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Fig. 1: Exemplary results of the proposed robust SLAM back-end on the synthetic Manhattan world dataset [26] that contains 3500 poses
and 2099 loop closures. We corrupted the dataset by introducing 10 additional wrong loop closures that might have been produced due to
data association errors (e.g. failed place recognition) in the SLAM front-end. Current back-ends like iSAM 1.5 (left figure) are not able to
converge to a correct solution. Our robust solution (middle) correctly discards the wrong loop closure candidates (visible as grey links,
the green links are correct loop closure constraints) and converges to a correct solution. Right figure: Despite 1000 wrong loop closures
(visible in grey), our proposed method is robust enough to identify all of them and converge towards a correct solution. Notice that the
1000 additional wrong loop closures correspond to 47% of the correct loop closure constraints in the dataset.

Abstract— Current state of the art solutions of the SLAM
problem are based on efficient sparse optimization techniques
and represent the problem as probabilistic constraint graphs.
For example in pose graphs the nodes represent poses and the
edges between them express spatial information (e.g. obtained
from odometry) and information on loop closures. The task
of constructing the graph is delegated to a front-end that has
access to the available sensor information. The optimizer, the so
called back-end of the system, relies heavily on the topological
correctness of the graph structure and is not robust against
misplaced constraint edges. Especially edges representing false
positive loop closures will lead to the divergence of current
solvers.

We propose a novel formulation that allows the back-end
to change parts of the topological structure of the graph
during the optimization process. The back-end can thereby
discard loop closures and converge towards correct solutions
even in the presence of false positive loop closures. This largely
increases the overall robustness of the SLAM system and closes
a gap between the sensor-driven front-end and the back-end
optimizers. We demonstrate the approach and present results
both on large scale synthetic and real-world datasets.

I. INTRODUCTION

For many years, filter-based methods have dominated the
SLAM literature. Although optimization-based approaches
that solve the full-SLAM problem are known to the com-
munity since the work of Lu and Milois in 1997 [19], they
have only recently begun to become more popular as efficient
algorithms for solving the underlying optimization problems
are now available. Prominent examples have been the pose
graphs of Olson [26], TreeMap [7], TORO [10],

√
SAM [6],
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iSAM [14] and very recently Sparse Pose Adjustment [16],
iSAM2 [13], and g2o [18].

In contrast to filter-based methods (like EKF-SLAM, Fast-
SLAM, etc., see [30] for an introduction to these methods),
optimization-based approaches build upon efficient algorithms
for nonlinear optimization that exploit the sparsity inherent in
the SLAM problem. This way, large-scale SLAM problems
containing several 10k variables (poses, landmarks) and
constraints (observations, loop closings) can be solved in
a matter of seconds on standard hardware.

All of the optimization-based approaches mentioned above
express the SLAM problem using a graph structure. For pose-
only SLAM problems, i.e. when landmarks are not explicitly
modelled and are not part of the SLAM problem, the nodes
in these graphs represent the unknown robot poses. The edges
express probabilistic constraints between the poses and can
contain odometry information or represent loop closures.

A graph representation of this kind is generally referred
to as pose graph [15] [26] [18]. It is built by the so called
front-end of the SLAM system that has access to the available
sensor information. The back-end contains the optimizer
that solves the nonlinear least squares optimization problem
expressed by the graph.

Since least squares optimization methods are in general not
robust against outliers, the back-end has to rely on the front-
end to construct a topologically correct graph. If that graph
representation is ill-defined, the optimization is likely to fail,
diverge and produce defective solutions. This typically occurs
when the front-end inserts erroneous loop closure constraint
edges due to errors in the underlying data association and
place recognition.

Our paper addresses this problem and proposes an extended
formulation of the pose graph SLAM problem: Instead of



strictly relying on the front-end, the optimizer will be able
to naturally change the topological structure of the problem
during the optimization itself. This significantly increases the
robustness against outliers of the whole SLAM system and
closes the gap between the front-end and the back-end.

In the following, we shortly repeat the general formulation
for pose graph SLAM problems before we present our
extensions. We describe how the increased robustness was
verified both on synthetic benchmarks and on a large-scale
real-world dataset consisting of video footage of a 66 km
long course through urban streets.

II. POSE GRAPH SLAM

A. Problem Formulation

In the state of the art formulation of pose graph SLAM,
we are given a set of odometry constraints ui between two
successive poses xi and xi+1, so that

xi+1 = f(xi,ui) + wi (1)

Furthermore, the front-end part of the system can detect
loop closures between two poses xi and xj , for example by
a visual place recognition system like [4] or [29]. These loop
closures are expressed as a constraint of the form

xj = f(xi,uij) + λij (2)

Here f is a usually nonlinear function that implements the
motion model of the robot and the xi and xj are the unknown
robot poses. wi and λij are zero-mean Gaussian error terms
with covariances Σi and Λij respectively.

The pose graph SLAM problem can be conveniently
modelled as a factor graph [17]. Fig. 2 illustrates the general
layout of such a graph. The large nodes represent the unknown
robot poses and small nodes represent the probabilistic
constraints, the so called factors. The conditional probability
over all variables (robot poses) X = {xi} and constraints
U = {ui ∪ uij} can be expressed as

P (X|U) ∝
∏
i

P (xi+1|xi,ui)︸ ︷︷ ︸
Odometry Constraints

·
∏
ij

P (xj |xi,uij)︸ ︷︷ ︸
Loop Closures

(3)

Given the set of constraints U and variables X , we seek the
optimal, i.e. maximum a posteriori configuration of robot
poses, X∗. This most likely variable configuration is equal
to the mode of the joint probability distribution P (X,U). In
simpler words, X∗ is the point where that distribution has its
maximum. So under the assumption that above conditional

Fig. 2: Factor graph representation of the pose graph SLAM
problem. The large vertices represent the unknown robot poses,
while probabilistic constraints between them are expressed by the
small vertices. Odometry constraints between successive robot states
are shown in blue. The green vertex represents a loop closure factor
between two non-successive poses.

probabilities are Gaussian, the optimal variable configuration
X∗ can be determined by maximizing the joint probability
from above:

X∗ = argmax
X

P (X|U) = argmin
X

− logP (X|U)

= argmin
X

∑
i

‖f(xi,ui)− xi+1‖2Σi

+
∑
ij

‖f(xi,uij)− xj‖2Λij
(4)

which is a nonlinear least squares problem. Here and through-
out the paper ‖a − b‖2Σ denotes the squared Mahalanobis
distance with covariance Σ.

B. Discussion
As we have seen in (4), the pose graph SLAM problem can

be formulated as a nonlinear least squares problem. Due to its
inherent sparse structure the problem can be solved efficiently
with state of the art frameworks like g2o [18] or GTSAM [1]
that use iterative solvers such as Gauss-Newton or Levenberg-
Marquardt. However, outliers like data association errors and
especially false positive loop closures can cause the least
squares optimization to fail and converge towards a wrong
solution. Fig. 3(a) and 3(b) illustrate this problem.

The best outlier mitigation strategy is to avoid outliers in
the first place. Many proposed place recognition approaches
explicitly try to detect and filter potential false positive loop
closures. Although many of these strategies [2], [4], [15],
[23], [25], [27] are appealing and reach high precision and
recall measures in several benchmarks, the bottom line is
that none of the current approaches can guarantee to always
work perfectly and never let a false positive pass.

Therefore, outliers arising from data association errors such
as false positive loop closures are still considered a serious
problem by the current SLAM literature [2], [5], [8], [9], [20]–
[22] As even a single wrong loop closure constraint can cause
the whole SLAM system to fail, the back-end should not
have to rely solely on the front-end data association. It should
rather be able to mitigate the existing outliers or even change
the data association decisions made by the front-end, if they
appear to be false at a later time during the optimization.

So called robust cost functions, like the Huber function
[12], can reduce the influence of potential outliers. The idea
of Huber is that the error function for data points whose error
is above a certain threshold (also called the kernel width)
should raise linearly instead of quadratically as is normally
the case in least squares. This behaviour can be added easily
to existing least squares solvers and is for instance optionally
available in g2o [18]. However, robust cost functions are not
sufficient to deal with outlier constraints like false-positive
loop closures since the influence of outliers is merely reduced,
but not removed. This however can still lead to defective
solutions,as we see in Fig. 3(b) where a Huber function with
kernel width 0.1 was used.

III. A ROBUST BACK-END FOR SLAM
In Fig. 3(b) we saw that false positive loop closure

constraints are a severe problem. They corrupt the pose
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Fig. 3: A small synthetic dataset: A simulated robot was driven on a square-formed trajectory, collecting odometry information and
performing visual place recognition on the way. (a) Initial trajectory (blue) as estimated by the noisy odometry sensor alone. Loop closures
requested by the place recognition in the front-end are shown in green. Notice that ten of the loop closures are obviously false-positives, as
they connect non-corresponding places. (b) Maximum a posteriori estimate of the robot trajectory calculated by g2o based on the state of
the art pose graph formulation. Although the Huber cost function, that is supposed to reduce the influence of outliers, was used (kernel
width 0.1), the optimization converged to a clearly defective solution. (c) The robust formulation proposed in this paper allows the optimizer
to identify and disable the false positive loop closures (still visible in grey) and converge towards a correct solution. Notice that this works
not only for sporadic single errors, but also for the systematic and mutually consistent wrong loop closures in the upper right corner of (a).

graph formulation of the SLAM problem with erroneous
edges, leading to a topologically incorrect graph. Current
solvers that rely on the front-end to produce a correct graph
are doomed to converge towards a defective solution in the
presence of outliers.

Our main idea to overcome this problem is that the topology
of the graph should be subject to the optimization instead
of keeping it fixed. If constraint edges representing outliers
and data association errors could be identified and removed
during the optimization process, the graph topology would
be corrected and the optimization could converge towards a
correct solution.

This leads to an augmented optimization problem: We do
not only seek the optimal configuration X∗ of robot poses,
but at the same time we also seek the optimal topology of
the constraint graph. With optimal topology we mean that
it is free of outlier edges. Optimizing the topology of the
graph means to alter the optimization problem during the
optimization process, which appears to be a “chicken or the
egg” type of problem. It is clear that we can not allow the
optimizer to change or reformulate the optimization problem
totally randomly. What we want to achieve is that suspicious
edges representing data association errors or outliers can be
removed from the graph. So we can limit the operations
the optimizer can conduct on the graph representation of its
problem: We only allow to remove existing edges. No other
operations are permitted, especially not to add new edges or
to add or remove any of the vertices.

Removing an edge from the factor graph corresponds to
disabling the constraint associated with that edge, meaning
that the disabled constraint should not have any influence on
the optimization process, it should be completely removed
from the problem formulation. A binary weight factor ωij
would allow us to do just that: It could disable or enable its

associated constraint if ωij ∈ {0, 1}, i.e. ωij is either 0 or 1:

X∗ = argmin
X

∑
i

‖f(xi,ui)− xi+1‖2Σi

+
∑
ij

ωij · ‖f(xi,uij)− xj‖2Λij
(5)

Equally we can put the weight ωij into the squared Maha-
lanobis distance.

If the weight ωij is 1, the associated constraint is fully
respected in the optimization process. In contrast, if the weight
is 0, the constraint is completely ignored in the optimization
and has no influence on the optimization result, as if it would
not exist at all.

The standard pose graph SLAM problem formulation
corresponds to the case where all weights are constant and
fixed to ωij = 1. However, if these weights were not fixed,
but were themselves subject to the optimization and could
be changed by the optimizer during the optimization process,
we would in principle have achieved the desired behaviour:
The topology of the constraint graph would be subject to the
optimization process.

As the weights ωij shall not be fixed but subject to the
optimization, they have to be variables of the optimization
problem, just like the unknown robot poses xi are variables.
Since the weights shall either enable or completely disable
their associated loop closure constraint, the domain of the
weights should be the set {0, 1}. However, such discrete
variables are not suited for least squares optimization methods
like Levenberg-Marquardt, which require continuous domains.

Instead of using the discrete weights themselves as vari-
ables in the optimization problem, we introduce a continuous
variable sij ∈ R for each weight ωij . We call the set
S = {sij} the switch variables. We furthermore need a
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Fig. 4: The sigmoid function sig(sij) = 1/(1 + e−sij ) and its
derivative sig′(sij) = sig(sij) · (1− sig(sij))

switch function

ωij = Ψ(sij) : R→ {0, 1} (6)

that maps the continuous inputs sij to the desired weights
ωij ∈ {0, 1}. The sij would then be the variables in the
optimization problem. A suitable function is the sigmoid
function

ωij = sig(sij) : R→ (0, 1) =
1

1 + e−sij
(7)

which is continuously differentiable with derivative

sig′(sij) = sig(sij) · (1− sig(sij)) (8)

Both functions are shown in Fig. 4. Notice that the sigmoid
function asymptotically converges towards 0 and 1 but never
exactly reaches those values. Although we originally wanted
the weights to be elements of the discrete set {0, 1}, now
they are elements of the open interval (0, 1) on R. This does
not pose a problem, as we are going to see. For input values
sij ≥ 5 or sij ≤ −5, the resulting weight is approximately 1
or 0 respectively.

Like all other variables, the switch variables must be
initialized before the optimization starts. Since the loop
closure constraints were proposed or requested by the front-
end and we want to identify and disable the false-positives, it
is reasonable to initially accept all loop closure constraints, i.e.
letting ωij = sig(sij) ≈ 1. A proper and convenient initial
value for all sij would therefore be 10. For the following,
we call these initial values γij .

After introducing the new switch variables, the augmented
problem formulation is still incomplete: Intuitively nothing
prevents the optimization procedure from driving the switch
variables sij towards small values so that sig(sij) ≈ 0. This
would basically mean that all loop closure constraints are
ignored and cannot contribute to the overall cost function,
hence cannot influence the solution of the sought robot poses
X∗.

We could easily avoid this behaviour if we would, in simple
words, penalize the optimizer whenever it tries to disable a
loop closure constraint. This can be achieved by introducing
a prior constraint for each of the switch variables. The prior
constraints should loosely anchor the switch variables sij
at their initial values γij . The penalty should therefore be a
function of the difference between sij and its initial value γij .
We can conveniently use the squared Mahalanobis distance
‖γij − sij‖2Ξij

with covariance Ξij to express this additional
constraint. Notice that we will have to find a suitable Ξij ,

Fig. 5: Factor graph representation of the robustified pose graph
SLAM problem proposed in this paper. Notice the additional switch
variable s2,i that governs the loop closure factor (now shown in
yellow). Depending on the value assigned to the switch variable sij ,
the loop closure factor is switched on or off, i.e. it is activated or
deactivated as part of the optimization process. The switch variable
is governed by a prior factor (black) that penalizes the deactivation
of loop closures.

which we will explain later.
We can now add the switch variables and their prior

constraints to the problem formulation of (4) to arrive at
the final robust optimization problem for pose graph SLAM:

X∗, S∗ = argmin
X,S

∑
i

‖f(xi,ui)− xi+1‖2Σi︸ ︷︷ ︸
Odometry Constraints

+
∑
ij

‖ sig(sij) · (f(xi,uij)− xj) ‖2Λij︸ ︷︷ ︸
Switched Loop Closure Constraints

+
∑
i,j

‖γij − sij‖2Ξij︸ ︷︷ ︸
Switch Prior Constraints

(9)

Fig. 5 illustrates the robustified factor graph, showing the
new switch variable along with its prior factor.

Above formula (9) constitutes our proposed robust problem
formulation for pose graph SLAM. It is an optimization
problem over two sets of variables, the robot poses X = {xi}
and the switch variables S = {sij}, and consists of three
types of constraints. The odometry constraints equal those
in the standard problem formulation, and represent the pose-
to-pose motion information. The loop closure constraints are
now constraints between three variables (xi,xj , and sij) and
are weighted by the variable weight factor sig(sij). This
way, by driving the switch variable to small values, the
optimization procedure can deactivate the associated loop
closure constraints. The third type of constraint, the switch
prior constraints, penalizes the deactivation of loop closure
constraints.

As we have seen, it is indeed possible to find a formu-
lation that allows the optimizer to change its own problem
representation naturally, during the optimization process.

Notice that until now we only gave the robust problem
formulation in terms of a cost function that is to be minimized
in order to find the optimal variable configuration of X∗ and
S∗. We now have to analyze the constraints or factors from
a probabilistic perspective, as we have to make sure that
the optimal configuration of X∗ and S∗ corresponds to the



maximum a posteriori solution.
Remember from above that each switched loop closure

constraint contributes to the overall cost function with the
term

‖eslc
ij ‖2Λij

= ‖ sig(sij) · (f(xi,uij)− xj) ‖2Λij
(10)

We arrived at this formulation after considerations that the
optimizer should be able to disable any loop closure constraint:
By driving sij towards negative values, the optimizer can
“switch off” the loop closure constraint, because in this case
sig(sij) ≈ 0 and the spatial distance between f(xi,uij) and
xj does not add to the global error terms.

Although this interpretation is easy to understand intuitively,
the effect of the switch variable can also be understood as
acting upon the entries of the information matrix Λ−1

ij that is
associated with the loop closure constraint via the squared
Mahalanobis distance ‖ · ‖2Λij

.
Starting from (10) and using the definition of the Maha-

lanobis distance we can write

‖eslc
ij ‖2Λij

= [sig(sij) · δij ]T Λ−1
ij [sig(sij) · δij ] (11)

if we set f(xi,uij)− xj = δij . Using the fact that sig(sij)
is scalar, we can transform that equation and arrive at

‖eslc
ij ‖2Λij

= δTij
[
sig(sij)

2Λ−1
ij

]
δij (12)

This last formulation is interesting, because we see that
the switch variables sij directly influence the resulting
information matrices

Φ−1
ij = sig(sij)

2 · Λ−1
ij (13)

In this interpretation, if the variable sij is driven towards
negative values, then sig(sij) ≈ 0 and thus the resulting
information matrix Φ−1

ij will be close to zero. This however,
informally expresses that the associated constraint is to be
ignored in the optimization process, because literally nothing
is known about it. In other words, the associated uncertainty
expressed in the covariance matrix Φ approaches infinity.

Both interpretations, driving the information measure or
the resulting error towards zero, topologically correspond to
removing the associated edge from the graph that represents
the optimization problem. However, the interpretation where
the switch variables influence the information matrix is to
be preferred, as it allows us to still consider the switched
loop closure constraints as Gaussian conditional probabilities
P (xj |xi,uij , sij) with

xj ∼ N
(
f(xi,uij),

1

sig(sij)2
Λij

)
(14)

This allows us to extend (3) and to formulate the conditional
probability over all variables (robot poses X = {xi} and
switch values S = {sij}) and constraints U = {ui ∪ uij}:

P (X,U) ∝
∏
i

P (xi+1|xi,ui) ·
∏
ij

P (xj |xi,uij , sij) . . .

·
∏
ij

P (sij |γij) (15)

Under the assumption that all probabilities above are Gaussian,
the solution (X∗, S∗) of the optimization problem in (9) is
indeed the maximum a posteriori solution, since (X∗, S∗)
maximizes P (X,U).

A. First Results
Now that the general idea of our approach and the

mathematical formulation has been laid out, it is time to
come back to the introductory example in Fig. 3. In addition
to the odometry-based trajectory in Fig. 3(a) and the bad
solution of g2o in Fig. 3(b), we show the results of our
proposed robustified pose graph SLAM formulation in Fig.
3(c).

As one can clearly see, despite the wrong loop closures, the
robustified optimization converges towards a correct solution.
The grey lines in the plot represent the loop closure requests
that have been disabled during the optimization, i.e. their
associated switch variables sij have been assigned values
between approximately −5 and −10 so that the resulting
weight factor ωij = sig(sij) ≈ 0.

It is important to notice that none of the correct loop
closures were disabled by the optimizer. Their associated
switch values do not differ from the initial values and remain
stable at 10. In terms of precision-recall statistics this example
therefore yields an optimal result with both 100% precision
and recall.

B. Discussion
Before we present results of the proposed robustified pose

graph SLAM formulation on several larger datasets, we want
to discuss the implications that arise from it with respect to
the size and hardness of the optimization problem.

1) Influence on the Problem Size: Obviously, the proposed
robustified problem formulation significantly enlarges the
original optimization problem. For each loop closure con-
straint present in the original problem, another variable and
an associated prior factor are added to the problem. However,
given today’s efficient solvers that exploit the sparseness of
the optimization problem, the size of the problem (i.e. the
number of variables and constraints) is not the most crucial
factor that determines the runtime behaviour. By far more
important are the sparse structure of the system’s Jacobian
and a beneficial convergence behaviour (e.g. convexity or
close-convexity of the problem).

2) Influence on the Sparseness of the Problem: The initial
sparse structure of the optimization problem is not altered by
the additional switch variables and their prior factors. This
is clear because each of the switch variables governs only
one loop closure edge. The Jacobian Jslc

ij for a switched loop
closure constraint is formed by the partial derivatives with
respect to the variables x and s. The only non-zero entries
in that Jacobian are the partial derivatives with respect to xi,
xj , and sij . All other entries are 0. The Jacobians Jsp

ij for
the new switch prior constraints are equally sparse, because
each of the switch variables is influenced by only one prior
factor. Thus the only non-zero entry of Jsp

ij is the partial
derivative with respect to sij . The sparse structure of the
overall Jacobian is illustrated in Fig. 6.



Fig. 6: Overall sparse Jacobian J (left) and Hessian H = JTJ
(right) for the example SLAM problem from Fig. 3, modelled using
the proposed robust back-end. The non-zero values are marked by
a blue point. The light grey block in H contains the connections
between two pose nodes, connections between a switch variable and
a pose node are represented in the darker areas.

3) Influence on the Problem’s Convergence Properties:
The influence of the additional variables on the convergence
behaviour is harder to determine. However, currently not even
the structure of the standard pose graph SLAM problem in
terms of its convergence properties has been exhaustively
explored. In [11] Huang et al. raised the question of how far
SLAM is from a linear (i.e. convex) least squares problem
and suggested a close-convexity under certain circumstances,
e.g. small initial angular deviations and spherical covariance
matrices without off-diagonal entries. They also showed that
a relative pose formulation helps to strengthen this close-
to-convex property. Recently Carlone et al. [3] presented a
working closed-form, linear approximation to SLAM. In this
formulation the SLAM problem, like all linear least squares
problems, can be solved immediately without requiring an
iterative solver or an initial guess. The prerequisite for
this approach again are diagonal shaped covariances, with
independent position and orientation measurements.

As we have seen, the convergence properties of the SLAM
problem are still under research. It would be desirable to
show that our robustified SLAM formulation does not change
the convergence properties of the underlying standard SLAM
problem. Although the results presented in this paper indicate
a stable convergence behaviour, the mathematical examination
is still left for future work.

IV. IMPLEMENTATION AND PARAMETERS

We implemented our robust back-end in C++ for both the
GTSAM [1] and g2o [18] frameworks. Both libraries already
provide efficient solvers for graph-based SLAM problems
as well as classes for different factors common in 2D- and
3D-SLAM. The experiments described later in this paper
have all been conducted with the GTSAM implementation.

There is only one free parameter that needs to be set: The
covariance matrix Ξ is used in the switch prior constraint
‖sij − lij‖Ξij

: It is a one-dimensional variance measure and
was empirically set to Ξij = 202 for all experiments described
later in this paper. The other covariance matrices Λij and
Σi are used to calculate the Mahalanobis distances in the
odometry and loop closure factors and have to be provided
by the front-end.

TABLE I: The synthetic datasets used during the evaluation.

Dataset 2D/3D Poses Loop Closures

Manhattan 2D 3500 2099
City 2D 10000 10688
Sphere 2500 3D 2500 2450

All experiments were conducted in an incremental fashion,
i.e. data was fed into the optimizer 200 frames at a time, in
contrast to performing batch optimization.

V. RESULTS ON SYNTHETIC DATA SETS

To benchmark the robustness of the proposed approach and
to show its correctness and feasibility, we used three synthetic
datasets that have been used in a number of publications
before. We thank the original authors for providing the data:
The Manhattan world was first published by Olson [26].
The datasets City and Sphere shipped with the open-source
implementation of iSAM [14]. All of these datasets consist
of pose graphs in 2D or 3D and contain several thousand
poses and loop closure constraints (see Table I). We corrupted
the data by adding different numbers (between 5 and 1000)
of wrong loop closures between randomly chosen poses.
These additional, wrong loop closures were given the same
information matrix entries as the correct ones provided by
the datasets.

Fig. 1 shows some of the results for the Manhattan World
dataset. We conducted 10 experiments, adding 5, 10, 25, 50,
75, 100, 250, 500, 750 and 1000 random wrong loop closures.
As expected, current state of the art frameworks are not able
to cope with the outlier constraints and converge towards
defective solutions. This is illustrated in the left part of Fig.
1, which shows the results of iSAM [14] version 1.5. for 10
outlier constraints. Even g2o [18], that can optionally use the
Huber cost function is not able to converge correctly (not
shown). Our robust back-end however, is able to converge to a
correct solution even with 1000 false loop closure constraints
(right part of figure). The outlier constraints are correctly
deactivated by driving their associated switch variable sij
to small values, so that the resulting weight factor for that
constraint, ωij is approximately zero. Notice that 1000 outliers
are roughly 50% of the original true loop closings in the
dataset. Apart from merely visual inspection, the RMS errors
and average χ2 errors specified in Table II prove the good
quality of the optimization result. From Fig. 7 we can see
that the resulting average χ2 errors appear to be more or less
constant, fluctuating around a value of 0.07 for the different
experiments with the Manhattan dataset. The required time
until convergence rises super-linearly with the number of
outliers.

Precision-recall statistics allow us to quantitatively judge
how well the system identifies the outlier loop closure
constraints, while maintaining the correct ones. Fig. 8(a)
shows the precision-recall plot. It was calculated over a total
of 30 experiments, 10 for each of the three datasets, with an
increasing number of added (wrong) loop closure constraints.
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Fig. 7: With our robustified problem formulation, the average χ2
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Fig. 8: (a) Precision-recall curve of accepted loop closure constraints
calculated over a total of 30 experiments for three different datasets
with up to 1000 wrong loop closure constraints. Notice the scale of
the axes. At a precision of exactly 100%, the recall is ≈ 90%. (b)
Correspondingt F-score plot. The maximum F-score of 0.9979 is
reached at l∗ij = −5.3.

The high quality of the system is apparent. At a precision of
100% (i.e. all wrong loop closures are correctly identified and
discarded) a recall of 90% is reached. That means that only
10% of all correct loop closures are erroneously discarded
by the system. This generally is not a problem as real loop
closures usually contain many poses and chances are very
high that at least one of these single loop closing constraints
will be accepted by the optimizer.

The corresponding F-Score plot in Fig. 8(b) illustrates the
very desirable behaviour: The maximum F-score is almost
1 (0.9979) and shows a clear peak in the plot. The best
threshold on sij that decides whether a loop closure constraint
should be considered active or discarded is s∗ij = −5.3. This
complies with the observation that the sigmoid function used
to implement the switching behaviour (Fig. 4) significantly
starts to differ from 0 for input values greater −5.

Selected results from the City and Sphere datasets are
illustrated in Fig. 9(b) and 9(c), respectively. We also
conducted experiments where wrong loop closures were not
added totally randomly but in groups of 20 mutually consistent
single loop closures. The achieved results are qualitatively
equal to those of the random tests.

VI. RESULTS ON A REAL-WORLD DATA SET
Although the synthetic datasets already contain several

thousand poses and constraints, we wanted to test our robust

TABLE II: Error Measures for Manhattan Data Set.

Method Robust Approach Non-Robust
# Outliers 10 100 1000 10

RMSExy [m] 0.996 1.073 1.169 21.1
RMSEθ [deg] 2.8 2.9 3.4 39.05
avg. χ2-Error 0.061 0.064 0.084 22.9

back-end in an even larger real-world scenario. We therefore
chose the St. Lucia dataset that was first presented in [24]. It
consists of video footage taken on a 66 km long course
along the roads in a suburb of Brisbane, Australia. The
camera was mounted on top of a car that drove through
the street network for a little more than 1:40 hours, resulting
in 57,858 image frames which correspond to distinct poses.
No additional information is available, notably no GPS, or
odometry information.

The front-end part of our system therefore has to extract
inter-frame motion information and detect loop closures solely
from the camera images: Coarse odometry information was
extracted from the images using image profile matching.
Details can be found in [28]. Although this technique is rather
simple, the extracted inter-frame motion estimates provide
sufficient metric information for the SLAM back-end.

Potential loop closures were detected by a light-weight
place recognition system we call BRIEF-Gist [29]. This rather
simple place recognition system has a low false-negative rate,
but a pretty high false-positive rate. However, due to the robust
problem formulation, the optimizer is able to deactivate these
wrong loop closures and converge to a correct solution, which
is depicted in Fig. 9(a).

This real-world dataset shows why a naive approach that
deactivates loop closure constraints based upon a simple error
threshold cannot work: Some of the loops (especially the first
and the 5th) are very large and the accumulated odometry
errors already exceed several hundred meters. In order to
accept these loop closures, any threshold would have to be
set to such high values that most of the wrong loop closure
candidates (that require shorter loops) would be erroneously
accepted.

VII. CONCLUSIONS

We presented a novel approach to improve the robustness of
optimization-based pose graph SLAM. Our modified problem
formulation can be understood as transferring parts of the
responsibility for correct data association from the front-end
into the back-end. The back-end optimizer can now change
the topological structure of the pose graph representation
during the optimization process. Therefore, it can account
for possible data association errors and ignore erroneous
loop closure constraints. We feel that our work closes a gap
between the recently developed back-end optimizers and the
sensor-driven front-end.

The main advantages of the proposed formulation are:
• The overall SLAM system becomes tolerant and robust

against errors in the data association.
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Fig. 9: (a) Results for the St. Lucia dataset [24], consisting of video
footage of a 66 km long drive through an urban environment. Loop
closure recognition was performed using a very simple technique
based on the BRIEF descriptor. We described this approach to
place recognition in previous work [29]. Despite the high number
of wrong loop closure requests, the robust problem formulation
allows the optimizer to converge. (b) Results on the City world
dataset and on the Sphere world dataset (c). Both datasets were
spoiled by respectively 500 and 300 additional false loop closure
constraints. Despite that, the robust system converges. The additional
false loop closures (grey) were identified and deactivated during the
optimization.

• The data association algorithm does not need to work
perfectly (precision < 100%) and can be kept simple
and fast, as a reasonable false positive rate is acceptable.

• No hard data association decisions are necessary in the
front-end, the optimizer can take back decisions at any
time.

The ideas we presented in this work do not only apply to
pose graph SLAM, but can be extended to general nonlinear
least squares optimization problems in which outliers may be
present. Still left for future work is a mathematical discussion
of the convergence properties of the robustified SLAM
problem. Supplementary material is available at www.tu-
chemnitz.de/etit/proaut/forschung/robustSLAM.html
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