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Incremental Smoothing vs. Filtering for Sensor Fusion on an Indoor
UAV

Sven Lange, Niko Sünderhauf and Peter Protzel

Abstract— Our paper explores the performance of a recently
proposed incremental smoother in the context of nonlinear
sensor fusion for a real-world UAV. This efficient factor graph
based smoothing approach has a number of advantages com-
pared to conventional filtering techniques like the EKF or
its variants. It can more easily incorporate asynchronous and
delayed measurements from sensors operating at different rates
and is supposed to be less error-prone in highly nonlinear
settings.

We compare the novel incremental smoothing approach
based on iSAM2 against our conventional EKF based sensor
fusion framework. Unlike previously presented work, the ex-
periments are not only performed in simulation, but also on a
real-world quadrotor UAV system using IMU, optical flow and
altitude measurements.

I. INTRODUCTION

Accurate information of the UAV’s system state is essen-
tial for a stable flight control. Especially in indoor scenarios
with narrow places and no GPS signal, accurate sensor
fusion algorithms are even more important for crash-free
autonomous navigation. Bayesian filtering algorithms, like
the Extended Kalman Filter (EKF) or Unscented Kalman
Filter, are state of the art for fusing sensor information in
this kind of scenarios. However, as the system becomes
highly nonlinear, the Kalman Filter variants are known to be
error-prone. This leads to the desire for new sensor fusion
techniques.

Factor graph based optimization frameworks like g2o [7]
are effectively used for solving large SLAM problems with
high accuracy and adequate time consumption. In contrast to
the filtering algorithms all previous measurements are used
by the framework for state estimation. This leads to rapidly
growing information to compute in each time step. So this
technique was almost always used for offline estimation in
the past.

To overcome the problem of continuously growing opti-
mization problems, so called sliding window filters or also
referred to as fixed lag smoothers were used by [12] or [1].
The reached accuracy and computation time of this technique
depends closely on the length of the chosen window. Hence,
an adequate window size enables this technique for use in
on-line applications.

Recently, advances in the field of incremental smoothing
led to an adaptive-lag smoother called iSAM2 [6]. Instead
of using a fixed size for the optimization problem, it re-
calculates only a portion of the contained variables. This
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Fig. 1. (a) shows the multirotor system we use. (b) shows the additional
microcontroller board with the optical flow sensor.

is realized by using the Bayes tree representation. Based
upon this development, the authors of [4] used iSAM2 for
sensor fusion in the context of an inertial navigation system.
They simulated an aerial vehicle including IMU, GPS and
stereo vision measurements, used the iSAM2 algorithm for
smoothing and compared it to a common EKF approach.
However, only simulation results were presented.

While our work is similar to [4], we demonstrate an
iSAM2 based sensor fusion algorithm on a real world system
and compared it to our conventional EKF based solution. Our
focus lies on autonomous indoor navigation with a multirotor
UAV, so we did not use GPS measurements. Sensors we use
for sensor fusion are: IMU, optical flow and sonar for altitude
measurements.

II. SYSTEM OVERVIEW

In the following, we will introduce the hardware config-
uration which was used for the experiments as well as the
filter and smoother setup.

A. Multirotor UAV

The UAV we use for our work is called Pelican (see
Fig. 1(a)) and is manufactured by Ascending Technologies
GmbH, Munich, Germany. This mid-size four-rotor UAV, or
quadrocopter, measures 72 cm in diameter and can carry up
to 500 g of payload for about 20 min.

The quadcopter is equipped with a variety of sensors:
Besides the usual accelerometers, gyros and a magnetic field
sensor, a pressure sensor and a GPS module provide input
for AscTec’s sophisticated sensor fusion algorithm and the
control loop running at 1 kHz. Like on the smaller Hum-
mingbird system, an AscTec AutoPilot board is responsible
for data fusion and basic control of the UAV. An additional
microcontroller on this board is available for custom pro-
gramming. We updated it with the firmware coming with



the asctec mav framework1 for high frequency IMU sensor
readings which otherwise are not available. More technical
details on the AutoPilot Board, the Hummingbird and the
controllers can be found in [3].

B. Additional Sensors

We extended the system’s configuration with additional
hardware. In relation to this work, a custom made micro-
controller board based on an ATmega644P which includes an
ADNS-3080 optical flow sensor, is of special interest (Fig.
1(b)). Connected to this board is an SRF10 sonar sensor with
a beam width of about 60◦, a separate IMU and an XBee Pro
radio module for communication. The Avago ADNS-3080
optical flow sensor is combined with a small M12 mount
camera lens for detecting the UAV’s current velocity over
ground. The SPI bus is used for interfacing the sensor to our
microcontroller which makes the measurements available to
our ground station. We already used this configuration for
example in [8], [10].

III. SYSTEM EQUATIONS

We describe the current state of the system with the
following vector:

x =
[
vB aB qBW ωB hW bIMU

a bIMU
ω

]T
(1)

Where vB and aB is the velocity and acceleration of the
system within the body frame B relative to the world frame
W . Both frames’ axes are given in North-East-Down (NED)
convention. The vector qBW is a quaternion which describes
the rotation between body frame B and world frame W . If
RBW = R(qBW ) is the related rotation matrix, a point
within the body frame is given through: pB = RBW ·pW +
tBW where tBW is the world frame’s translation within the
body frame. The following state variable ωB represents the
turn rate and hW is the height above ground.

As accelerometers and gyros are known to have biases
which can be modeled as random walk processes, we have
two additional vectors bIMU

a and bIMU
ω within the state

representation for the accelerometer’s bias and gyro’s bias.
Both variables are given within the IMU frame.

Different from commonly used state representations, we
chose the velocity and acceleration to be within the body
frame, as no global position information is available. Based
on this representation, the state vector can directly be used
for navigation controllers.

A. State Transition

As state transition, we use a constant turn rate and acceler-
ation (CTRA) model, where xt+1 is the predicted state after

1http://www.ros.org/wiki/asctec_mav_framework

the time period ∆t based on the last known state vector xt.

xt+1 = fCTRA(xt,∆t) (2)

xt+1 =



∆q · vB
t + (aB

t+1 + ωB
t+1 × vB

t ) ·∆t
∆q · aB

t + ηA

Φ(ωB
t+1,∆t) · qBW

t

ωB
t + ηTR

hWt + vWz ·∆t
ba + ηba

bω + ηbω


(3)

Where ∆q = qBW
t+1 · (qBW

t )−1 is the rotation between the
consecutive rotating frames. We propagate the new rotation
as described in [13, p. 185]. This specialized form of
quaternion prediction enforces the unit norm constraint.

s =
1

2
· ‖ωB

t+1‖ ·∆t (4)

λ = 1− ‖qBW
t ‖2 (5)

Ω =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 ·∆t (6)

Φ = I4×4 · (cos(s) + λ)− 1

2
·Ω · sin(s)

s
(7)

Process noise for the state transition is added by the noise
vector η =

[
ηA ηTR ηba

ηbω

]T
, which is modeled as

white Gaussian noise with zero mean and standard deviations
σ =

[
σA σTR σba σbω

]T
. The parameters σA and

σTR describe the certainty of the assumed CTRA model
and σba and σbω are used for modelling the IMU’s random
walk for acceleration and turn rate.

B. Measurement Prediction

In the following, we describe our measurement prediction
equations used in the smoothing and filtering solution.

1) Accelerometer and Gyro: For predicting the accelera-
tion ẑIMU

a and turn rate ẑIMU
ω measured by the accelerom-

eter and gyroscope, we use a common equation as can be
found for example in [2]. The IMU sensor’s frame coin-
cides with the body frame, so no additional rotation matrix
RIMU,B or translation vector tBIMU is needed. Additionally,
as the sensor is located near the center of gravity, there is
no need for compensation of lever arm effects.

ẑIMU
a = aB + bIMU

a + ωB × vB − qBW · gW (8)

ẑIMU
ω = ωB + bIMU

ω (9)

All variables are known from the state vector except the
constant gW , which is the vector of gravity, given in the
world frame.

2) Optical Flow: The optical flow sensor measures the
UAV’s displacement relative to the ground in values of
accumulated pixels per time period. This process is analog
to camera based optical flow algorithms using image pro-
cessing. Essential differences are the small sensor size, fast
processing through the algorithm’s hardware implementation
and the small and light-weight design.



Regarding the sensor information’s use, we have to notice
the sensor’s sensibility for rotational changes zOrot, which
adds to the translational part zOtran. Also of interest is the
height above ground hO within the sensor’s frame O to get
the correlation between metric velocity information and the
measurement in pixels. The sensor frame O is attached to the
body frame through the rotation ROB and translation tBO .

ẑOoflow =
1

hO
·K · (zOrot − zOtran) (10)

zOrot = (ROB · ωB)×
[
0 0 hO

]T
(11)

zOtran = ROB · vB (12)

hO = ROB
(3,1:3) · (q

BW ·
[
0 0 hW

]T − tBO) (13)

K = I2×2 · f · resolution·modesize
(14)

The constant K can be seen as a kind of intrinsic camera
matrix for the optical flow sensor, with the focal length f and
a relation to convert the velocity in metric units to pixel units.
In our case, we use the ADNS-3080, which has a resolution
of 30 px and a sensor size of 60 µm. We use it in the 1600 cpi
mode, so mode = 2 and f = 8 mm, which corresponds to
the lens we have mounted in front of the sensor.

Worth mentioning is the sensor’s information about the
measurement quality, which corresponds to the tracked pixels
between the successive frames. By experiments, we found
that sensor readings are only reliable, if this quality value
is larger than 50. Taking this into account, we filter sensor
readings out accordingly before using them within the filter
or the smoother.

3) Distance: For measurement prediction of the sonar
sensor, we use a simplified model. Because of the beam
width, we assume the measurement to be the UAV’s height
within the world frame.

ẑUsonar = RUB
(3,1:3) ·

([
0 0 hW

]T − (qBW )−1 · tBU
)

(15)

Where the two constants RUB and tBU describe the rotation
and translation of the ultrasonic range finder relative to the
body frame and RUB

(3,1:3) is the third row of the rotation
matrix RUB .

4) Compass: Compass measurements are necessary to
measure the absolute rotation about the UAV’s yaw axis.
Currently we use a very simple model which will be replaced
in later work.

RBW = R(qBW ) (16)

ẑcompass = atan2(RBW
1,2 ,RBW

1,1 ) (17)

The compass measurement corresponds to the UAV’s internal
prediction of its orientation about the yaw axis, so we extract
this information from the orientation representation qBW of
our state vector.

IV. IMPLEMENTATION

For comparing both sensor fusion techniques, we imple-
mented an EKF based and a smoothing based solution. In
contrast to common implementations like in [13], [11], we
decided to use the CTRA model instead of using the IMU

Fig. 2. Factor graph representation as used in our implementation. IMU
and compass measurements are always available and sonar and optical flow
measurements are available at different frequencies. Note that fCTRA

k is
the short form of fCTRA(xk,∆t)

measurements as input for the state transition. This enables
us to deal with sensor drop outs or asynchronous measure-
ments which do not match the IMU measurement times, i.e.
if the IMU is failing for short time, we still can add new
state predictions based on the available sensor information.
We think this is a more general approach regarding the
smoothing algorithm. Additionally, we plan to use a more
sophisticated transition model in future work. Consequently
we use the CTRA model also in the EKF algorithm for
reasons of comparability. The following sections describe
specific implementation details.

A. EKF

Our filter implementation is build upon the ReBEL Toolkit
[13], which is a Matlab implementation of several estimation
methods including the EKF. Our state prediction step of
the EKF uses the described CTRA transition function with
a rate of 100 Hz. Accordingly the following update step
is executed with the same frequency. Because of different
sensor rates, measurement predictions are made depending
on the currently available measurements only. The Jacobi
matrices for transferring the covariances of the process noise
and sensor noise into the state space are derived symbolically
by Matlab’s Symbolic Math Toolbox.

B. Incremental Smoothing

We use the novel algorithm iSAM2 [5] for our smoothing
solution. This graph based optimization algorithm is particu-
larly developed for efficient incremental predictions which
are needed for on-line use in sensor fusion applications.
While frameworks like g2o [7] have to solve the complete
optimization problem for concurrent state prediction, the
iSAM2 algorithm uses the Bayes tree representation and
applies only partial variable recalculations.

For our application we implemented a factor graph for
iSAM2, as shown exemplarily in Fig. 2 for the first three
states. This gives us the following cost functions:

ectra
t = fCTRA(xt−1,∆t)− xt (18)

eimu
t =

[
ẑIMU
a (xt)

ẑIMU
ω (xt)

]
− zimu

t (19)

ecompass
t = ẑcompass(xt)− zcompass

t (20)

eoflow
t = ẑOoflow(xt)− zoflow

t (21)

esonar
t = ẑUsonar(xt)− zsonar

t (22)



where z
{. . .}
t are the sensor’s measurement vectors at time

step t.
The covariances Σ{. . .} connected to each measurement

cost function are composed of the sensor’s noise param-
eters. The optical flow factor’s covariance for instance is
Σoflow = diag(σ2

oflow). Of special interest is the CTRA
factor’s covariance which is modeled as process noise for
the acceleration, turn rate and the bias terms: Σ′

ctra
=

diag(
[
σ2

A,σ
2
TR,σ

2
ba
,σ2

bω

]
). Therefore it has to be con-

verted into the state space first by using a transition function
like the unscented transformation or as we do it, with the
Jacobian J = ∂fCTRA

∂η and Σctra = JΣ′
ctra

JT.
The iSAM2 algorithm can be configured by several pa-

rameters, where we chose the relinearization threshold to be
0.01 and left the wildfire threshold unchanged at 1× 10−5.
As optimization method we chose dogleg. Currently all
derivatives are implemented as numerical derivatives, which
will change in the future.

As UAV measurements arrive, initially a new system
state vertex is created by the CTRA transition edge, where
the available sensors’ information is connected by unary
constraints (see Fig. 2). The following incremental update
operation of iSAM2 includes relinearization and adjusts
the state predictions accordingly. Even if the marginals are
not mandatory for controlling the UAV, we extract them
after every update step for the concurrent state prediction.
Concurrent means, that we always use the latest prediction
available, which is the usual way sensor fusion works in
online applications.

V. RESULTS

We compared the smoothing against the filtering technique
for two scenarios. First, a simulation was used to validate
the implementation and test the performance with known
noise parameters. Afterwards a real world experiment was
performed with the previously described UAV system.

A. Simulation

The simulation is based on a Matlab Simulink model,
which implements a point mass model simulating the quadro-
copter and all sensors which are used on the real system. An
overlying position controller controls the simulated model
with the following inputs: At time t = 1 s the position
setpoint changes to (x, y, z) = (2, 0, 1) and at t = 3 s it
is modified to (x, y, z) = (2, 1, 1). The simulated sensor
measurements are gathered at a frequency of 100 Hz and are
corrupted with a zero-mean Gaussian noise for all sensors.

For the accelerometer and gyroscope measurements we
used a standard deviation of σa = 30 mg and σω = 2◦ s−1

and for the corresponding random walk model within the
state transition, we used σba = 0.1 mg/

√
Hz and σbω =

1 ◦/
√

h. The sonar sensor’s noise is modeled with σsonar =
1 cm and the optical flow sensor’s noise is σoflow = 10 px/s.
For the compass we use σcompass = 2◦.

We compared the smoothing and filtering results to our
ground truth data for the complete state vector with special
interest in the resulting error for rotation, velocity and height

Fig. 3. Simulation results of iSAM2 for the concurrent velocity in all
three dimensions. Real values from simulation are shown as dotted lines
and the 3σ bound is shown as transparent patch for each dimension in the
corresponding color.

and the violation of the corresponding 3σ bounds. Fig. 3
shows the resulting velocity of the smoother’s concurrent
predictions. As can be seen, the prediction follows the real
state as expected. The resulting error compared to the ground
truth is generally constrained within the 3σ bounds. The
performance is similarly for the orientation, as can be seen
in Fig. 4 as well as for the height, turn rate, acceleration and
biases.

The comparison between the smoothing results and the
EKF’s filtering results is shown in Fig. 5 for the velocity
values. It shows nearly no differences between both methods.
The mean error of the filtering result, compared to ground
truth is shown in Table I, which is identical to the smoothing
result. A higher precision of the smoother can only be
reached, if we use offline smoothing (batch optimization)
as shown by the final error curve.

For closer examination of the smoother’s mean velocity
error, we did several runs with different acceptable delay
times. This means, we did not use the concurrent smoothing
result, but the result from a constant time before. The results
are plotted within Fig. 6. Depending on the application,
the delayed prediction should be preferred to get a higher
accuracy.

B. Real World

Our second experiment evaluates real world data, gathered
by our UAV system, for validating the smoother’s and filter’s
performance. We used our low-cost tracking system [9]
that reaches almost millimeter accuracy. It has a standard
deviation for the position measurement of about 2.5 mm in
a common distance of about 1.5 m to the camera, but we
need it to measure the velocity, which results in stronger
noise values.

For data acquisition, we moved the system two times
along a squared trajectory of about 0.7 m by 0.7 m in
different heights. The same sensors were used as in the



Fig. 4. Simulation results of iSAM2 for the concurrent orientation as Euler
angle representation. Real values from simulation are shown as dotted lines
and the 3σ bound is shown as transparent patch for each dimension in the
corresponding color.

Fig. 5. Error comparison between EKF, concurrent and final solution for
the simulation experiment. The error is computed between absolute velocity
of ground truth and absolute velocity of state prediction. Notice that the
curves for the EKF and concurrent smoothing solution (blue and green) are
indistinguishable.

Fig. 6. The diagram shows the smoother’s performance if used with
different delay times. Plotted are the errors for the complete simulation
and real world sequence over the used delay time. Here the circles at delay
time 0 mark the concurrent results and each cross marks the mean error
for a complete run with the specific delay time. This is also referred to as
fixed-lag smoothing where the lag corresponds to the delay time.

Fig. 7. Real world results of iSAM2 for the concurrent velocity in all three
dimensions. Real values from the tracking system are shown as dotted lines
and the 3σ bound is shown as transparent patch for each dimension in the
corresponding color.

simulation environment, but this time with different measure-
ment frequencies for the sonar and the optical flow sensor.
New sonar measurements are available at a rate of about
20 Hz and optical flow measurements arrive with 50 Hz,
but with 5 % filtered outliers. Outliers are filtered by the
sensor’s quality information as described previously. The
used standard deviations are the same as in the simulation
environment.

The result for the velocity including the error between the
ground truth, is plotted in Fig. 7 for the smoother and in
Fig. 8 for the EKF. Similarly to the simulation results, there
are only minor differences between both variants. For better
visualization, the error of the absolute velocity is plotted
together with the final result in Fig. 9. As can be seen, there
are only minor differences between the concurrent prediction
of the smoother and the prediction of the EKF. Only the final
result performs clearly better, which can also be seen in Table
I.

Another visualization of this result is given in Fig. 10. The
boxplot illustrates the strong similarity again. In contrast to
the final result, no meaningful differences can be discovered
between concurrent result and the EKF result.

TABLE I
MEAN ERRORS OF ABSOLUTE VELOCITY

EKF Concurrent Final

Simulation 0.0206 m s−1 0.0206 m s−1 0.0087 m s−1

Real world 0.0309 m s−1 0.0306 m s−1 0.0205 m s−1

VI. CONCLUSIONS

We described a complete sensor fusion algorithm for our
UAV system using two different approaches, the commonly
used EKF and a new incremental smoothing approach based
on iSAM2. Our real-world results confirm the simulated



Fig. 8. Real world results of EKF for the concurrent velocity in all three
dimensions. Real values from the tracking system are shown as dotted lines
and the 3σ bound is shown as transparent patch for each dimension in the
corresponding color.

Fig. 9. Error comparison between EKF, concurrent and final solution for
the real world experiment. The error is computed between absolute velocity
of ground truth and absolute velocity of state prediction. Notice that the
curves for the EKF and concurrent smoothing solution (blue and green) are
nearly indistinguishable.

Fig. 10. Boxplot comparing the absolute velocity errors for the real world
experiment.

findings of [4] that the accuracy of the concurrent smooth-
ing and the EKF state estimation are almost equal, even
though we did not have global position information. Tuning
iSAM2’s parameters for the relinearization threshold or the
wildfire parameter, or changing the underlying optimization
method between Powell’s dog-leg and Gauss-Newton does
not change this fact significantly. Only when using a delayed
smoothing result instead of the concurrent predictions, there
is a growing gain of accuracy compared to the EKF’s results.

To our knowledge, our paper is the first that describes the
application of the incremental smoothing approach for sensor
fusion on a real world system. Although this did not reveal
any gain in accuracy, the smoothing approach bears further
potential advantages like easy incorporation of asynchronous
and delayed measurements or sensor drop-outs. In future
work we will explore the influence and relevance of these
advantages to real-world dynamic systems. The detection of
outliers which occur in the optical flow measurements in
case of repeating ground patterns is another challenge for
both the filtering and smoothing algorithms. Furthermore,
we think the smoother can more conveniently be extended
to incorporate a tightly coupled mapping, localization, or
SLAM component.
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