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In the following, we provide supplementary material to the point-set registration (PSR)
example in for better understanding and visualization. Further, we give
additional information for the ANEES evaluation in Especially, regarding our
argument of the ANEES being inconclusive for the summing approach (SA). Finally,
gives a qualitative trajectory evaluation based on our implementations for the
robot dataset. Please take into account, that this evaluation should only be considered
as benchmark under the mentioned conditions.



1 PSR Example

We evaluated a Simulated Point Set Registration example. For a better understanding of
the scenario, we reprint an example, already given in [2]. The example in is
based on only 10 landmarks with 4 clusters resulting in 18 landmarks.
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Figure 1: Simplified example for one simulated PSR problem with a ground truth
transformation of 0.5m in x-direction and 15° in rotation. The plot shows the
situation after adding a random measurement noise according to [1, Table IJ.
The visualized correspondence information is unknown to the algorithms.



2 Credibility Analysis

Here, we want to stress the fact, that the ANEES values for the SA in |1, Table II] have to
be considered as inconclusive. To underline this, we show the NEES distributions for the
clustered point-set registration experiment in comparison with the ideal y2-distribution
and a fitted y2-distribution (based on MLE) in [Figure 2| and [Figure 3|

As the ANEES is simply the mean of the NEES values, the ANEES would be a vertical
line at 3.63 (normalized 1.21) for the MSM and 2.16 (normalized 0.72) for the SA. The
normalized ANEES for the SA with 0.72 seems to be close to one and misslead to the
conclusion, that the SA is nearly credible, but if we look closer to we see two
problems:

o the fitted y2-distribution based on the NEES values does not represent the empirical
values and

e some SA results are outliers where the optimizer run into wrong local minima
resulting in NEES values > 100 thus, the ANEES shifts into positive direction.
Ignoring those outliers, would result in a normalized ANEES of 0.15 for the SA
example in which is more representative in this case.

That said, we have to be careful by using the ANEES metric, as stated above. Likewise,
experiments based on experimental data may have inaccuracies regarding its ground
truth as well as the sensors’ noise models. Also, as we use the covariance, the errors
should follow a normal distribution, otherwise we would have to define a complex noise
model as output of the motion-estimation algorithm.
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Figure 2: NEES histogram for experiment PSR-C (clustered point-set registration prob-
lem), solved with MSM.
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Figure 3: NEES histogram for experiment PSR-C (clustered point-set registration prob-
lem), solved with SA.



3 Trajectory Evaluation

We deliberately did not include a qualitative trajectory evaluation within our publication,
because we don’t want to imply the goal of a stand-alone application of our method. We
argue, that our method can be used in a loosely-coupled manner in overlaying algorithms,
where it can be thought of as a virtual odometry sensor. For this, the estimator’s
performance regarding its mean error is not the crucial part, but its credibility.

Using this benchmark for comparison, should be done with care. In our opinion, a direct
comparison to other velocity-based methods makes only sense, if:

e they are not already extended by other sensor information

o don’t use keyframes or other improvements which makes the algorithm unusable for
implementation into overlaying sensor fusion with correct covariance information

o and ideally evaluate the credibility.

For the following trajectory evaluation, we utilized the rpg trajectory evaluation tool
[3] for our robot datasetﬂ The results are shown in [Figure 4| and [Figure 5| as well as
a qualitative trajectory error in Additionally, gives the summarized

metrics.

It can be seen, that there is no marginal difference between both approaches (SA and
MSM), which is also reflected within the RMSE results for this experiment shown in
the accompanied paper |1, Table II]. Especially in the relative translation error, the SA
is a bit better, but comes without reliable covariance information, as showed with the
ANEES value within [1, Table II]. We conclude, that both algorithms should not be used
as a stand-alone variant for motion estimation, but can support a sensor fusion algorithm
with their virtual odometry information, if also a credible covariance is generated.

Table 1: Results by the rpg trajectory evaluation tool for the robot dataset.
Translation (%) Rotation (°m~!) Translation RMSE

MSM 75.80 1.49 41.98
SA 64.16 1.56 42.05
MSM-D 75.28 1.43 38.72
SA-D 62.91 1.45 53.04

!The nuScenes dataset is omitted on purpose. The scenes are only of 20s length and differ in its length
between zero and > 100 m, making the trajectory evaluation hard to interpret.
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Figure 4: Overall rotation error for the robot dataset, with different subtrajectory length.
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Figure 5: Overall translation error for the robot dataset, with different subtrajectory
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Figure 6: Qualitative trajectory evaluation for the robot dataset.
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