
To appear in Proc. of IEEE Conf. on Intelligent Robots and Systems (IROS), 2012. DOI: not yet available
c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Switchable Constraints for Robust Pose Graph SLAM

Niko Sünderhauf and Peter Protzel

Fig. 1: Exemplary results of the proposed robust SLAM back-end on the synthetic Manhattan world dataset [10] that contains 3500 poses
and 2099 loop closures. In these examples, we corrupted the dataset by introducing 100 additional wrong loop closures that might have
been produced due to data association errors (e.g. failed place recognition) in the SLAM front-end. Current back-ends like g2o [6] are not
able to converge to a correct solution (shown in blue) despite being supported by so called robust cost functions like the Huber function
[1]. Our robust solution (red) that uses switchable constraints correctly discards the wrong loop closure candidates (visible as grey links)
during the optimization and converges to a correct solution. For comparison, the ground truth is plotted in green. Our robust back-end was
able to cope with 1000 outliers on a number of 2D and 3D datasets. Notice that the outlier loop closure constraints have been added
following different policies (from left to right: random, local, random group, local group) which are explained later on.

Abstract— Current SLAM back-ends are based on least
squares optimization and thus are not robust against outliers
like data association errors and false positive loop closure
detections. Our paper presents and evaluates a robust back-end
formulation for SLAM using switchable constraints. Instead
of proposing yet another appearance-based data association
technique, our system is able to recognize and reject out-
liers during the optimization. This is achieved by making
the topology of the underlying factor graph representation
subject to the optimization instead of keeping it fixed. The
evaluation shows that the approach can deal with up to 1000
false positive loop closure constraints on various datasets. This
largely increases the robustness of the overall SLAM system
and closes a gap between the sensor-driven front-end and the
back-end optimizers.

I. INTRODUCTION

After recent advances in the field of optimization-based
SLAM, efficient algorithms that exploit the sparsity of
SLAM have been proposed, e.g. among others [2]–[4], [6].
Implementations of these approaches in the form of open-
source libraries are available to the robotics community, ready
to be applied. These well-documented frameworks support
batch and incremental processing and thus can be used to
solve both the full and the online SLAM problem, including
pose graph SLAM and landmark-based SLAM.

Current state of the art SLAM back-ends like g2o [6], or
iSAM2 [2] are least squares optimizers and as such, they are
naturally not robust against outliers. The problem is widely
acknowledged but usually ignored: While the front-end is
responsible for sensor data processing, data association and
graph construction, the back-end optimizer considers the
data association problem solved. That means the back-end
relies heavily on the front-end and expects it to produce a

The authors are with the Department of Electrical Engineering and Infor-
mation Technology, Chemnitz University of Technology, 09126 Chemnitz,
Germany. niko.suenderhauf@etit.tu-chemnitz.de

topologically correct factor graph representation. Although
any failure in the data association can have catastrophic
implications on the resultant map and robot state estimates,
state of the art back-ends do little or nothing at all to mitigate
these potentially severe effects.

In our understanding, state of the art SLAM back-ends and
complete SLAM systems lack the necessary robustness to
cope with data association errors that will inevitably appear
especially – but not exclusively – in long-term operations
outside controlled lab environments. Since robustness is the
key to transfer SLAM from academia to a broader variety of
every-day applications, our work focuses on making SLAM
robust. This paper therefore evaluates a robust back-end for
optimization-based SLAM systems. The core novelty of this
robust back-end compared to state of the art approaches are
the switchable constraints. While we described a preliminary
version of the system in [13], [14] and applied it to a large-
scale real-world urban dataset, no in-depth evaluation has
been conducted so far. As we are going to see, the proposed
system is able to cope with an extremely high amount of
outliers in the SLAM problem formulation. Exemplary results
of the system on the Manhattan dataset are shown in Fig. 1.

The next section quickly reviews the switchable constraints
and their application for robust pose graph SLAM. The
evaluation and presentation of results and the discussion
of failure cases follow in sections III and IV.

II. SWITCHABLE CONSTRAINTS

Since false positive loop closures are expressed as addi-
tional constraint edges in the factor graph representation of the
SLAM problem [5], our main idea to increase the robustness
of SLAM back-ends is that the topology of the graph should
be subject to the optimization instead of keeping it fixed.
This is achieved by using switchable constraints.

Fig. 2: Factor graph representation of the robustified pose graph
SLAM formulation evaluated in this paper. Individual robot pose
nodes are connected by odometry factors (blue). The switch variable
s2,i governs the loop closure factor (yellow). Depending on the
value assigned to the switch variable sij , the loop closure factor is
switched on or off, i.e. it is activated or deactivated as part of the
optimization process. The switch variable is governed by a prior
factor (black) that penalizes the deactivation of loop closures.

To achieve the desired switchable behaviour, we introduce
another type of hidden variable into the problem formulation:
A switch variable sij is associated with each constraint factor
that could potentially represent an outlier. The optimization
now works on an augmented problem, searching for the joint
optimal configuration of the original variables and the newly
introduced switch variables, hence searching the optimal
graph topology.

Our proposed problem formulation for robust pose graph
SLAM is:

X∗, S∗ = argmin
X,S

∑
i

‖f(xi,ui)− xi+1‖2Σi︸ ︷︷ ︸
Odometry Constraints

+
∑
ij

‖Ψ(sij) · (f(xi,uij)− xj) ‖2Λij︸ ︷︷ ︸
Switchable Loop Closure Constraints

+
∑
ij

‖γij − sij‖2Ξij︸ ︷︷ ︸
Switch Prior Constraints

(1)

Fig. 2 illustrates the factor graph corresponding to this
problem formulation. In the following, we will explain this
formulation step by step. Notice that compared to the con-
ventional, non-robust formulation, the odometry constraints
remain unchanged.

A. The Switch Variables and Switch Function

The loop closure constraints have been augmented by a
multiplication with the function Ψ(sij), which we call the
switch function. This switch function is defined as Ψ : R→
[0, 1], i.e. it is a mapping from the continuous real numbers to
the interval [0, 1], defined on R. The idea behind the switch
variables is that the influence of a loop closure constraint
between the poses xi and xj can be removed by driving
the associated switch variable sij to a value so that ωij =
Ψ(sij) ≈ 0.

Different switch functions can be defined, e.g. a step
function, or a sigmoid. However, the sigmoid function
shows an undesired plateau behaviour where the gradient
is very small over a large range of values and where the
iterative optimizer can become stuck. Although we previously

TABLE I: The datasets used during the evaluation.

Dataset synthetic / real 2D/3D Poses Loop
Closures

Manhattan (original) synthetic 2D 3500 2099
Manhattan (g2o version) synthetic 2D 3500 2099
City10000 synthetic 2D 10000 10688
Sphere2500 synthetic 3D 2500 2450
Intel real 2D 943 894
Parking Garage real 3D 1661 4615

proposed to use the sigmoid [13], [14], more elaborate
experiments showed that a simple linear function of the
form ωij = Ψlin(sij) = sij results in a better convergence
behaviour if we constrain 0 ≤ sij ≤ 1.

The influence of the switch variables can be described
and understood in two equivalent ways: In the topological
interpretation, a switch can enable or disable the constraint
edge it is associated with, thus literally remove it from the
graph topology. In the probabilistic interpretation, the switch
variable influences the information matrix of the factor it is
associated with and can drive it from its original value to zero,
thus increasing the covariance associated with this factor until
infinity. The resulting information matrix is given as Λ̂−1

ij =

Ψ(sij)
2 · Λ−1

ij . It has been shown that both interpretations
are equivalent [11], [14].

B. The Switch Prior Constraint

The switch prior constraints are necessary to anchor the
switch variables at their initial values. Since it is reasonable
to initially accept all loop closure constraints, a proper and
convenient initial value for all switch variables would be
sij = 1 when using the linear switch function Ψlin. For the
following, we call these initial values γij . Like any other
variable or observation in our probabilistic framework, the
switch variables sij are modelled as normally distributed
Gaussian variables. The initial value is used as mean of the
distribution, so that sij ∼ N (γij ,Ξij). Notice that we have
to determine a proper value for the switch prior covariance
Ξij which will be explained later during the evaluation. This
value is a free parameter of the proposed robust back-end
formulation.

III. PREPARING THE EVALUATION

A. Used Datasets

In order to show the versatility and general feasibility
of the proposed approach, six very different datasets were
used for the evaluation. Table I lists and summarizes their
important properties. The synthetic datasets were created
from simulation, while the two real-world datasets have been
recorded in a 2D (Intel) or 3D (Parking Garage) environment
respectively. These datasets are publicly available to the
community and have been used as examples and benchmarks
in a number of SLAM publications before.

The Manhattan dataset is available in two versions: The
original dataset was first published by [10] and the second
version was included in the open source implementation of
g2o [6]. The difference between the two versions is the quality

of the initial estimate: It is much closer to the ground truth
for the g2o version than for Olson’s original dataset. For
evaluation purposes, having the same dataset with different
initializations allows us to see the influence of the initial
estimates on the overall behaviour of the back-end system.
We will therefore use both versions and indicate whether the
original or the g2o version has been used.

The datasets City and Sphere shipped with the open-source
implementation of iSAM [3]. The two real-world datasets
Intel and Parking Garage are part of g2o [6]. For the two latter
real-world datasets, no ground truth information is available.
Instead, the estimation results for the outlier-free dataset are
used as a pseudo ground truth when necessary.

B. General Methodology
The robust back-end formulation was implemented by

extending the framework g2o [6]. The used datasets are
pose graphs consisting of odometry measurements and loop
closure constraints. They are free of outliers, i.e. all loop
closure constraints are correct. To evaluate and benchmark
the robust back-end, the datasets are spoiled by additional,
wrong loop closure constraints. That means, loop closure
constraints which do not connect corresponding poses and
thus are outliers are added to the dataset. Given the spoiled
datasets, the performance of the robust back-end can be
evaluated using two different methods:

• Use a suitable error metric to compare the resulting
trajectory against the ground truth solution and the
solution reached by state of the art non-robust back-
ends. The relative pose error metric RPE [7] was chosen
for the evaluation.

• Use precision-recall statistics to identify how many of
the added wrong outlier constraints could be identified
and disabled, while maintaining the correct loop closure
constraints.

C. Policies for Adding Outlier Loop Closure Constraints
For the evaluation, the datasets are spoiled by adding false

positive loop closure constraints between two poses xi and
xj . As discussed before, in real applications, these outliers
might have been introduced by the front-end after a failed
place recognition etc. The indices i and j are determined
using four different policies, which are explained below and
illustrated in Fig. 1.

a) Random Constraints: This policy adds constraints
between two randomly chosen pose vertices xi and xj , i.e.
the indices i and j are drawn from a uniform distribution
over all available indices. Most of the constraints that are
created using this policy will span over large areas of the
dataset since they connect two distant poses xi and xj .

b) Local Constraints: Following this policy, constraints
are added only locally. That means that the first pose vertex of
the constraint is chosen randomly from all available vertices.
The second vertex however is chosen so that it is in the
spacial vicinity of the first vertex. This follows the intuition
that in reality nearby places are more likely to appear similar
than distant places and thus false place recognitions are more
likely to be established between these nearby poses.

c) Randomly Grouped Constraints: In real front-ends,
false positive loop closure constraints can be expected to
appear in consistent groups. Imagine a robot driving through
a corridor or street where the visual appearance is very similar
to that of another corridor or street already mapped. The front-
end may erroneously recognize loop closures for several
successive frames while the robot traverses the ambiguous
part of the environment. This is simulated by the two grouped
policies. The randomly grouped policy first picks i and
j randomly from all available indices, but then adds 20
successive and consistent constraints between the poses with
indices i . . . i+ 20 and j . . . j + 20.

d) Locally Grouped Constraints: This last policy is a
combination of the local and grouped policies and creates
groups of short constraints that connect nearby places.
Following this policy, the first index i is chosen randomly.
The second index j is chosen from the vicinity of i, like
with the local constraint policy above. Then 20 successive
constraints between the vertices with indices i . . . i+ 20 and
j . . . j + 20 are added.

IV. EVALUATION

Now that all necessary preliminary information are given,
the evaluation of the proposed robust-back end commences.

A. The Influence of Ξij on the Estimation Results

Remember that the formulation of the proposed robust back-
end in (1), involved the switch prior constraints ‖γij−sij‖2Ξij

.
The exact value of the switch prior variances Ξij could not
be deduced in a mathematically sound way. It rather has
to be set empirically. Therefore, the first question we want
to explore in this evaluation is the influence of Ξij on the
estimation results and what a suitable value for Ξij would
be.

Ξij controls the penalty the system gains for the de-
activation of a loop closure constraint. By adapting this
value individually for each constraint, the front-end could
express a degree of certainty about that particular loop closure
constraint. A small value of Ξij leads to a high penalty if it
is deactivated. Thus the front-end would assign small Ξij to
loop closures it is very certain about and large Ξij to those
loop closures that appear more doubtful. If the front-end is not
capable of determining an individual degree of certainty, all
constraints could be assigned the same Ξij . For the following,
to show the general influence of Ξij , we assume the same
value Ξij = ξ was assigned to all constraints.

1) Methodology: To determine the influence of ξ, the
mean relative pose errors RPEpos were determined for three
different values of random outliers (1, 10, and 100) and
varying ξ on the Manhattan dataset. Fig. 3 shows the results.
Every data point represents the mean RPEpos of 10 trials for
that particular pairing of ξ and number of outliers. In total,
720 optimization runs were conducted to create the plot.

2) Results and Interpretation: The curves in Fig. 3 reveal
that the value of ξ = Ξij indeed influences the quality of the
optimization result which is measured by the RPE metric.
The second insight is that the quality of the estimation drops

0 1 2 3 4 5 6
1

2

3

4
x 10

−3

ξ

R
P

E
p
o
s [

m
]

RPE
pos

 vs. ξ for the Manhattan Dataset

1 outliers

10 outliers

100 outliers

Fig. 3: The influence of Ξij = ξ on the estimation quality. The
figure shows the mean translational error RPEpos. The best choice
for ξ is in the interval 0.3 ≤ ξ ≤ 1.5 where the error measures are
relatively constant and have their minimum.

drastically if ξ is too small or too large. This can be seen
from the raising RPE measures for ξ < 0.3 and ξ > 2.0.
The most interesting result however is, that the RPE stays
relatively constant for a broad range of values for ξ between
0.3 and 1.5, where the error is minimal. This behaviour is
independent from the number of outliers.

If the front-end is not able to assign sound individual values
for Ξij , it is save to set all Ξij = 1, since this value is close
to the individual optimal choice of Ξij for a large range of
outliers. Therefore, for all evaluations that follow, all Ξij

have been set to 1. Although that value was determined using
the Manhattan dataset, it proved to be a suitable value for
all other evaluated datasets and even for applications beyond
SLAM [12].

B. The Robustness in the Presence of Outliers

After a sound value for the free parameter of the system,
Ξij has been determined, we can now examine how well the
proposed back-end performs in the presence of outliers.

1) Methodology: A large number of test cases were
considered for the different datasets. The number of added
outliers was varied between 0 and 1000, using all of the
four policies described above. For each number of additional
wrong outliers, 10 trials per policy were calculated, resulting
in a total of 500 trials per dataset. For each trial the RPE was
determined. Notice from Table I that the number of correct
loop closure constraints in the datasets varied between 10688
(City10000) and only 894 (Intel). Therefore, 1000 additional
outlier loop closures is a huge number, leading to outlier
ratios between 9.4% for the City10000 dataset and almost
112% for the Intel dataset. In real applications, we can expect
much smaller outlier ratios in the range of a few percent or
even below, depending on how sophisticated the front-end is
built. The evaluation here uses much higher outlier ratios to
demonstrate the remarkable robustness of the system.

2) Results and Interpretation: Table II summarizes the
results for the different datasets. The minimum, maximum,
and median RPEpos measures are listed, as well as a success
rate which measures the percentage of correct solutions.

We see that the overall success rates are very high. In total,
from all 2500 trials, only two failed, leading to success rates
equal or close to 100%. The two failure cases and the special
case of the Parking Garage dataset which does not appear in
the table are discussed in detail in section IV-D.

TABLE II: Overall RPEpos metric for the different datasets, with
0 . . . 1000 outliers using all policies and 500 trials per dataset.

Dataset
max
outl.
ratio

min
RPEpos

max
RPEpos

median
RPEpos

success
rate

Manhattan (g2o) 47.6% 0.0009 0.0009 0.0009 100%
Manhattan (orig.) 47.6% 0.0009 5.9659 0.0009 99.8%
City10000 9.4% 0.0005 0.0005 0.0005 100%
Sphere2500 40.8% 0.0953 18.1674 0.0964 99.8%
Intel 111.9% 0.2122 0.2147 0.2132 100%

0 200 400 600 800 1000
10

−4

10
−2

10
0

10
2

Outliers

R
P

E
p

o
s [

m
]

Manhattan

Sphere2500

City10000

Intel

Fig. 4: Comparison of RPE measures between the proposed robust
(solid line) and the state of the art non-robust back-ends (dashed).
Notice how the robust solution is up to two orders of magnitude
more accurate for large numbers of outliers and stays constant,
independently of the amount of outliers. The non-robust solution
was supported by the Huber cost function, as proposed in [6].

We want to remark that the two failure cases for the original
Manhattan dataset and for the sphere world dataset could
be successfully resolved by using the Huber cost function
in combination with the proposed back-end. If we allow
this further extension (which comes at the cost of slower
convergence, due to the partially linear cost function), we
can conclude that except for the Parking Garage dataset, a
success rate of 100% was reached.

Fig. 4 compares the RPE of the proposed robust back-end
to that of the non-robust state of the art formulation for all
datasets and the different numbers of outliers. The robust
back-end performs orders of magnitudes better, since the state
of the art approach is not able to cope with outliers, despite
being supported by the Huber cost function [1].

While the RPE metric compares the deviation of the
estimated trajectory from the ground truth, precision-recall
statistics allow us to determine how well the proposed robust
technique is able to identify and disable the outlier constraints
while leaving the true positive (i.e. correct) constraints intact.
A system operating at a precision and recall rate both equal
to 1 would be optimal, since all false positives are disabled,
while all true positives are left untouched.

From Fig. 5 we can see that the results for the proposed
back-end almost reach that point of optimal performance. For
the datasets Intel, City10000, and Manhattan (g2o), the recall
is exactly 1 for a large span of precision. This means that
there are values for ωij where all false positive constraints
would be considered disabled, while a large amount of true
positives are enabled. For the datasets sphere2500 and Olson’s
version of the Manhattan world, the recall is slightly smaller,

0.9998 0.9999 1
0

0.5

1

P
re

ci
si

o
n

Recall

Precision−Recall for Different Datasets

Manhattan (Olson)

Manhattan (g2o)

City10000

Intel

Sphere2500

Fig. 5: Precision-recall statistics for the various datasets. Notice the
scale of the X-axis, representing recall. The results indicate a close
to optimal performance of the proposed system.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

Outliers

T
im

e
to

 C
o
n
v
er

g
en

ce
 [

s] Convergence Time vs. Outliers for the Manhattan Dataset

random

random local

randomly grouped

locally grouped

Fig. 6: Convergence time (on an Intel Core 2 Duo) for different
outlier policies for the Manhattan dataset (g2o version). Notice that
the two local policies require much less time for convergence than
the non-local policies.

since the statistics include the two failure cases that occurred
with these two datasets and were mentioned before. However,
we have to regard that the back-end never really performs
a binary decision on whether a constraint is supposed to be
active or deactivated. It is only the precision-recall benchmark
that emulates such a behaviour. Overall, the system reached
a recall of over 99.99% at 100% precision for all tested
datasets.

C. Convergence and Runtime Behaviour

The influence of the number of outliers on the runtime
behaviour for the Manhattan dataset can be seen from Fig. 6.
Interestingly, the results are very different depending on the
outlier policy that was used to add the false positives to the
datasets. For the two non-local policies, the required time
until convergence increases faster with the number of outliers
than for the local policies. Obviously the non-local outlier
constraints that often connect two very distant places in the
dataset are more difficult to resolve. The same effects were
observed for all other datasets.

How the estimation error is minimized during the optimiza-
tion is visible from Fig. 7. These plots reveal that the optimizer
behaves very differently, depending on the structure of the
dataset and the outlier policy used. For some datasets like
the g2o version of the Manhattan dataset or the Intel dataset,
the χ2 error drops quickly and monotonically. For others
however, the Gauss-Newton optimizer does not decrease the
χ2 error monotonically, but rather even increases it before
finally finding its minimum. This behaviour indicates the
difficult non-convex structure of the error function that is to
be minimized.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

Normalized Time

N
o
rm

al
iz

ed
 χ

2
 E

rr
o
r

Manhattan Dataset

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

Normalized Time

N
o
rm

al
iz

ed
 χ

2
 E

rr
o
r

Sphere2500 Dataset

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

Normalized Time

N
o
rm

al
iz

ed
 χ

2
 E

rr
o
r

City10000 Dataset

0 0.2 0.4 0.6 0.8 1
10

0

10
0.04

10
0.08

Normalized Time

N
o
rm

al
iz

ed
 χ

2
 E

rr
o
r

Intel Dataset

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

Normalized Time

N
o
rm

al
iz

ed
 χ

2
 E

rr
o
r

Parking Garage Dataset

random

random local

randomly grouped

locally grouped

Fig. 7: Convergence behaviour for all datasets and all four policies
with 1000 outliers. Both the time and the χ2 errors have been
normalized so that the time to convergence and the final residual
error correspond to 1. The four outlier policies are color coded.
For the Manhattan dataset the solid lines correspond to the g2o
version, while the dashed lines are for Olson’s original dataset.
Notice that the convergence behaviour is very different depending
on the dataset and also the policy in some cases. Due to the Gauss-
Newton algorithm used here, the optimizer first steps into regions
of higher error before converging towards lower error measures.

−40 −20 0 20 40

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

y

Trajectory for the Sphere2500 Dataset

z

(a)

−50 −40 −30 −20 −10 0 10 20 30 40

−60

−50

−40

−30

−20

−10

0

10

x

y

Trajectory for the Manhattan Dataset

Ground Truth

Estimation Result

Deactivated Loop Closures

(b)

Fig. 8: Two failure cases for the Sphere World dataset with 300
random outliers in (a) and the Manhattan dataset (Olson’s original)
containing 750 random outliers. Notice how the maps are still locally
consistent. Both cases could be successfully resolved by combining
the robust back-end with the Huber cost function.

D. Discussion of the Failure Cases

1) Manhattan and Sphere Datasets: As we saw in Table
II, from 2500 trials conducted using the datasets Manhattan,
Sphere, City and Intel with up to 1000 added outlier
constraints, only 2 trials failed to converge to a correct
solution. One of these failures occurred with the Sphere2500
dataset and the other one occurred with Olson’s version of the
Manhattan dataset. Both failure cases are illustrated in Fig. 8.
We can see from the figures that although the resulting maps
are significantly distorted when compared to the ground truth
on a global level, they are still locally intact.

The main reason for that beneficial behaviour is that appar-
ently only single false positives are not deactivated correctly,

−200
−150

−100
−50

0
50

−50

0

50

100

150

200
−8

−6

−4

−2

0

2

4

x

Parking Garage Dataset

y

z

Ground Truth Trajectory

(a)

−200
−150

−100
−50

0
50

−50

0

50

100

150

200
−6

−4

−2

0

2

4

6

x

Parking Garage Dataset

y

z

Optimized Trajectory

(b)

Fig. 9: The parking garage dataset is in particular difficult: (a)
shows the ground truth trajectory from the side. An exemplary
failure case is illustrated in (b). See the text for further discussion
and explanation.

leading to punctual errors that cause global distortion but
retain local consistency. In the examples above, exactly one
false positive was incorrectly not disabled. On the other hand,
that means that still 299 out of 300 or 749 out of 750 false
positive loop closure constraints were correctly disabled.

As mentioned before, both of the failure cases for the
sphere and Manhattan datasets could be correctly resolved by
combining the robust back-end with the Huber error function
[1], using the default kernel width of 1.0.

2) The Parking Garage Dataset: The parking garage
dataset is a particular difficult dataset and the robust back-end
was not able to perform better than the non-robust approach.
Fig. 9(a) shows the pseudo ground truth trajectory (generated
from the outlier-free data, since no real ground truth is
available) from the side. Also notice that the z-axis is scaled
differently to better show the spatial structure of the data. The
dataset was recorded in a parking garage with four parking
decks, which are clearly visible in Fig. 9(a). The single decks
are connected by only two strands of odometry constraints
that originate from the driveways.

The problems arising from this sparse connection structure
can be seen in 9(b) which is an exemplary result. In this
typical example, the proposed robust back-end failed to
deactivate a group of false positive loop closures between
the parking levels, leading to a corrupted result. The reason
for the failures is the insufficient amount of information on
the relative pose of the individual decks, due to the small
number of constraints between these decks. Since the SLAM
system has no further knowledge about the structure of the
environment, e.g. that certain regions of the map can never
intersect or are required to be level, the error introduced by
the false positive loop closure requests cannot be resolved
by the proposed back-end.

V. CONCLUSIONS

This paper evaluated a method to identify and reject outliers
in the back-end of a SLAM system by using switchable
constraints. The feasibility of the proposed approach has
been demonstrated and evaluated on a number of standard
datasets. The datasets used for the evaluation are available on
our website, along with code that shows the implementation
of the switchable constraints for g2o. The robust back-end

successfully solved SLAM problems with a large number –
up to 1000 – outlier loop closure constraints, both in 2D and
3D, using synthetic and real-world datasets. The proposed
approach was shown to outperform state of the art approaches
by orders of magnitude, since these are not able to cope with
outlier constraints.

A typical failure case was discussed and we conclude that
degenerate environments consisting of distinctive parts that
are only sparsely interconnected are prone to errors if false
positive loop closure constraints are established between these
almost independent parts. Further high-level knowledge about
the environment and its spatial structure may be necessary
to successfully resolve these situations.

Notice that the system’s feasibility to work on large-scale
real-world datasets has been demonstrated before [14]. In
parallel work [12] we also found that the proposed approach
is not limited to SLAM problems, but can be beneficially
applied to other domains where least squares problems have
to be solved but outliers have to be suspected, like multipath
mitigation in GNSS-based localization.

Future work will include a comparison with alternative
methods proposed by other authors [8], [9] that were
published after this paper has been written.

REFERENCES

[1] Peter J. Huber. Robust regression: Asymptotics, conjectures and monte
carlo. The Annals of Statistics, 1(5):799–821, 1973.

[2] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert.
iSAM2: Incremental smoothing and mapping with fluid relinearization
and incremental variable reordering. In IEEE Intl. Conf. on Robotics
and Automation, ICRA, 2011.

[3] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental
Smoothing and Mapping. IEEE Transactions on Robotics, 24(6),
2008.

[4] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder,
V. Lepetit, and P. Fua. View-based maps. International Journal
of Robotics Research (IJRR), 29(10), 2010.

[5] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498–519, February 2001.

[6] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.

[7] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke,
Giorgio Grisetti, Cyrill Stachniss, and Alexander Kleiner. On Measuring
the Accuracy of SLAM Algorithms. Auton. Robots, 27:387–407, 2009.

[8] Yasir Latif, Cesar Cadena, and José Neira. Robust loop closing over
time. In Proceedings of Robotics: Science and Systems (RSS), Sydney,
Australia, July 2012.

[9] Edwin Olson and Pratik Agarwal. Inference on networks of mixtures
for robust robot mapping. In Proceedings of Robotics: Science and
Systems (RSS), Sydney, Australia, July 2012.

[10] Edwin Olson, John Leonard, and Seth Teller. Fast iterative optimization
of pose graphs with poor initial estimates. In Inl. Conf. on Robotics
and Automation, ICRA, 2006.

[11] Niko Sünderhauf. Robust Optimization for Simultaneous Localization
and Mapping. PhD thesis, Chemnitz University of Technology, 2012.

[12] Niko Sünderhauf, Marcus Obst, Gerd Wanielik, and Peter Protzel.
Multipath Mitigation in GNSS-Based Localization using Robust
Optimization. In Proc. of IEEE Intelligent Vehicles Symposium (IV),
2012.

[13] Niko Sünderhauf and Peter Protzel. BRIEF-Gist – Closing the Loop
by Simple Means. In Proc. of IEEE Intl. Conf. on Intelligent Robots
and Systems (IROS), 2011.

[14] Niko Sünderhauf and Peter Protzel. Towards a Robust Back-End for
Pose Graph SLAM. In Proc. of IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2012.

	Introduction
	Switchable Constraints
	The Switch Variables and Switch Function
	The Switch Prior Constraint

	Preparing the Evaluation
	Used Datasets
	General Methodology
	Policies for Adding Outlier Loop Closure Constraints

	Evaluation
	The Influence of bold0mu mumu ij on the Estimation Results
	Methodology
	Results and Interpretation

	The Robustness in the Presence of Outliers
	Methodology
	Results and Interpretation

	Convergence and Runtime Behaviour
	Discussion of the Failure Cases
	Manhattan and Sphere Datasets
	The Parking Garage Dataset

	Conclusions
	References

