENDS FOR SLAM.

Name Main Publication Source

g2o [11] www.openslam.org
MTK [12] www.openslam.org
gtsam [10] collab.cc.gatech.edu/borg/gtsam

D. Solving for the Maximum a Posteriori Solution

When only the pseudorange measurements are given, the
maximum a posteriori solution for a single vehicle state xt
is found by solving the least squares problem

x∗
t = argmin

xt

∑
j

‖epr
tj‖

2
Σtj

(10)

Similarly, we can solve for a set of vehicle states X = {xt}:

X∗ = argmin
X

∑
tj

‖epr
tj‖

2
Σtj

(11)

Any additional factors that account for further measure-
ments and sensor data can be easily incorporated by extend-
ing the error function. For instance to incorporate the state
transition factors, we solve

X∗ = argmin
X

∑
tj

‖epr
tj‖

2
Σtj

+ ‖est
t ‖2Σst

t
(12)

and so forth. Notice that it is very easy to incorporate
more factors, e.g. a motion model or additional inter-vehicle
information.

In its general structure, the GNSS-based least squares
localization problem is not different to any of the problems
encountered when solving the SLAM problem in robotics.
The important insight to why the above optimization problem
is solvable efficiently lies in its sparse structure. That is,
a variable xt is only dependent on a few other variables
or observations. The recent SLAM literature [9]–[11], has
developed a number of approaches that exploit this sparse
structure and lead to highly efficient problem solvers. These
solvers and frameworks are available to the community and
can almost immediately be applied to the domain of GNSS-
based localization. Table I lists the most recent and important
developments.

V. TOWARDS A PROBLEM FORMULATION ROBUST TO
MULTIPATH ERRORS

If multipath observations occur, some of the pseudorange
observations are outliers to our least squares optimization
problem. It is generally known that least squares methods are
by default not robust against such outliers and that even a
single outlier can have catastrophic effects on the estimation
result.

Our main idea to increase the robustness of the optimiza-
tion is that the topology of the factor graph representation
should be subject to the optimization instead of keeping it
fixed. This is achieved by introducing another type of hidden
variable into the problem formulation: A switch variable stj
is associated with each factor that could potentially represent

an outlier. The optimization now works on an augmented
problem, searching for the joint optimal configuration of the
original variables and the newly introduced switch variables,
hence searching the optimal graph topology. These ideas
were developed in the context of SLAM in [1] and [2].
We describe their application to the GNSS-based localization
problem in the following.

A. The Switched Pseudorange Factor
By combining the pseudorange factor from section IV-

B with the newly introduced switch variables, we gain the
switched pseudorange factor:

‖espr
tj ‖

2
Σtj

= ‖Ψ(stj) · (h(x, j)− ρtj)‖2Σtj
(13)

The function Ψ is called the switch function. This switch
function is defined as Φ : R→ [0, 1], i.e. it is a mapping from
the continuous real numbers to the interval [0, 1], defined
on R. Different switch functions can be defined, e.g. a step
function, or a sigmoid. However, our experiments in earlier
work showed that a simple linear function of the form

ωtj = Ψlin
a (stj) : R→ [0, 1] =


0 : stj < 0
1
astj : 0 ≤ stj ≤ a
1 : stj > a

(14)
with parameter a = 1 is a suitable choice.

The idea behind the switch variables is that the influence
of a pseudorange measurement can be removed by driving
the associated switch variable stj to a value so that ωtj =
Φ(stj) ≈ 0. Notice that it is not possible to use the weights
ωtj directly as variables in the optimization, since they are
only defined on the interval [0, 1], which is not suitable to
the applied least squares optimization approaches that require
continuous domains.

The influence of the switch variables can be described
and understood in two equivalent ways: In the topological
interpretation, a switch can enable or disable the constraint
edge it is associated with, thus literally remove it from the
graph topology. In the probabilistic interpretation, the switch
variable influences the information matrix of the factor it is
associated with and can drive it from its original value to
zero, thus increasing the covariance associated with this fac-
tor until infinity. It has been shown that both interpretations
are equivalent [2].

To prevent the optimization from simply rejecting all
pseudorange observations, an additional switch prior factor
is needed that anchors each switch variable stj at its initial
value γtj . It is defined as:

‖esp
tj‖

2
Ξtj

= ‖stj − γtj‖2Ξtj
(15)

Combining these two factors leads to the extended robust
problem formulation:

X∗ = argmin
X

∑
tj

‖espr
tj ‖

2
Σtj

+ ‖esp
tj‖

2
Ξtj

(16)

Fig. 3 illustrates this extended formulation for a single
vehicle state variable. Notice how each pseudorange mea-
surement is associated with its own switch variable.



(a) (b)

Fig. 3. (a) A vehicle state vertex with three switched pseudorange factors
espr (green), the associated switch variables and their prior factors esp

(black). (b) Illustration of the most complex factor graph used in this paper:
The switch variables are connected by switch transition factors eswt (yellow)
and the state transition factors est (blue) connect the state vertices.

B. The Switch Transition Factor

In contrast to the switch variables in the pose graph SLAM
problem, the switch variables in the GNSS-based localization
problem are not independent: If a satellite j is observed from
two successive vehicle locations xt−1 and xt, then stj is
likely to be equal to st−1,j . We can capture this conditional
dependence and model P (sij |st−1,j) as a Gaussian with

P (stj |st−1,j) ∼ N
(
st−1,j ,Σ

swt
tj

)
(17)

which leads us to the switch transition factor

‖eswt
tj ‖2Σswt

tj
= ‖stj − st−1,j‖2Σswt

tj
(18)

that can be easily incorporated as an additional factor into
the overall optimization problem. Using the switch transition
factors, we would solve

X∗ = argmin
X

∑
tj

‖espr
tj ‖

2
Σtj

+ ‖esp
tj‖

2
Ξtj

+ ‖eswt
tj ‖2Σswt

tj
(19)

for the maximum a posteriori estimate of X . More factors
(e.g. a motion model) can be incorporated in the same
convenient way.

VI. MULTIPATH MITIGATION IN A REAL-WORLD URBAN
SCENARIO

While the previous section explained the different factors
necessary for multipath mitigation, the approach is now
evaluated using data collected in a real-world urban scenario.
We will see how the raw GPS pseudoranges are affected
by multipath effects supposedly caused by the tall buildings
next to the area where the data was collected. The evaluation
will show that the proposed scheme for robust optimization
is able to mitigate these effects and decrease the overall
estimation errors.

A. The Chemnitz City Dataset

The necessary data for the evaluation was collected in the
city center of Chemnitz, Germany, using the Carai concept
vehicle [13]. The vehicle was driven over a road junction
several times. Fig. 4 visualizes the road layout, the ground
truth trajectory, and the tall buildings nearby that caused a
high number of GPS signal occlusions and reflections.

Fig. 4. Overview of the urban scenario used in the evaluation. The ground
truth path of the vehicle is marked in green. Notice the tall buildings close
to the streets. Image courtesy of Sven Bauer, [6].

TABLE II
COLLECTED SENSOR INFORMATION USED FOR THE EVALUATION.

Data Sensor

GPS pseudoranges consumer-class GPS receiver (ublox LEA4)
SBAS correction data using EGNOS
ground truth trajectory NovAtel OEM V DGPS with RTK and IMU

Among other sensor systems, the Carai vehicle is equipped
with a high-precision differential GPS and inertial measure-
ment unit that allows to determine the vehicle’s position
with a precision of 2 cm [14]. The position estimates of
this high-precision unit were used as ground truth for the
following analysis. In addition to the high-precision GPS
unit, a consumer-class device (ublox LEA4) provided the
pseudorange measurements that served as inputs for the
optimization framework. Table II summarizes the collected
sensor information.

B. Methodology

Given the collected data, we applied batch least squares
optimization to solve for the maximum a posteriori estimate
of the vehicle trajectory. That is, we estimated X∗ =
argmaxX P (X|Z) where X = {x1:T } is the set of all
vehicle states and Z = {z1:T } is the set of all available
sensor data (pseudorange observations). We constructed five
different problem representations, using different combi-
nations of the factors described in the previous section.
Four of these five representations contained the switched
pseudorange factors and thus are supposed to be robust or
at least more robust against multipath errors than the con-
ventional optimization approach. The optimization problems
represented by the constructed factor graphs were solved
using the C++ framework g2o [11], after the different factors
described above were implemented for this framework.

To compare the estimation results with the ground truth
provided by the high-precision GPS and IMU-devices from
the Carai vehicle, the RMSE metric was used. Notice that it
only operated on the x and y component of the position
estimates, given in the UTM coordinate frame, thus the
metric is denoted RMSExy.



TABLE III
PARAMETERS USED IN THE EVALUATION.

Parameter Value Description

Ψ Ψlin
1 switch function

γtj 1.0 switch prior value
Ξtj 1.0 switch prior covariance

Σtj (10m)2 cov. of pseudorange measurements
Σswt

tj 0.052 switch transition covariance
Σst

tj diag(0.001s, 0.25 s
s
)2 state transition covariance
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Fig. 5. RMSE metric compared for the proposed robust optimization
(red), the conventional least squares (blue) and the raytracing method of [6]
and [7] (black). Notice that the errors of the proposed robust optimization
are constantly low while the other two approaches show significant spikes
where the position estimation failed due to unhandled multipath effects.

Furthermore, we compare the solution of the robust opti-
mization against a raytracing approach for multipath detec-
tion [6] [7].

C. Used Parameters

Table III lists the different parameters that were used in
the implementation. The values in the upper part of the table
correspond to the same parameters of the robust back-end we
encountered in the SLAM context. They were chosen to have
the same values as in our earlier work, which underlines that
the proposed approach is generic and domain-independent.
The values for the parameters in the lower part of the Table
III are problem specific and were chosen empirically.

VII. RESULTS

The five different factor graph representations, the gained
results in terms of RMSE and the required time until
convergence on a Core2Duo desktop PC running at 2.4 GHz
are summarized in Table IV. The first line of the table
corresponds to the non-robust, conventional least squares
solution, using only the pseudorange factors epr. Due to
a several multipath effects, reflections and occlusions, the
RMSE values are very high, with a median error of over
25m.

When the conventional least squares pseudorange factors
epr are replaced by their switched counterparts espr, the
quality of the estimation increases significantly. The next four
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Fig. 6. Histogram over the switch values stj after the optimization for
the best factor graph representation (using espr, esp, eswt, and est). Notice
that most switch variables are either approximately 1 or 0, but hardly
any intermediate values exist. This means that the optimizer very clearly
“decided” whether a satellite observation should be considered an outlier or
an inlier. Using a splitting threshold of 0.5, 19165 of 90314 observations
or roughly 21% have been declared an outlier.

lines in Table IV list the results of the different combinations
of the proposes switched pseudorange factors with the state
transition est and switch transition factors eswt.

The best results are achieved when combining all three
proposed factors espr, eswt, and est (marked red in Table
IV). Using this problem formulation results in a median
RMSE of only 2.45m and also the maximum error is reduced
to 16.31m. The trajectory estimated with the combination
of all three factors can be compared against the ground
truth solution and the conventional, non-robust least squares
solution in Fig. 1. These results are remarkable, especially if
we compare them against the results gained by the raytracing
approach to multipath detection [6] [7] in the last line of
Table IV. Despite the large amount of additional information
about the environment that was used in the raytracing method
to decide whether satellites are visible from a certain point
on the ground, the results of the proposed robust optimization
reach better results. This also visible from Fig. 5 that shows
the RMSE for each vehicle pose for the proposed robust
estimation, the conventional least squares method and the
raytracing approach of [6] and [7].

Fig. 6 illustrates the distribution of the individual switch
values sti after the optimization. It is apparent that most
switch variables have been assigned values of approximately
0 or 1. This supports the understanding that the optimization
could clearly recognize the outlier measurements (multipath
observations) and distinguish them from the inliers (“good”
observations).

Tracking the values of the switch variables over time
results in further interesting insights: Fig. 7 illustrates how
some of the switch variables associated with a specific satel-
lite evolve through time. The variables associated to different
satellites are shown in different colors, so it is possible
to see how the observations of a satellite are estimated to
be outliers (thus subject to multipath effects) at one point
in time and inliers later on. The switch values for most
satellites oscillate between 1 and 0 as the satellite may be
occluded by a building at one point in time, but clearly
visible at another and so forth. The same behaviour was
observed when not using state transition factors, thus only



TABLE IV
RMSEXY VALUES AND CONVERGENCE TIME FOR DIFFERENT TRIALS ON THE CHEMNITZ CITY DATASET.

Method Used Factors Median [m] Mean [m] Max [m] Time [s]

non-robust optimization epr 25.28 32.85 171.64 1.2
robust optimization espr, esp 3.66 17.91 171.61 84.3

espr, esp, est 2.79 14.08 274.49 102.8
espr, esp, eswt 2.69 8.10 128.55 46.2
espr, esp, eswt, est 2.45 2.96 16.31 66.9

raytracing approach [6] [7] N/A 2.92 6.83 509.12 665
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Fig. 7. The switch values associated to the pseudorange observations of a
few observed satellites change over time as the observations are estimated to
be inliers or outliers. A low switch value indicates the optimizer estimated
the observation to be an outlier, i.e. subject to multipath effects. The switch
values associated to different satellites are plotted in different colors.

the switched pseudorange factors and the switch transition
factors. The behaviour without the switch transition appeared
less coherent, which would be expected.

VIII. CONCLUSIONS

Our proposed robust optimization approach is able to de-
tect and reject multipath measurements during the optimiza-
tion process. It does not require an additional pre-processing
step or additional knowledge or models of the environmental
structure or the surrounding buildings. It outperforms the
conventional non-robust least squares solution but also a so-
phisticated and computationally involved raytracing approach
for multipath detection.

The proposed approach was ported from the author’s ear-
lier work [1] [2] in the domain of SLAM. A key difference to
the SLAM problem however is that GNSS-based localization
is usually understood as an online problem, i.e. it has to
be solved while new measurements and observations arrive.
In SLAM, we are sometimes satisfied with an offline or
batch solution, after all the data has been gathered. However,
since efficient methods for incremental optimization-based
smoothing are available in the SLAM community (especially
iSAM and iSAM2 [10]), we can solve the GNSS-based
localization problem online in an incremental manner if it
is required and still keep the factor graph representation to
apply the robust approach that we proposed here. The most
important future work therefore is to apply and evaluate
the proposed robust optimization scheme in an incremental,
sliding window mode, instead of performing batch process-
ing as was performed in this paper. The incorporation of
additional factors is worthwhile as well. Especially a motion
model factor, using an a priori known map or inter-vehicle

information for cooperative localization can significantly
improve the estimation results.
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