Published at the Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics held in conjunction with the International Conference on

Intelligent Robots and Systems (IROS), 2016.

Learning Vector Symbolic Architectures for Reactive Robot Behaviours

Peer Neubert, Stefan Schubert and Peter Protzel

Abstract— Vector Symbolic Architectures (VSA) combine a
hypervector space and a set of operations on these vectors. Hy-
pervectors provide powerful and noise-robust representations
and VSAs are associated with promising theoretical properties
for approaching high-level cognitive tasks. However, a major
drawback of VSAs is the lack of opportunities to learn them
from training data. Their power is merely an effect of good
(and elaborate) design rather than learning. We exploit high-
level knowledge about the structure of reactive robot problems
to learn a VSA based on training data. We demonstrate pre-
liminary results on a simple navigation task. Given a successful
demonstration of a navigation run by pairs of sensor input
and actuator output, the system learns a single hypervector
that encodes this reactive behaviour. When executing (and
combining) such VSA-based behaviours, the advantages of
hypervectors (i.e. the representational power and robustness
to noise) are preserved. Moreover, a particular beauty of this
approach is that it can learn encodings for behaviours that have
exactly the same form (a hypervector) no matter how complex
the sensor input or the behaviours are.

I. INTRODUCTION

A Vector Symbolic Architecture (VSA) [1] combines a
hypervector space with a set of operations on these vectors.
Hypervectors are dense or sparse vectors with very high
numbers of dimensions (e.g. 10,000). Hypervectors have
great representational power and facilitate high robustness
to noise, even if the vectors are binary and sparse [2]
(although they may also be dense and real-valued). Several
approaches have been proposed to combine vector spaces
with appropriate operations to define a VSA, e.g. [3], [4], [5],
[6]. VSAs are known to have promising theoretical properties
and have been argued to be an approach to general artificial
intelligence [7]. They can encode role/filler pairs [3] and ad-
dress Jackendoft’s challenges for cognitive neuroscience [1].
Hypervectors and VSAs are used for example at Numenta’s
Hierarchical Temporal Memory [8], for modelling associative
long short-term memory [9] and for reactive robot control
[10].

In [1, p.6], Gayler points out a major issue with VSAs:
“Typical connectionist architectures rely on training proce-
dures to achieve their effectiveness. However, VSAs provide
no opportunity for training to substitute for architectural
effectiveness. That is, good performance depends on good
design rather than automated training, and this is a harder
research task.”.

In this paper we address this issue and present a method-
ology to learn VSAs that encode and execute reactive
behaviours. In particular, we demonstrate the approach by
learning a VSA to solve the robot navigation task described

The authors are with Technische Universitit Chemnitz, Germany
firstname.lastname@etit.tu-chemnitz.de

in [10] (which is there solved by a manually designed VSA).
We exploit high level knowledge about the task (similar
to a robotics prior [11]) to learn a navigation policy from
demonstration of successful navigation runs.

II. THE VECTOR SYMBOLIC ARCHITECTURE

We build upon the Multiply-Add-Permute (MAP) archi-
tecture of [6]. Our VSA consists of the following elements:

« Each hypervector is an element of [—1,1]¢ with d is
set to 4,000 in our experiments.

o Distances of hypervectors are computed using the
cosine-distance.

o The bind() operator ® is the element-wise product.

o The bundle() operator @ is the element-wise sum.
We normalize the values by limiting each vector entry
independently to range [—1,1].

o Permutation of vector dimensions can be used to quote
information [6]. We define a protect() operator ©,
which applies a circular right shift on the vector el-
ements. The width of the shift is computed from the
vector itself (i.e. as average index of elements > 0)
and its hypervector representation is superposed with
the shifted input vector using the bundle() operator.
This allows to invert the permutation by extracting and
decoding the width of the shift from this superposition.

o Encoding/decoding: In our preliminary experiments,
we use a very simple coding of sensor and actuator
values: We encode scalar values by assigning random
hypervectors. These assignments are stored in a lookup
table (LUT). This allows to encode similar input values
with the same hypervector and to later decode the
vectors.

e Clean-up memory: A similar LUT is used to imple-
ment the clean-up memory that is required to denoise
hypervectors. Again this is a tribute to the preliminary
state of this work, for larger problems, this could
be implemented, e.g., in form of recurrent associative
networks.

For details on the properties of these operations (which
are essential for this work), we refer the reader to [12].

III. LEARNING REACTIVE BEHAVIOURS

It is widely accepted that a key for successful application
of machine learning techniques is exploitation of inductive
bias [13]. In the area of mobile robotics, this may be
structural knowledge of the problem to solve, the robot
capabilities and the properties of the world the robot is
acting in, e.g incorporated in form of robotics-priors [11].
We exploit the fact that reactive behaviours can be formalized



Training

Training sample 1 conditionHV

—

—
£

- e \

sensor;® encode(s;) \\
\ sensorZ(X) encode(sz) \

\
Sensors \
¥
X

Actuators Robot

sensorl(X) encode(s,)

A
S
actuator@encode(azl >
actuatori@ encode(a,) \ )

b

(Training sample 2

6’raining sample k

Fig. 1.

Query

conditionHV

/ T —
/ sensor3® encode(s;)
/ senson X encode(sl)

/ A sensor2®encode(sz)’

% V

X3 Robot
2
XA
actuator
robot program E,I]Zan:;:p \ actuator2
progHV Y
clean up
| memory clean up
clean-up memory | memory
decode
encoder/decoder decode
En Output

&)

Schematic overview of data flow during learning and query phase for the simulated robot used in the experiments. The robot sensors and their

data flow are shown in red. In the training phase, the sensor and actuator combinations that are presented in the training samples are combined to a single
hypervector representation progHV. This hypervector connects the training stage to the execution phase. During the latter, the hypervector is queried for
the current sensor representation and the corresponding set of actuator commands (a1, a2) is returned

as combination of (condition, result) or (input, output) pairs,
respectively. Encoding a reactive behaviour means encoding
these pairs (hopefully with good interpolation properties
and robustness to noise) and executing such a behaviour
means querying this encoding with the current condition
(e.g. the vector of sensor inputs) and obtaining the according
result (e.g. the motor velocities). Based on this knowledge,
we can design a VSA that can be trained to resemble
reactive behaviours from a training set. The overall system
is illustrated in Fig. 1.

The training procedure is outlined in Algorithm 1. The
training data is a set of 7 =

1 : k pairs of sensor inputs
Sj = S1,---.

,8n, and actuator outputs A; = ay, ..., a,, for
the n sensors and the m actuators. Based on the VSA
and encoder of section II, a single hypervector progHV is
computed that encodes the behaviour shown in the training
sequence. Line 1 computes a hypervector for each sensor
and actor that is used to encode this role in lines 3 and
4 (a hypervector “name” of this sensor/actuator). For each
training sample, the condition hypervector is computed as
bundle of bindings of sensors and their values (line 3).
The result hypervector is computed similarly in line 4. The
query procedure of line 5 evaluates whether the current
conditions are already known. This computation build upon
the hypervector arithmetic property that each member of a
bundle of hypervectors is similar to this bundle, while other
(random) hypervectors have a probability close to 1 of being
dissimilar. If these conditions are unknown, the program
is extended with the binding of the current condition and
results (line 6) and the conditions are bundled with the known
conditions (line 7). Lines 8-11 add the result hypervector and
its parts to the clean-up memory to allow later reconstruction
during the execution of the behaviour.
Executing the learned behaviour means querying the
progHV for a result given the current conditions. In hy-
pervector arithmetic this can be done by unbinding the

conditions from the program. This results in the hypervector
of the corresponding result with some noise. For details see

[12]. To remove the noise, the result is run through the clean-
up memory:

resultHV := V. SA.cleanUp(®(conditionHV) ® progHV') (1)

Similarly, the individual actuator values can be obtained by
unbinding the actuator names (computed in line 1 in Algo-
rithm 2) from the resultHV. Details are given in Algorithm 2.

Algorithm 1: VSA learning

Data: k training samples [S, A];.; of sensor and actuator values, a

VSA, an encoder, an empty program progHV and an empty
hypervector knownCondHV of known conditions

Result: progHV - a hypervector representation of the behaviour

// get hypervector representations for each
sensor and actor

1 [sensor, actuator] = V.S A.assign Random Hypervectors()

// for each training sample [S,A]
2 foreach pair [S = (s1,...,8n), A = (a1,...,am)] do
// encode values, bind to device and bundle
condition/result
conditionHV := @'_, (sensor; ® encode(s;))
result HV := @ | (actuator; ® encode(a;))

if isDissimilar(knownCondHV, ®(conditionHV')) then
// protect the condition and append
(bundle) to the program
progHV := progHV & (©(condition HV ) @result HV)
// also append (bundle) the condition to

the set of known conditions
knownCondHV =

knouwnCondHV & (®(conditionHV'))

// insert the result and the actuator
encoding to the clean-up memory

VSA.addToCUM (resultHV')
foreach actuator; do

VSA.addToCUM (actuator; ® encode(a;))

8
9
10
11
12
13 end

end
end




Algorithm 2: VSA query

Data: progHV - the output of the learning procedure Alg. 1, the
VSA and encoder/decoder used in Alg. 1, the query sensor
inputs S

Result: output actuator commands A

// encode values, bind to device and bundle
condition
1 conditionHV := @7, (sensor; ® encode(s;))

// query program to get a noisy version of the
resultHV
2 resultHV Noisy := ®(conditionHV) ® progHV

// remove noise
3 resultHV := vsa.queryCU M (result HV Noisy)

// for each actuator , extract the command from
the result hypervector
4 foreach actuator; do

// unbind a noisy version from the result
hypervector
5 commandHV Noisy := actuator; ® resultHV

// remove noise
6 commandHV := vsa.queryCUM (commandHV Noisy)

// decode the command value from the
hypervector
7 a; := decode(commandHV)
8 end

IV. PROOF-OF-CONCEPT EXPERIMENTS AND
DISCUSSION

We implemented the VSA of section II and the described
training procedure in Matlab and ran a set of proof-of-
concept experiments using a V-REP simulation [14] of the
textbook corral-escape task of [10]. Fig. 2 shows the simu-
lated environment with the robot. The robot has a differential
drive and is equipped with two light sensors (left/right) and
a front-facing distance sensor. Initially, the robot is placed
inside the corral and its task is to find the light source (the
yellow disk in Fig. 2) and stay there. There are several
solutions for this task, e.g., the following set of if-else rules
can be used [10]:

if senselLightLeft and senseLightRight:

leftMotor, rightMotor = +1,+1 // stay in light
else if senseLightLeft: // turn left

leftMotor, rightMotor = -1,+1
else if senseLightRight:

leftMotor, rightMotor = +1,-1 // turn right
else if senseObstacle: // turn left

leftMotor, rightMotor = -1,+1

else: // cruise
leftMotor, rightMotor = +1,+1

Levy et al. [10] manually designed a VSA that implements
this set of rules. In contrast, we used this hard coded if-
else behaviour to generate training sequences to learn a
VSA using Algorithm 1. While the above listed if-else rules
only use binary values, the sensor inputs of the training
sequences produced by the simulation environment are real
valued scalars (i.e. the distance to the light source or an
obstacle) and are handled as such in Algorithms 1 and 2.
In our experiments, the learned single hypervector progHV
could (together with the encoder and the clean-up memory)
successfully resemble the results of the training behaviour.

We believe that learning VSAs is a worthwhile direction
to exploit their promising theoretical high-level properties.
However, the here presented approach is only a first step.
Currently, the generalization and smoothing of training data
is just based on the similarity properties of hypervectors and
their encoding. How can this be better supported by the learn-
ing procedure? To what extend is this VSA implementation
robust to partially observable states and how can this be im-
proved? In this particular setting, what is the representation
capacity of this single hypervector behaviour? What are good
policies to combine several of these behaviours?

Fig. 2. The V-REP simulation environment. The robot has two light sensors
and can additionally detect obstacles in front of the robot. The goal of the
task is to navigate to the yellow light source and stay there.

REFERENCES

[1]

[2]

[3]

[4]
[5]
[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

R. W. Gayler, “Vector symbolic architectures answer jackendoff’s
challenges for cognitive neuroscience,” in Proc. of ICCS/ASCS Int.
Conf. on Cognitive Science, Sydney, Australia, 2003, pp. 133-138
S. Ahmad and J. Hawkins, “Properties of sparse distributed
representations and their application to hierarchical temporal
memory,” CoRR, vol. abs/1503.07469, 2015. [Online]. Available:
http://arxiv.org/abs/1503.07469

P. Smolensky, “Tensor product variable binding and the representation
of symbolic structures in connectionist systems,” Artif. Intell., vol. 46,
no. 1-2, pp. 159-216, Nov. 1990.

P. Kanerva, “Fully distributed representation,” in Proc. of Real World
Computing Symposium, Tokyo, Japan, 1997, pp. 358-365

T. A. Plate, “Distributed representations and nested compositional
structure,” Ph.D. dissertation, Toronto, Ont., Canada, Canada, 1994.
R. W. Gayler, “Multiplicative binding, representation operators, and
analogy,” in Advances in analogy research: Integr. of theory and data
from the cogn., comp., and neural sciences, Bulgaria, 1998.

S. D. Levy and R. Gayler, “Vector symbolic architectures: A new
building material for artificial general intelligence,” in Proc. of Confer-
ence on Artificial General Intelligence. Amsterdam, The Netherlands:
10S Press, 2008, pp. 414-418.

J. Hawkins, S. Ahmad, and D. Dubinsky, “Cortical learning algo-
rithm and hierarchical temporal memory,” pp. 1-68, 2011, Numenta
Whitepaper.

I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves,
“Associative long short-term memory,” CoRR, vol. abs/1602.03032,
2016. [Online]. Available: http://arxiv.org/abs/1602.03032

S. D. Levy, S. Bajracharya, and R. W. Gayler, “Learning behavior
hierarchies via high-dimensional sensor projection,” in Proc. of AAAI
Conference on Learning Rich Representations from Low-Level Sen-
sors, ser. AAAIWS’13-12, 2013, pp. 25-27.

R. Jonschkowski and O. Brock, “Learning state representations with
robotic priors,” Autonomous Robots, vol. 39, no. 3, pp. 407-428, 2015.
P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors.” Cognitive Computation, vol. 1, no. 2, pp. 139-159, 2009
T. M. Mitchell, “The need for biases in learning generalizations,”
Rutgers University, New Brunswick, NJ, Tech. Rep., 1980.

[Online]. Available: http://www.coppeliarobotics.com/



