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Deducing human emotions by robots: Computing basic non-verbal
expressions of performed actions during a work task

Martina Truschzinski1, Helge Ü. Dinkelbach2, Nicholas Müller3, Peter Ohler3, Fred Hamker2 and Peter Protzel1

Abstract— We have established an emotional model to en-
hance a virtual worker simulation, which could be also used
to support robots in a joined human-robot work-task inside
an industrial setting. The robot is able to understand peo-
ple‘s individual and specific knowledge as well as capabilities,
which are ultimately linked to an emotional consequence. As
a result, the emotional model outputs the emotional valence
calculated as positive or negative values, respective to reward
and punishment. This output is applied as value function
for a reinforcement learning agent. There we use an actor
critic algorithm extended by eligibility traces and task specific
conditions to learn the optimal action sequences. We show the
influence of emotional reward leads to differences in the learned
action sequences in comparison to a simple task performance
evaluation reward. Therefore the robot is able to calculate
emotional feelings of a human during a given working task,
is able to decide if there is a better, more emotional stable path
to doing this working task and moreover the robot is able to
decide when the human is needed help or even not.

I. INTRODUCTION

The “Smart Virtual Worker” (SVW)-project presents an
opportunity to easily replicate established workflow parame-
ters inside a virtual simulation, in order to explore alternate
routes, storage of goods, or construction methods, while
still in the stages of production planning. A key compo-
nent of the simulation is the consideration of emotional
tendencies within an employee while performing a task.
These emotional tendencies are used as a reward function
of a reinforcement learning algorithm, which calculates the
optimized order of a task selection while performing the task
at hand.
Due to the fact, that robots and humans will be increasingly
execute work tasks cooperatively as peers, forms of social
interaction will be of significant importance [1]. To allow
for an effective cooperative task, a robot has to understand
people‘s specific knowledge, strengths and weaknesses [2]
in order to estimate and react to the people‘s intentions
and needs [3] as well as incorporate the dynamics of object
interactions with fellow robots and humans [4].
Within this paper, we describe the interaction of our re-
inforcement learning algorithm and the emotional module,
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introducing a social-cognitive reasoning process whenever
the robotic entity perceives a work task performed by human
beings [5]. The entity is thereby enabled to conclude, whether
or not an observed worker is performing within his or her
physical limitations, abilities and previous experiences. Once
the emotional state has been deduced, the robot might be able
to offer assistance to the observed worker; within his own
limitations of movement and interaction capabilities. This
way, a machine could be enabled to adequately compute an
emotional evaluation of a human‘s current state and thereby
allowing it to follow rules of social behavior [6], [7]. In
turn, the capability would also correspond with the human
tendency and need to ascribe common social behavior upon
machines [8].

II. EMOTIONS WITHIN THE WORKING CONTEXT

In our model, the genesis of emotions and their experience
is linked to an individual‘s perception of affecting events
like experiences in the past as well as unique physio-
logical parameters, like strength and endurance [9]. These
parameters have an essential influence since, for example,
a strong person would not be affected as much by the task
to carry a heavy object. On the other hand, an experienced
person might know about certain unwanted aspects of a task,
while an inexperienced person would be overwhelmed and
therefore afflicted. In addition, the arousal-level is working
as a form of emotion energy, therefore it directly affects the
amplitude of an upcoming emotion (mimicking the interplay
between cognitive system and hormonal influences of the
human body), which can also lead to an emotional transac-
tion [10], [11]. Meaning, an emotional event in the past is
still visible in the form of lingering hormonal and cognitive
reasoning effects which in turn affect the experience of a
subsequent emotion by fueling the upcoming emotion.
Empirical research regarding emotions indicate a sufficient
description of behavioral processes once reduced to a two
dimensional scheme of emotional depiction [12], [13]. Fur-
thermore, one of the established design guidelines for any
implementation of an emotional module upon a robotic entity
is to outline the need for an emotional module and to limit
the module to the requirements of an attempted system en-
vironment interaction [14], [15]. Once condensed down into
a positive and a negative valence [16] the meaningfulness
of an emotion can be used to describe either a tendency of
being in a state one would want to maintain or in a situation
which one would want to change. Our paper describes the



Fig. 1. The Emotion Model: From left to right (upper path) two main values (Movement and Ergonomic) are computed against the CSE preferences of
the Agent. At the same time, the proposed action is valued on the arousal scale, where after the changes for fatigue and success are calculated, alongside
the values for joy and anger. In the end, the values are prepared as output variables for the reinforcement learning algorithm.

beneficial aspects of including an emotional framework [17]
as a computational support structure for robotic entities
inside a production environment. Since the goal of the
Smart Virtual Worker project is focused on depicting a
specific work context, we looked for scientifically established
models, for an overview see [18]. However, in the case of
a worker simulation, we have to include multiple agent‘s
physical abilities, experiences and physiological reactions.
Additionally, the agent‘s constitution has to be simulated,
affected by the aforementioned abilities. This led us to the
represented robust models from the empirical psychological
research.
The module, based on two forms of input, calculates,
based on three physiological variables for individualizations
(strength, experience and sensibility), a level of arousal and
a corresponding emotional valence. All while checking for
an emotional transaction and, if necessary, applying the
corresponding emotional energy to the experienced emotion.
In addition, the level of endurance of the human is adjusted
in accordance with exhaustion of the performed tasks.

III. REINFORCEMENT LEARNING AGENT

We chose a well-known actor-critic learning agent, which
is comprised of “actor” and “critic” components [19]. The
objective for the learning algorithm is to establish a policy
deducing from given states (s) into actions (a)), which
maximizes the accumulation of rewards in the long-term.
The actor selects actions according to the established policy,
while the critic maintains a value function, associating each
state with an estimate of the expected return value. Once
learning commences, the actor‘s action strengths are initial-
ized with zero, and the agent is placed in an initial state (e.
g. the corner of his working place). At each step, the δ value,
a temporal-difference prediction error (TD) is computed to
determine if the simulated action led to a better reward than
expected:

δ = r + γ ∗ Vt+1 − Vt (1)

whereas r is the observed reward for the transition from
current to next state and γ serves as discount factor. The
values Vt+1 and Vt are computed initially as state evaluations

of the emotional model. The prediction error updates the
preference p of the selected state-action pair:

∆p(s, a) = αδ (2)

where α is a positive learning rate. The critic function in our
system is not monotonic, even if a high Vt+1 is observed in
the beginning, this transition does not necessarily lead to an
ideal solution. To overcome this issue, we use an exploration
phase with random policy and eligibility traces [19]. The
critic is updated in each step:

∀s ∈ S : ∆V = βδe(s) (3)
e(s) = γλe(s) (4)

Where e(s) represents the time when the state s was visited.
The parameter β, another learning parameter, and the dis-
count factor γ controls the influence of the trace. The value
of λ influences the number of preceding states updated in
each step. If there are not enough trials to explore the state
continuum or if λ was too high, this approach might lead to
a suboptimal solution.
As described earlier, the agent has a set of possible actions, in
fact only small subsets of them are possible in one state. To
avoid exploring unnecessary state-action pairs we use task-
specific conditions [20]. These conditions reduce the high
extent of general rules, e.g. the agent is able to reach an
item only if the item is located within its proximity. Instead
of defining these rules inside the agent module, they could
also be learned from the environment. But this would only
increase the needed exploration and therefore is not our goal.
Secondly the SVW project aims at finding optimal action
sequences for working tasks not gaining basic environmental
knowledge.

IV. ELEMENTS OF THE MODEL

The module is based on two forms of input parameters
(see Fig. 1). The input is generated by the reinforcement
learning algorithm which suggests a work task to the motion
generation (which is not a part of this paper). This in turn
impacts the emotional model in that way that the ergonomic
actuator assessment is deemed as being feasible, precarious
or alarming. Afterwards, due to the strong individual basis



of emotion generation, while confronted with circumstances
from the environment, the emotional model individualizes
its computational routines. The changes of the valence scale
is thereby dependent regarding three factors of a worker’s
physiology: constitution (C), sensitivity (S) and experience
(E).
The emotional state is modeled as a pure valence-based
differentiation, which basically leads to the agent liking
or disliking the current situation. Furthermore, the model
adjusts a scale, a sympathetic arousal, meaning the likeness
that the worker is going to change its valence scoring. This
enables the model to be able to transfer emotional ‘energy‘
between the implemented emotional states, in accordance
with the theory of emotional transaction by Zillmann [11],
[10]. The output of the model therefore are, based on the
current emotional appraisal, the values for Vt+1 and Vt
influencing the critic function of the reinforcement learning
algorithm.

A. The Agent

The simulated human being, the virtual worker, is char-
acterized by additional attributes like sex, weight, height
and a resulting BMI score. In addition, we differentiate
possible fitness-levels (well-trained, normal strength and
disadvantaged), given work-experience, age and a score for
sensitivity. Thereby defining attributes which describe the
required internal state and calculate an unique emotional
valence.

1) The physiological attributes: Based on the given at-
tributes for weight, height, BMI score, fitness and age
our model computes the virtual strength of the agent. All
differences between possible agent types are calculated as
a value of capability, based on the described computational
algorithm. In practical terms, the model of a normal human
possesses a capability value of 0, which translates to having
100% of the strength of a standard human. The chosen
disadvantaged person has less strength than an assumed
normal person, which calculates to a capability value of -20
meaning 80% from an assumed standard human. A stronger
person on the other hand has a capability value of +20,
meaning he yields 20% more strength than our assumed
normal person.

2) The experiences: We assume a person gains knowledge
over time regarding the tasks performed, which in turn leads
to an increased experience value. Basically, it defines the
familiarity with any given, processed task. The model itself
is based on an experience value which is, again, set to 0
for a normal human. A rather inexperienced and insecure
person is scored with a value of −0.5, while an extremely
experienced person is calculated on the basis of a 5.0, which
indicates that he is very familiar with the task and thereby
infers his own chances for success.

3) The sensitivity: People, influenced by environmental
effects, differ in their affections. To incorporate this behavior,
a sensitivity value is defined, which allows the model to
compute an affected state. A worker with a lower threshold
reacts more intensely to strenuous tasks while workers with a

higher score of sensitivity are not affected to a lower degree
or even not at all. The sensitivity value is hereby set to 0
for a standard person, to 5.0 for a very thick-skinned human
and −0.5 for a very sensitive worker.

B. The Internal Emotional State

Based on the described psychological and physiological
attributes, an internal state is computed. The resulting value
represents an individualized appraisal of task performance.
The parameterization was approached on a case-by-case
analysis of actually carried objects by humans. The mathe-
matical formulas were thereby generated by deducing visible
changes during the task. Afterwards the model will be
evaluated by psychological methods where simulation and
the real-world experiment consists of the same experimental
setup.

1) The input parameter: Once all previously described
input values and object parameters are present inside the sim-
ulated environment, the currently performed action, including
physical properties (e.g. the weight of an object in kg), the
time (in seconds), how long the task needs to be performed
and an ergonomic value from the actuator module, serve
as the basis for the emotional assessment. The variables in
question are either present from the start as database entries,
or will be calculated on the fly by other modules of the
project. The ergonomic value ranks the physiological stress
of a task-necessary movement on the body. Currently, its
assessment is based on the RULA-system [21].
The ergonomic output labeled as “Level of workload” incor-
porates four distinct values: carried weight, covered distance,
action time, and a separate ergonomic assessment based on
RULA. The possible results are:

1: low level of workload, no handicap, and no overload
2: increased level of workload, impairment by weaker

persons is possible
3: severe level of workload, impairment, and overload of

normal persons is possible
4: overload of normal people

Based on these levels of workload, the module calculates
the internal states of emotional valence, sympathetic arousal,
a positive valence (labeled for convenience as joy), and a
negative valence (labeled as anger).

2) General functionality: Our model consists of four
scales, arousal, exhaustion, joy and anger. Within the excep-
tion of exhaustion all scales are limited to 100. The exhaus-
tion scale is limited by the strength of the simulated worker.
A strong worker has an exhaustion limit of 120 and a weak
worker of 80 compared to a normal worker with the usual
limit of 100. Going forward, these scales will be update,
whenever something influences the worker emotionally. The
basic increase is growing following a logarithmic function
(see equ. 5). This means, the next update is based on the
current value and the change depending of the remaining
unaffected part of the scale. For example if the current
value is 10, the unaffected part is 90. The current value
is calculated by the remaining unaffected part divided by a
factor qv (see equ. 5). The value vcurr(t) is weighted by our



parameters (e.g. sensitivity), in a way that if high parameters
are used as the quotient results in a smaller increase of the
subsequent value.

4vcurr(t) =
100− vcurr(t− 1)

qv
(5)

vsub(t) = vcurr(t− 1) +4vcurr(t) (6)

3) The sympathetic arousal: The change value of the
arousal 4a is influenced by the exhaustion X , the sensitivity
S, the arousal increase value ra, the level of workload
W and the time rate of an action τ . The quotient qal of
the logarithmic function in the case of a lower workload
(W = 1) is 2 + ra and in the case of greater workload
(W > 1) the quotient qag is 2 + ra +X + S.

W = 1 : 4a(t) = −a(t− 1)

qal
· τ (7)

W > 1 : 4a(t) =
100− a(t− 1)

qag
· τ (8)

The equation shows a logarithmic decrease, if the level of
workload is 1. In this situation the agent is currently relaxing
or takes a rest to calm down. If the level of workload is
higher than 1 the arousal will be increased logarithmically.
The arousal increase value is one of the initialized vector
{1.5, 1.5, 1.0, 0.0} whereas the index is equal to level of
workload. For example, the level of workload is 3, the
increase value of arousal is 1.0. The worst case occurs if the
level of workload is 4, at which point the decrease would be
half of the current difference of arousal when compared to
the maximum value of 100. In other cases, the increase of
the value wont be as dramatically. The values for sensitivity
and exhaustion increase (if they are less than 0) or decrease
the growth (if they are greater than 0) of the arousal. The
time rate controls how fast or slow the arousal is increasing.
The exhaustion factor X is the current value of exhaustion
xcurr(t− 1) relative to its maximum (see equ. 14 ff.). Due
to the fact that a greater value decreases the growth we have
to calculate:

X = 1− xcurr(t− 1)

xmax
(9)

4) The values of emotion: The calculated values of emo-
tions are labeled as either joy (j) or anger (n) (since the
foremost interesting aspects of a worker simulation is to
decide whether or not the work is capable while maintaining
a positive or negative emotional valence) and are influenced
by the change value of the arousal 4a, the value of ex-
perience E, the value of sensitivity S, the time rate τ and
the emotional increase value rem, depending on the level of
workload W . The quotient qel and qeg of the logarithmic
functions of joy and anger are the same and are calculated
by qel = 2 + rem and qeg = 2 + rem + E + S.
The value of anger is increased whenever the workload level
is 3 or 4 and the exhaustion is very high. In the other case, if
the workload is 2, joy is increased. If the level of workload
is 1 the emotional values are decreased. In this case we

calculate the values of emotion as follows:

W = 1 : 4n(t) = −n(t− 1)

qel
· τ (10)

4j(t) = −j(t− 1)

qel
· τ (11)

W = 2 : 4j(t) =
100− j(t− 1)

qeg
· τ (12)

W > 2 : 4n(t) =
(100− n(t− 1))

qeg
· τ (13)

To limit the values for anger and joy, we are using the same
logarithmic mechanism as in equation (7) where we have to
replace the a(t−1)-term with n(t−1) or j(t−1). We also rely
on the same mechanism to decrease the emotional valence
if the level of workload is 1, because this indicates that the
task is deemed to be easy. The emotional increase value is
one of the initialized vector {1.5, 1.5, 1.0, 0.0} whereas the
index is equal to the level of workload.

5) The exhaustion: The current value of exhaustion x(t)
is dependent on the level of workload W , the exhaustion
increase value rx, the value of experience E and the time rate
τ . The quotients of the logarithmic functions of exhaustion
are qxg = 2 + rx and qxl = 2 + rx + E.

W = 1 : 4x(t) = −x(t− 1)

qxl
· τ (14)

W > 1 : 4x(t) =
100− x(t− 1)

qxg
· τ (15)

As before, we use a logarithmic function to calculate the
increase and decrease of exhaustion. The exhaustion increase
value is one of the initialized vector {1.5, 5.0, 2.0, 0.0}
whereas the index is equal to the level of workload.

6) The output parameter: At the moment, the output of
our model, the emotional valence of an action, is dependent
on the dominating emotion and the level of arousal. This
dominating emotion is labeled as “joy” if j > n causes a
positive algebraic sign of the emotional valence or is labeled
as“anger” if n > j yield to a negative algebraic sign of the
emotional valence. In this case the value of the emotional
valence is defined by the calculated arousal of an action:

n > j : emoval = −n(t)− j(t)
100

· a(t) (16)

j > n : emoval =
j(t)− n(t)

100
· a(t) (17)

j = n : 0 (18)

This calculated emotional valence represents the interpre-
tation of the current emotional state of the agent. If the
values of joy and anger differ greatly, the emotional output
is increased compared to a smaller difference, because in
this case, the resulting positive or negative emotional valence
would be too narrow to adequately distinguish between them.

V. RESULTS

The model, using the previously explained equations,
simulates different worker types within a predefined work
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Fig. 2. The emotional values of a normal, strong and weak worker. The
strong worker executes the tasks with a positive valence whereas the weak
worker needs a break in step 11 and 12 to finish the work episode.

task. In our example, every agent type has to carry three
boxes, two boxes with 20kg and one box with 30kg. The
emotion model calculates the internal emotional state and
sends this value to the reinforcement learning algorithm,
which uses this signal to maintain the critic function. The
calculated state transition reward is used as reward by the
reinforcement learning algorithm. Additionally, the emotion
model possesses the capability to trigger a break, whenever
the exhaustion level of the simulated worker is getting too
high. In this case, the reinforcement learning algorithm halts
the current action selection and inserts an idle action. Based
on this value, the reinforcement learning algorithm explores
the different actions and chooses an emotionally best-case
scenario. In our work set, we defined seven different worker
types to demonstrate the model:

Worker type Properties
Normal 80kg, 1.85m,C = 0, E = 1, S = 1
Strong 90kg, 1.90m,C = 20, E = 0, S = 0
Weak 60kg, 1.80m,C = −20, E = 0, S = 0
Sensitive 80kg, 1.85m,C = 0, E = 0, S = −0.5
Unsensitive 80kg, 1.85m,C = 0, E = 0, S = 5
Experienced 80kg, 1.85m,C = 0, E = 5.0, S = 0
Unexperienced 80kg, 1.85m,C = 0, E = −0.5, S = 0

We compared the simulated working tasks for different
agents, where each has one parameter changed: Sensitiv-
ity (S), Constitution (C) or Experience (E), with assumed
standard properties of a normal human being. We change
only one parameter in our setting, as the influences of the
parameter within the work task is superficially shown.
In the following figures we will show comparisons of the
different worker types. Figure 2 shows a strong, a weak and
a normal worker type. The strong worker shows no adverse
effects from the work task. He carries the boxes with ease.
Therefore, the emotional valence is positive, which means
that the emotional state manifests in a positive emotional
state. In contrast, the weak worker interprets carrying the
boxes as very hard, thus the emotional state manifests in the
negative spectrum. Additionally, the weak worker needs a
break in step 11 and 12 due to the raised exhaustion levels.
In the end, due to the much more strenuous workload for the
weak worker, the time to completion is increased, compared
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Fig. 3. The emotional valence values for a sensitive and unsensitive worker
compared to the normal worker. The sensitive agent is more affected as a
normal agent. Contrary to this, the unsensitive agent is not affected.

to the strong worker.
Also the other worker types and tasks show very different
results within their episode chronology. While the strong
worker appraises the episode carrying 3 boxes to a goal with
values of +2.55 and -15.50 the weak worker produces results
between -16.9 and -24,73 with at least one necessary break
in between his episodes. In comparison, a normal worker,
who needs no break, evaluates the tasks between -21.96 and
-31.84. Both worker types, the strong and the weak worker,
prefer to carry the heaviest box after carrying the two 20kg
boxes. In contrast the normal worker prefers to carry the
heaviest box halfway through the task. This is because the
exhaustion level heavily influences the emotional values, so
they try to avoid this emotionally negatively connoted action
until the end.
The sensitivity value in our model affects the emotional

experience in a way which alleviates the emotional peak
by either smoothing it over in the case of an insensitive
worker or is raised in the case of a sensitive worker (see fig.
3). The emotional valence of the sensitive worker decreases
rapidly towards -40, while the insensitive worker stays close
to 0 for a long time and finishes the episodes with a mere
-4.29. Interestingly enough, the insensitive worker carries
the boxes with alternating sequences finally resulting in a
value of -4.02 and -6.70. This is possible due to the fact,
that the carried order of the boxes is rather unimportant
due to the comparable small changes in the emotional state.
The sensitive worker on the other hand produces emotional
states between -28.43 and -39.88. Thus the emotional worker
prefers carrying the heaviest 30kg box in between to balance
the emotional scales of anger and joy.
The experience of the worker possesses the ability to com-
pensate or boost the exhaustion levels. (see fig. 4). The
emotional valence of the experienced worker after carrying
the first box is around zero while carrying the heavy box. But
once this action is completed, he slowly becomes manifested
in a negative value, due to the rapidly increasing exhaustion.
The inexperienced worker shows a higher decrease of the
emotional value to -20 leading up to a break at step 10,
which leads to a negative computed emotion due to the higher
affection.
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Fig. 4. The emotional valence values of an experienced, unexperienced
and normal worker. The experienced worker values are close to 0 thus the
worker is not affected during the task. In contrast, the unexperienced worker
needs breaks and appraise the task with a high negative value.

VI. DISCUSSION AND FUTURE WORK

The demonstration of our model, which is able to evaluate
the emotional valence during a basic work task depending
on the properties of the agent, showed that the preferred
sequence of carried boxes depends on the aforementioned
properties, such as experience, constitution and sensitivity.
Furthermore we were able to predict, which worker type
needs a break at what time in the sequence. We also
showed which sequence of boxes resulted in an emotionally
balanced worker type.
Although the combination of emotional rewards and
a reinforcement learning algorithm is not new [22], our
module is not primarily focused on the satisfaction of human
needs. Instead, our reinforcement learning algorithm uses
our emotion model based on human experiences, strength
and weaknesses. As a result, the reinforcement learning
algorithm is able to compute and plan different actions
and sequences, according to an emotionally stable activity.
Therefore, if this cognitive model would be implemented as
a robotic extension, it would enable the robot to adequately
understand and predict emotional reactions of a human
co-worker and anticipate associated behaviors, thereby
suggesting less emotionally stressed action to its human
counterpart during upcoming tasks.
In turn our model entails the necessary requirements of a
sociological cognitive computational routine for a robot.
With the help of the predicted and evaluated emotions it
is possible to compare these with the anticipated results in
the real world. Afterwards, following a learning period and
an adjustment of the agent preferences, which have to be
individually assessed during the learning process, a robot
could adequately decide at what point during a task process
to offer assistance and to whom. Thus leading to a more
productive work environment.
Within the scientific discourse, the upmost criticism of
computational emotional architectures is that their computed
outcomes are virtually impossible to be evaluated in the real
world [23]. Nevertheless, since the goal of the presented
model is to simulate the emotional valence while performing
a task, we have concrete evidence which can be compared

to results in the real world. The results of this upcoming
study will be published shortly.
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