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Maps are Essential for Effective 
Navigation 
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Graph-based SLAM 

Robot pose 

Constraint  

a single outlier … ruins the map 



Graph-SLAM Pipeline 

Front end           Validation            Back end 

 

 

 

 

Assumption: 
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Impossible to have perfect validation 



SLAM Back End Fails in the 
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Typical Assumptions 

 Gaussian assumption is violated 

 Perceptual aliasing 
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Typical Assumptions 

 Gaussian assumption is violated 

 Perceptual aliasing 

 Measurement error 

 Multipath GPS measurements 

 Linear approximation is invalid 

 Linearization is only valid if close to 

optimum 

 



Typical Assumptions in  
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Our Approach: 
Dynamic Covariance Scaling 

 Successfully rejects outliers 

 More robust to bad initial guess 

 Does not increase state space 

 Is a robust M-estimator  

 

 



Standard Gaussian Least 
Squares 



Dynamic Covariance Scaling 
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How to Determine s? 

Closed form approximation of Switchable 

Constraints with a M-estimator  
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Dynamic Covariance Scaling 

Both have  
squared error 



Dynamic Covariance Scaling 

Original 
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Robust SLAM with Our Method 

Ground  
Truth  

Initialization Gauss  
Newton  

Our 
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Dynamic Covariance Scaling 
with Front-end Outliers 

Bicocca multisession dataset 
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Lincoln-labs multisession dataset 
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Dynamic Covariance Scaling 
with Outliers in Victoria Park 
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 DCS recovers correct solution 

 GN fails to converge to the correct solution 
even for outlier-free case 



Robust Visual SLAM with Our 
Method 

 3D grid worlds of different sizes 

 Robot perceives point landmarks 



Robust Visual SLAM with Our 
Method 

 ~5000 camera poses 

 ~5000 features 

 ~100K constraints 

 ~1000 camera poses 

 ~4000 features 

 ~20K constraints 



Robust Visual SLAM with DCS 
Ground  
Truth  

Initialization 
(Odometry) 

Levenberg-Marquardt 
(100 iterations) 

Our Method 
(15 iterations) 
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Robust Visual SLAM with DCS 
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Robust Visual SLAM with DCS 

 DCS recovers correct solution in the 
presence of up to 25% outliers 

 LM fails to converge to the correct solution 
even for outlier-free cases 
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Iterations 

Switchable Constraints 
Dynamic Covariance Scaling 



Convergence with Outliers 

Dynamic  
Covariance 

Scaling 

Switchable 
Constraints 



Conclusion 

 Rejects outliers for 2D & 3D SLAM 

 No increase in computational 

complexity 

 More robust to bad initial guess 

 Now integrated in g2o 

 



Thank you for your attention! 


