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Abstract— A fundamental problem of non-linear state estima-
tion in robotics is the violation of assumptions about the sensors’
error distribution. State of the art approaches reduce the impact
of these violations with robust cost functions or predefined
non-Gaussian error models. Both require extensive parameter
tuning and fail if the sensors’ error characteristic changes
over time, due to environmental changes, ageing or sensor
malfunctions. We demonstrate how the error distribution itself
can be part of the state estimation process. Based on an efficient
approximation of a Gaussian mixture, we optimize the sensor
model simultaneously during the standard state estimation. Due
to an implicit expectation-maximization approach, we achieve a
fast convergence without prior knowledge of the true distribu-
tion parameters. We implement this self-tuning algorithm in a
least-squares optimization framework and demonstrate its real
time capability on a real world dataset for satellite localization
of a driving vehicle. The resulting estimation quality is superior
to previous robust algorithms.

I. INTRODUCTION

To estimate the current state of a robotic or autonomous
system, almost every probabilistic sensor fusion algorithm
is constructed by assuming specific error properties of one
or multiple sensors. Regardless of the choice of the concrete
model, a violation of model assumptions can have a strong
impact on the estimation quality. Algorithms that are immune
against these violations are often referred to as robust
algorithms. Nevertheless, many of these robust algorithms also
require a parametrization, which depends on characteristics
of the sensors’ distribution. Previous evaluations [1], [2]
demonstrated, how small the parameter window for optimal
performance can be. Even with the right set of parameters, the
performance of these robust approaches can be exceeded if the
exact non-Gaussian sensor model is used [3]. However, the
non-Gaussian model parameters are even harder to determine.

Therefore we want to offer an alternative approach that
does not rely on a set of fixed parameters to describe the
sensor. Instead of specifying them in advance, we include
the parameters in the optimization problem itself.

Our previously proposed Dynamic Covariance Estimation
algorithm (DCE) [2] showed how to include the sensors’
covariance to the estimation problem. In the current work,
a Gaussian mixture model (GMM) is the probabilistic
foundation to cover more complex error distributions. Inspired
by the work of Olson and Agarwal on Gaussian mixtures for
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Fig. 1. Result of the online position estimation based on the Chemnitz
City GNSS dataset. The top view of the estimated trajectory shows the
performance of the proposed self-tuning algorithm (green) against the naive
factor graph approach (red). Our approach is able to significantly reduce
distortions that are caused by non-line-of-sight measurements.

graph optimization [5], [4], we chose a Max-Mixture (MM)
model as efficient approximation of a Gaussian mixture. With
this concept, we were able to extend our self-tuning DCE
algorithm to multimodal mixture distributions.

In this work, we explain our choice of Max-Mixture as
probabilistic model and its efficient self-tuning incorporation
to the estimation process. We show how to handle the
numerical stability issues that arise from this formulation
and which prior knowledge about the sensors’ properties
is still required. A detailed validation is performed on the
Chemnitz-City dataset used in [6].

II. PRIOR WORK

Initially motivated by the SLAM problem, optimization
based algorithms have found their way to the field of
general sensor fusion in the last decade [7], [8]. These class
of algorithms is also known as factor graphs due to the
corresponding graphical representation [9]. At first, we have
a closer look to the principles of these technique. Based
on the principle of maximum likelihood, (1) maximizes the
probability of the system’s state X for a set of measurements
Z.



X∗ = argmax
X

P (X|Z) (1)

By assuming an uninformative prior, the Bayes’ rule
allows to rewrite this as maximum-likelihood inference of the
measurements’ conditional probability (2). The measurement
vector zi and the state vector xi are subsets from the
corresponding sets Z and X .

P (X|Z) ∝
∏
i

P (zi |xi) (2)

Assuming Gaussian distributed measurement noise for each
factor of (2), is the standard approach to implement almost
any kind of sensor fusion algorithm. In case of factor graphs,
the following least squares formulation can derived from (1)
by applying the negative log-likelihood (3). For simplicity,
we consider the one-dimensional case, but our statements
also apply to multidimensional problems.

X∗ = argmin
∑
i

− ln(P (zi |xi)) (3)

X∗ = argmin
X

∑
i

‖ e(xi, zi)︸ ︷︷ ︸
ei

‖2Σ (4)

By squaring the non-linear error function ei, a convex
error surface results which is easy to optimize. Drawback
of the quadratic term is the high sensitivity to large errors,
caused by erroneous measurements that do not belong to the
assumed Gaussian. The so called “outliers” occur in SLAM
problems as well as with satellite or radio based localization
and other physical sensors. A broad variety of approaches
exist to handle them, but the majority relies on extensive
parameter tuning.

A natural solution, when the assumed sensor model is
violated, lays in the choice of a more sophisticated sensor
model. In [4], Olson and Agarwal introduce the Max-Mixture
algorithm, which uses an approximation of a Gaussian mixture
distribution as the sensor model. To solve the problem of
parametrization, they present in [10] a simple learning based
approach to characterize a sensor like a GPS Receiver in
advance. This approach requires previously collected data
for every sensor that should be addressed. Also, they do
not address the possibility of new and unseen conditions.
Violations of the sensor model are still possible and therefore
the impact on the estimation quality too.

Rosen et al. propose with [11] a more accurate approach
to incorporate arbitrary distributions into the least squares
estimation including Gaussian mixtures. In our comparison
[3], this approach showed leading performance in terms of the
estimation error. On the downside, there is also no mechanism
to handle violations of the sensor model.

Recently a non-parametric inference algorithm [12] ap-
peared to lift the factor graph approach beyond the limitation
of closed form parametric distributions. The remaining
question how to get the required non-parametric sensor
distribution and the impact on the inference if they do not

match the real sensors’ properties is still open for future
research.

Another common way to handle outliers is to exclude
them from the estimation process or weight them down.
This requires no direct assumptions about the sensors’
real distribution. The distinction between outliers and valid
measurements can be done binary or continuous.

Binary assignments [13] can not guarantee to detect all
outliers, especially for applications where no sharp border to
the class of valid measurements exists.

M-estimators offer a broad range of different cost functions
to weight outliers down. They are the de-facto standard
solution when robustness against outliers is required during
the estimation process. However, the right one is hard to
select and extensive parameter tuning can be required to
achieve the desired performance. Agamennoni et al. intro-
duced a self-tuning reinterpretation of M-estimators which
eliminates this burden [14]. They generalize a subset of the
available M-estimators as self-tuning elliptical distribution
and try to approximate the sensors’ error distribution with
them. Elliptical distributions cover many differently shaped
probability distributions, but all of them are symmetric and
unimodal. Therefore, multi-modal sensor data can only be
approximated by this approach and violations of the model
assumptions are still possible.

With Switchable Constraints (SC) [15], Sünderhauf and
Protzel included a continuous weighting of each measurement
in the optimization process itself. While the independent
weights between 1 and 0 are more suitable for data association
problems like SLAM, in [16] and [6] the performance was
also shown for satellite based localization (GNSS). Agarwal
et al. provided a closed form solution of SC, called Dynamic
Covariance Scaling (DCS) [17]. Both algorithms share the
burden of extensive parametrization, since their performance
depends mainly on the choice of an arbitrary tuning parameter
as shown in [1]. With this downside, an application for
sensor distributions that change over time is difficult. We
reformulated the idea of a dynamically changed weight
with our currently proposed Dynamic Covariance Estimation
(DCE) algorithm [2]. Instead of tuning arbitrary weights,
we enabled the optimizer to estimate each measurement’s
covariance directly. This seems identical but has different
mathematical consequences: We were able to remove the
arbitrary tuning parameters of SC/DCS and demonstrated
improved convergence properties. Nevertheless, this approach
is still limited to unimodal and symmetric distributions. In
the following section we show how these limitations can be
overcome by more sophisticated sensor models.

III. GAUSSIAN MIXTURE MODELS

We chose a sum of multiple Gaussian distributions as
probabilistic model of the proposed algorithm. Our decision
is based on the well-behaved mathematical properties of
Gaussian mixture distributions as well as our practical expe-
rience with outliers in localization problems. The algorithmic
foundations to include a GMM in factor graphs already exists,
so our algorithm can be build on top of them.
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Fig. 2. The negative log-likelihood of a Gaussian mixture model (GMM)
compared to the m-estimator Dynamic Covariance Scaling (DCS) [17] and
a Student’s t-distribution model from [14]. While the GMM has an easy to
optimize convex surface, optimizing the m-estimator is more difficult due to
the non-convex surface.

A. Reasons for GMMs

Standard least squares optimization assumes a single
zero-mean Gaussian P (zi |xi) ∼ N (0, σ2) to describe the
conditional probability

P (zi |xi) =
1√

2πσ2
· exp

(
− ei

2

2σ2

)
(5)

which leads to the mentioned least squares problem (4). To
overcome the limitations of a single Gaussian, a sum of
multiple ones can be used. With a weighted summation of
multiple Gaussian N (µj , σ

2
j ), asymmetric distributions can

be described as well as heavy-tailed and multimodal ones.
The resulting error model is (6) with wj as weight, µj as
mean and σ2

j as covariance of the jth component.

P (zi |xi) ∼
∑
j

wj · N (µj , σ
2
j ) (6)

Our comparison [3] revealed the potential of GMM-based
approaches to outperform generic robust ones. We showed,
that simulated NLOS measurements could easily be described
with such a mixture. Later in Section VI-A we demonstrate
on real GNSS data, that the non-Gaussian error characteristic
of NLOS corrupted measurements can be described with a
GMM. (See Fig. 4.)

Unlike other robust approaches, initial convergence after
poor initialization is not necessarily a problem. At the start
of the optimization, when the optimizer’s state is far away
from the local minimum, one Gaussian component usually
dominates the cost function as shown in Fig. 2. Therefore,
the log-likelihood is still quadratic and a fast large-scale
convergence is possible similar to the single Gaussian case.
Drawback of the quadratic large-scale error surface is the
impact of unexpected outliers. Hence, the Gaussian mixture
is only robust if it describes the correct error distribution.
This is difficult, if the distribution changes over time due to
environmental conditions or aging.

B. Gaussian Mixtures in Factor Graphs

Gaussian mixtures can be incorporated into the estimation
problem in two different ways. Olson and Agarwal showed
an efficient approximation that replace sum operator Σ of (6)
with a maximum operator, which leads to formulation (7).

P (zi |xi) ∼ max
j
wj · N (µj , σ

2
j ) (7)

Rosen et al. proposed a more general approach to include
any distribution, that is bounded in range, as the error model of
the estimation problem. The implementation of their algorithm
for sum of Gaussians leads to a difficult first derivation [3]
which can cause convergence issues. Therefore, a variation
of the Max-Mixture approach is used in this work which we
want to explain in detail. For a single Gaussian component,
the conditional probability is defined as

P (zi |xi, µj , σj , wj) =
wj√
2πσ2

j

· exp

(
− (ei−µj)2

2σ2
j

)
(8)

To obtain the required least squares form, the negative
log-likelihood of (7) has to be formulated.

− ln(P ) = − ln

max
j

wj√
2πσ2

j

· exp

(
− (ei−µj)2

2σ2
j

)
(9)

Since it is strictly monotonically increasing, the natural
logarithm can be moved inside the maximum operator. Due to
the negative sign, the maximum operator becomes a minimum
operator.

− ln(P ) = min
j
− ln

 wj√
2πσ2

j

· exp

(
− (ei−µj)2

2σ2
j

)
(10)

The logarithm is applied to the single Gaussian inside the
minimum operator and eliminates the exponential function.

− ln(P ) = min
j

ln


√

2πσ2
j

wj

+
(ei−µj)2

2σ2
j

 (11)

Since constant it is over all j, ln
(√

2π
)

is pushed outside
the minimum and squared error is written as Mahalanobis
distance with Σj = σ2

j .

− ln(P ) = ln
(√

2π
)

︸ ︷︷ ︸
const.

+ min
j

[
ln

(
σj
wj

)
+

1

2
‖ ei−µj‖2Σj

]
(12)

While the constant first part is neglected, a new regularization
term γ has to be added to guarantee − ln(P ) > 0 [11]. We set
this term to be greater than −minj ln

(
σj
wj

)
which is constant

if the distribution’s parameters σj and wj are constant.

− ln(P ) ∝ min
j

ln

(
σj
wj

)
︸ ︷︷ ︸

const.

+
1

2
‖ ei−µj‖2Σj

+ γ (13)

with γ > −min
j

ln

(
σj
wj

)
= const.⇐ σj , wj = const.

(14)



Note that our formulation of Max-Mixtures (13) differs
from the original one in [5], due to the constant part and the
conversion to a minimum operator. We prefer this formulation,
because it approximates the error surface of a real sum of
Gaussians, while the original formulation describes only a set
of independent Gaussians. In the second case, the absolute
value of the log-likelihood is inconsistent when the error
model switches between two components. This becomes even
more important if the distribution’s parameter are not constant
any more.

IV. SELF-TUNING MIXTURES

To overcome the limitations of static sensor models, we add
each weight, mean and standard deviation of the GMM to the
optimization problem. The maximum likelihood formulation
(15) can be written straightforward.

X∗,σ∗,µ∗,w∗ = argmax
X,σ,µ,w

∏
i

P (zi |xi,σ,µ,w) (15)

To describe the negative log-likelihood of (15), (13) can be
reused. However, the previous proposed regularization term
(14) would lead to the trivial solution of σ →∞. To construct
a more general regularization, we consider the special case
ei = µj where the log-likelihood has its global minimum.

− ln(P (zi | ei = µj)) ∝ min
j

[
ln

(
σj
wj

)]
+ γ (16)

To guarantee − ln(P ) > 0, the normalization term γ has to
satisfy (17).

γ > − ln min
j

(
σj
wj

)
(17)

While P is a normalized sum of Gaussians, the sum of wj is
1 and wj ≥ 0. So min(1/wj) = 1 reduces the regularization
problem to (18).

γ > − ln

(
min
j
σj

)
(18)

There exists no γ that guarantees − ln(P ) > 0 for arbitrary
σj . So as proposed for our DCE approach [2], a lower limit
for the standard deviation σmin is necessary. This limit is
set for all Gaussian components and depends on the sensors’
properties under optimal conditions. In our experience, the
general performance of the estimator is not affected by this
regularization, since it is a constant offset. Therefore, the
value can be chosen very conservatively, for example a tenth
of the usual standard deviation. The log-likelihood (13) can
be applied for the variable distribution parameter in form of
(19).

− ln(P ) ∝ min
j

[
ln

(
σj
wj

)
+

1

2
‖ ei−µj‖2Σj

]
− ln(σmin)

(19)
The least squares problem (3) with (19) as log-likelihood is

solved by iterative least-squares optimization. The proposed

solution results implicitly in a variation of the Expectation-
Maximization (EM) algorithm [18, p. 435]. This iterative
algorithm can be applied to solve the estimation problem
with some not fully observable variables, so called hidden
states. At the beginning, an expectation step, where the most
likely hidden variables are estimated based on the current
visible states, is performed. In the following maximization
step the observable variables are estimated while keeping the
hidden ones fixed. Both states alternate until convergence is
reached.

For GMMs, the assignment of each error function to
one of the Gaussian components is the hidden variable
and the components parameters are the visible ones. The
minimum selector in (19) performs the expectation and the
least-squares optimizer the maximization step. Due to the
hard assignment through the minimum, the algorithm is a
“winner-take-all” variant [19] of EM. Therefore we expect a
fast initial convergence, while the final estimate is not the
exact maximum likelihood solution for a GMM. Nevertheless,
it should be accurate enough for our sensor model.

V. GNSS LOCALIZATION AS FACTOR GRAPH

In robotics, factor graphs are used as graphical models to
show the probabilistic connections between the state variables
of an estimation problem. In the following section we describe
the factors and variables that we use to solve the problem of
satellite based localization for a ground vehicle. The overall
structure of the graph is shown in Fig. 3.

Fig. 3. The resulting factor graph representation of the GNSS localization
problem. The small dots are error functions (factors) that define the least-
squares problem. The big circles are the corresponding state variables.
Highlighted with red is the main contribution of this paper, the self-tuning
mixture model that is applied in the pseudorange factor.



A. State Vector

We estimate the three-dimensional position of our system
xx,y,z

t in the Cartesian earth-centered, earth-fixed coordinate
system (ECEF). However, the full three-dimensional rotations
is hard to estimate due to an observability problem. Therefore,
we only estimate the rotation xφt around its upright body axis.
We also estimate the GNSS receiver’s clock error xδt and its
drift xδ̇t to solve the GNSS problem.

B. Pseudorange Factor

In satellite navigation, the time-of-flight of a radio signal
is used to calculate the distance between the position of the
ith satellite sx,y,z

t,i and the receiver xx,y,z
t . The pseudorange

measurements zpr
t,i obtained from a GNSS receiver are biased

for multiple reasons.
Largest component is the receiver clock error xδt , the

difference between the receivers internal clock and the GNSS
reference time. It varies over time and has to be estimated
together with the receivers position. We estimate the offset
directly as a metric distance instead of a time difference.

Each satellite also suffers from a clock error δsat which
is typically provided by the satellite system.

Signal delays, caused by ionosphere and troposphere, add
an offset of several meter. Both atmospheric error terms are
also provided by the satellite system, we sum them to δatm.

The Sagnac effect, caused by the earth rotation is also
corrected using (20) from [16, p. 153].

δsag = ωearth

c ·
(
sx

t,i ·x
y
t − sy

t,i ·x
x
t

)
(20)

The constant ωearth it the earth rotation rate and c the speed
of light.

All together results in (21) which is included in the self-
tuning mixture formulation (19).

epr
t,i =

√∥∥∥sx,y,z
t,i −xx,y,z

t

∥∥∥2

+ xδt +δatm + δsag + δsat − zpr
t,i

(21)

C. Clock drift factor

The receivers clock offset is not static, since its clock
source (typically a crystal) has a frequency error. Hence, it
drifts at a certain velocity compared to the GNSS reference
clock which is stabilized by an atomic clock. We apply a
constant clock error drift (CCED) model (22) from [8] to
estimate the clock error xδt together with its derivation xδ̇t .
These model approximates a linear frequency drift of the
receivers clock source and allows a random walk of this drift.

∥∥eCCED
t

∥∥2

ΣCCED
=

∥∥∥∥∥
(
xδt +xδ̇t ·∆t

xδ̇t

)
−
(
xδt+1

xδ̇t+1

)∥∥∥∥∥
2

ΣCCED

(22)

D. Odometry Factor for Ground Vehicles

The ground vehicle’s wheel odometry measures a velocity
zv

t and yaw rate zωt . Since the odometry contains only the
velocity in the local x-direction x̃, we assume the velocity
in the other dimensions to be zero. Its full 3D pose with
three degree of freedom for the orientation is only partially
observable. Then, if the vehicle moves in a straight line,
the rotation around its forward axis can not be observed.
Therefore, we estimate only one rotation around the vehicles
vertical axis xφt along with its global 3D position xx,y,z

t . We
assume that the vehicles upright axis is perpendicular to the
earth surface. This is a approximation of the real motion,
although it should be accurate enough for the localization
problem and it solves the observability problem. The required
rotation from global coordinates to the local body frame is
implemented with the quaternion

qrot =

(
qz · qφ
‖qz · qφ‖

)−1

(23)

qrot is composed from the angle between the global z-axis
vz = [0, 0, 1]

ᵀ and the position xx,y,z
t which is

qz = ∠vz xx,y,z
t =

(
vz × xx,y,z

t

vz · xx,y,z
t +‖vz‖+ ‖xx,y,z

t ‖

)
(24)

and the angle xφt . Therefore, qφ (25) rotates the system
around the position vector (which is assumed to be the
vehicles z-axis) by xφt .

qφ =


sin(x

φ
t/2)

0
0

cos(x
φ
t/2)

 (25)

The complete error function for our ground vehicle odometry
factor is eodo

t , with (27) as relative position ∆xx̃,ỹ,z̃
t in the

local body coordinates x̃, ỹ, z̃.

∥∥eodo
t

∥∥2

Σodo
=

∥∥∥∥∥∥∥∥
(

∆xx̃,ỹ,z̃
t(

xφt+1−xφt

)) ·∆t−1 −


zvt
0
0
zωt


∥∥∥∥∥∥∥∥

2

Σodo

(26)
∆xx̃,ỹ,z̃

t = qrot
(
xx,y,z

t+1 −xx,y,z
t

)
q−1
rot (27)

VI. REAL WORLD EXPERIMENT

Motivation of our work is the problem of precise GNSS
localization under urban multipath conditions. Hence, we
evaluate the proposed self-tuning Mixtures optimization on a
dataset of real world GNSS measurements. In this section,
we want to give a brief summary of the used dataset, how
we implemented the factor graph to solve it and how to
parametrize the sensor models.

A. Chemnitz City Dataset

Already known from the publications of Sünderhauf [6],
[8], [16], the Chemnitz City dataset contains a synchronized
set of pseudorange and odometry measurements, as well as
a precise ground truth. Due to the urban environment, the
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Fig. 4. The histogram of the pseudorange error over the complete Chemnitz
City Dataset (blue) with a fitted 2-component Gaussian mixture model (green)
and a single Gaussian (red). Both models are fitted with the fitgmdist
function of Matlab. The lower plot is an magnification of the upper plot.
It is clearly visible that the single Gaussian distribution is not sufficient to
describe the error distribution.

direct line-of-sight to some of the satellites is blocked by
buildings or other obstacles. Signals from a part of these,
still reach the receiver by reflections on the walls. While
the high precision reference receiver can suppress them with
its advanced antenna and algorithms, these non-line-of-sight
(NLOS) measurements are recorded by the consumer grade
receiver. Fig. 4 shows the error histogram of all measurements,
which displays the heavy-tailed error distribution. We esti-
mated the corresponding Gaussian mixture with the Matlab
function fitgmdist. The distribution’s parameters indicate
a proportion of over 22% NLOS for the whole dataset which
reflects the challenging conditions. To exploit the changing
conditions during the test drive, we repeated this with a sliding
window. Fig. 5 in Section VII-B shows, that the characteristics
as well as the amount of the NLOS errors are variable over
time. Note that in practical applications this evaluation is not
possible without a centimetre-level precise reference system.
From now on, the dataset is online available1.

B. Graph Optimization

The proposed factor graph with a self-tuning GMM as
sensor model is implemented inside the Ceres framework
[20]. Even if a recorded dataset is used, we process the data
under online conditions. We update the graph with new factors
and variables each time step and use a Dogleg optimizer to
solve it. To keep the runtime of our estimation problem
bounded, we apply a simple sliding window filter. The filter
length is set to 60 s to include enough data to estimate the
GMM, while ensuring real-time capability. This trade-off is
set empirically, but the impact to the performance is low,
even for shorter windows.

1www.mytuc.org/rxvw

C. Parametrization

Every factor of our factor graph has to be weighted
by a covariance. These parametrization is crucial for the
performance of our estimator. Since only the covariance of
the pseudorange factor is estimated during the optimization,
the odometry and clock drift factors have to be parametrized
a priori. These noise parameters depend on the hardware used
for the dataset and since it was recorded in 2011, the original
hardware is not longer available. Regardless the empirical
chosen values, provided by [6] and [16], we estimated them
from the dataset to ensure a correct parametrization. The
precise ground truth allows to calculate the errors of the
odometry and clock drift. Based on these errors, we estimated
the noise and drift properties shown in Table I. The covariance
of the pseudorange is taken from [6] and it is only used for
the non-robust graph.

TABLE I
COVARIANCES OF THE ESTIMATION PROBLEM

sensor error function covariance

pseudorange eprt,i Σpr = (10 m)2

odometry eodot Σodo = diag


0.05 m s−1

0.03 m s−1

0.03 m s−1

0.006 rad s−1


2

CCED model eCCED
t ΣCCED =

(
0.1 m

0.009 m s−1

)2

Before the optimization, initial values for the covariances,
means and weights of the self-tuning mixture model have to be
defined. They are, in difference to the other noise parameters,
not static and are only used during the first iterations. To
demonstrate the usability in practical applications, we do
not use any information from the dataset to determine these
values. Instead, we use a generic robust mixture of a Gaussian
with a covariance of 10 m corrupted by 25 % outliers with
a covariance of 100 m. Table II summarize the GMM initial
parametrization. We also added lower and upper limits to
each value. This is required, due to the clock error as
common offset of the pseudoranges. It prevents the unbounded
estimation of the mean values (µ1, µ2). Therefore, we fixed
µ1 to 0 and limited µ2 to be positive. With limits for the
weight parameters, we also forbid the optimizer to discard a
Gaussian component completely.

TABLE II
LIMITATIONS AND INITIAL VALUES OF THE GMM

Parameter Start Min Max

(σ1, σ2) [m] (10, 100) (1, 20) (10, ∞)
(µ1, µ2) [m] (0, 0) (0, 0) (0, ∞)
(w1, w2) (0.75, 0.25) (0.1, 0.1) (0.9, 0.9)
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VII. RESULTS

A. Position Accuracy

We plot the online position estimates along with the ground
truth coordinates as top view in Fig. 1. To allow comparisons
to prior work [6], we use the trajectory error in the UTM
xy-plane as error metric and summarize it in Table III. The
result of a non-robust implementation is in the first row
and demonstrates how the NLOS measurements affect the
position accuracy even with odometry information and the
clock drift model. To show the difference between a static
GMM and our self-tuning model, we included a Max-Mixture
implementation with fixed parameters in the second row.
The third row contains the error of our proposed self-tuning
mixture algorithm. In addition to our own work, the results
of Sünderhauf et al. are also listed in the last two rows.
Please notice that the result from [16] is achieved by batch
processing and [6] without odometry information.

TABLE III
RESULTS OF THE FINAL RUN

Algorithm Trajectory Error [m] Time [s]Median Mean Max

Non-robust 27.15 30.01 98.47 125.1
Static GMM 3.57 4.52 31.75 91.3
Self-tuning GMM 1.99 2.45 13.91 185.0

SC (no odometry) [6] 2.55 3.21 21.04 –
SC (batch) [16] 2.56 2.86 9.35 –

The results show the advantages of a dynamic error
model estimation over static parametrization. The significantly
reduced estimation errors demonstrate the robustness of our
self-tuning mixtures approach. Compared to previous results
of Switchable Constraints, it is clear that particularly the
mean and median errors are improved. This suggests that
the dynamic error model is able to improve the estimation
quality compared to generic robust approaches.

B. Estimated Error Model

To validate the estimated parameters of the Gaussian
mixture model, we compare them to an external estimate as
ground truth. With a sliding window of the same length as our
factor graph, we use again Matlab’s fitgmdist function
to calculate the parameter. Fig. 5 displays the parameters
(in color) with their respective external estimate (in black).
Obviously, the mean of the first component is fixed to zero,
as explained in section VI-C. The overall estimation quality
of our approach is good, considering the winner-take-all
behaviour of the EM algorithm. Binary assignment of each
measurement to one Gaussian component causes the noisy
weight estimate, since small parameter changes can lead to
many reassignments. The systematic underestimation of the
first component’s standard deviation is probably caused by the
hard assignments too. This has to be investigated in further
research.
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Fig. 5. Comparison of the mixture model parameters estimated in the
proposed factor graph (in color) and the externally estimated ground truth
(in black). The ground truth is based on a sliding window of 60s as well as
the proposed algorithm. In the left column are the mean, standard deviation
and weight of the line-of-sight (LOS) component of the estimated Gaussian
mixture. Its mean is fixed to zero. The right column contains the none-line-
of-sight (NLOS) component.

C. Runtime

The time measurements in Table III are achieved on a Intel
i7-4770 System. While the average computation time per
time step is about 2.4 ms, Fig. 6 shows the strong variation
in the individual steps. The maximal time per step is 22.6 ms.
Since dataset is recorded with 25 ms per step, our approach is
real-time capable without limitations. We do not include the
runtime of [6] and [16] because they were run on different
machines with older frameworks.
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Fig. 6. Computation time required by the proposed self-tuning algorithm
between two consecutive time steps. Despite the large fluctuations, the
maximum available time of 25 ms is never exceeded.

VIII. CONCLUSION

We introduced our concept of a self-tuning Gaussian
mixture distribution and demonstrated its application to a
online GNSS localization problem.

Through combination of our previously proposed DCE
algorithm [2] with Olsons efficient Max-Mixture represen-
tation [5] we formulated the problem of state estimation
and sensor characterization jointly as maximum-likelihood
problem. The evaluation on a GNSS localization dataset
showed how the dynamic estimation of the pseudorange error



model can improve the overall estimation quality. In our
opinion, dynamic estimation of the sensor model is just a
necessary step to handle sensors like GNSS, wireless point-
to-point ranging or radar. Also non-physical sensors like
feature detectors for vision based systems that are affected by
changing lighting and weather conditions could be addressed.
Therefore, we want to investigate in our future work, how
these sensors can be described with a dynamic mixture model.

Even if our approach looks promising, there are still some
limitations. The self-tuning sensor model is variable in its
parameters, but fixed in its structure. Hence, it can only
adapt to the sensors’ distribution, if the number of Gaussian
components are enough to describe the distribution. Because
of the hard assignments in the mixture model, we also expect
suboptimal performance if the number of components is to
high. If a component has no measurement assigned, it can
simply diverge. So, a model that is variable in its structure
should be topic of future research.

The presented connections to the EM-algorithm and the
factor graph representation allow to extend the proposed
approach in many different directions to overcome some of
the limitations. Also, we can imagine a combination with
machine learning techniques to learn the sensors’ behaviour
over time.
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