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• Preparing mobile robots for industrial environments:
‣ Requires precise position estimates 

‣ Setting of artificial markers is inconvenient

• Localization quality depends on:
‣ Accuracy of sensors used

‣ Computational power

‣ Accuracy and resolution of prior map

• Requirements of a SLAM framework:
‣ Robust in the presence of repetitive structures

‣ High scalabilty for application in large scale environments

‣ High precision of final map

Introduction
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• State-of-the-art graph optimization based methods used
• Use of feature based SLAM
‣ Scales well with larger map sizes

‣ Allows efficient map matching

• Perceptual aliasing poses a challenge
‣ Limited observation space of 2D range scans

‣ Industrial environments: high number of repetitive structures

• Decouple pose and map optimization
‣ Estimate pose graph topology first

‣ Map optimization based on correct pose graph

Overview
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Framework Overview
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Front-End: Feature Extraction
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• Extraction of FLIRT interest points (Tipaldi et al., ICRA ’10)

Beta grid describing local surroundingsFeatures extracted from smoothed range readings
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Front-End: Feature Extraction
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Example: Features detected, colors indicating scale
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• Match features of reference & observed scans
‣ RANSAC based outlier rejection
‣ Estimation of rigid transformation of feature sets
‣ Minimize point wise reprojected error

Front-End: Loop Closure Detections
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Matching feature sets; blue: inliers, red: outliers
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• Switchable Constraints (Sünderhauf et al., 
IROS ’11):
‣ Loop closure incorporation is subject to optimization

‣ Loop closure constraints can be “switched off”

‣ Joint optimization of odometry & loop closure 
constraints

• Switch priors: Confidence provided by front-
end

• Different switch functions possible
• Research Lines:
‣ Latif et al.: Robust Loop Closing over time (RSS ’12)

‣ Agarwal et al.: Max Mixture (RSS ’12), Dynamic 
Covariance Scaling (ICRA ’13)

Back-End: Pose Graph Optimization
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• Based on Sparse Surface Adjustment (Ruhnke et al., 
ICRA ’11) 

• Assumption: Given pose graph is topologically 
consistent

• Advanced Sensor Model incorporates:
‣ Incident angle w.r.t. surfaces
‣ Conic shape of beam

• Data Association: laser beams are assigned surface 
patches 

• Jointly optimize robot poses and laser 
measurements (range & direction)

Back-End: Map Optimization
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Fig. 2. Evaluation of the likelihood of the points. The left image shows
the confidence ellipses representing local planar segments extracted from a
scan by applying our surface model. The right image depicts the likelihood
of the surface points, given the scan.

reason, a single laser beam does not measure the surface at a
specific point, but rather returns some aggregated measure of
the distances of the surface within the spot of the beam. This
effect is usually negligible when one is interested in low-
resolution maps or the robot operates in narrow environments
only, but it becomes evident in all other situations.

Furthermore, the incidence angle on the surface usually
plays a major role in the error affecting a laser beam. This is
another consequence of the conic shape of the beam: the area
of the spot on the surface increases with the angle between
the normal of the surface and the center of the beam. Since
the distance measure is obtained by averaging over a larger
region, it tends to be less accurate.

The uncertainty affecting a single laser beam hitting a
surface typically depends on the quantization error of the
device and the diameter of the spot at a given range. The
quantization error ηquant is usually uniformly distributed
over a small range (e.g., ±1 cm for the SICK LMS). The
diameter dk of the beam’s spot on the surface increases
with the length of the measured beam and it depends on
the incidence angle αk to the surface. The spot diameter is
proportional to the beam’s aperture ka and to the norm ||rk||
of the beam’s vector r. The diameter will then be ka||rk||,
and its projection onto the surface will be

dk ! ka||rk|| · tan(|αk|). (1)

If we have a rough estimate of the normal n̂k from our
surface model and we obtain a laser measurement rk, the
potential measurements will be distributed approximately as
a Gaussian oriented along the beam’s direction. The mean
will lie at the center of the surface patch and the uncertainty
is represented by the covariance Σmeas. The standard devi-
ation σ11 along the beam’s direction is proportional to the
projection of the spot dk on the surface along the beam’s
direction plus a quantity proportional to the quantization
error

σ11 = k11dk sin |αk|+ ηquant. (2)

The standard deviation σ22 along the direction orthogonal to
rk will depend on the diameter of the spot:

σ22 = k22ka||rk||. (3)

In the above equations the constant factors k11 and k22
are laser dependent parameters and σ11 and σ22 are the
respective entries in the covariance matrix Σmeas. Figure 3
illustrates how we compute the distribution of the point on
a surface that generated a range measurement.

surface

d

r

n̂

α

α

dk

Fig. 3. The sensor model of smooth surfaces. For convenience we dropped
the indices. r: the beam of the laser vector. n̂ the normal of the surface.
α: incidence angle. ka: the aperture of the beam’s cone. d: diameter of
the beam’s spot on the surface r. σ11: standard deviation along the beam’s
direction (not shown) and σ22: standard deviation along the beam’s tangent
direction (not shown).

C. Objective Function and Optimization

The goal of our approach is to determine the map and
the configuration of robot poses that is maximally consistent
with the measurement. The map M is represented as a set of
tangent segments, or points where the tangent is not defined.
Each tangent is described by a Gaussian 〈µnk,Σnk〉, where
µnk denotes the kth beam of the nth robot pose xn, as
described in Section III-A. The robot positions x1:N are
constrained by the odometry measurements u1:N .

If we know the pairwise correspondences between two
surface patches extracted from different scans, we can define
the error vector for this correspondence as the difference
between the centroids of the ellipsoids representing the
tangents:

e
surf
ij (µniki

, µnjkj
) = µniki

− µnjkj
= ∆µij . (4)

When constructing a quadratic optimization problem, we
need to weigh the errors between the surface patches ac-
cording to the orientation of the surfaces. More specifically
we want to allow the surfaces to “slide” along the tangential
direction, but we want them to be more rigid along the
direction of their normal. This can be effectively accounted
by the sum of the inverses of the covariance matrices of the
ellipsoids.

Ωij = Σ−1
niki

+ Σ−1
njkj

. (5)

The quadratic error introduced by this correspondence will
then be:

e
surf
ij = ∆µ"

ijΩij∆µij . (6)

Figure 4 illustrates the calculation of this component of our
error function.

Each surface patch 〈µnk,Σnk〉 is connected to the laser
pose by a measured laser beam rnk. This error is distributed
according to the covariance Σmeas computed in Section III-
B:

e
meas
nk = ((µnk%xn)−rnk)

"(Σmeas
nk )−1((µnk%xn)−rnk).

(7)
An odometry measurement un between two consecutive

robot poses xn and xn+1 contributes to the error function
by the following term:

e
od
n = (un % (xn+1 % xn))

"Σ−1
n (un % (xn+1 % xn)). (8)

xi xj
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,Σni

〉

〈
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,Σnj

〉
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tangent error

normal error

Fig. 4. This figure illustrates the computation of the error function between
two corresponding surface patches extracted from two different scans. xni

and xnj are the two positions of the laser scans. µniki
, µnjkj

are the

centroids of the surface patches. Σ
−1

niki
and Σ

−1

njkj
are the covariance

matrices of the ellipses and ∆µij is the error vector.

Here, # is the usual inverse motion composition operator
as described in [25] and Σ−1

n is the covariance matrix that
captures the uncertainty of the odometry.

Assuming a known set of correspondences, we can set up
a least squares minimization problem that seeks to find the
configuration of robot poses x

∗
1:n and surface patches M∗

as:

〈x∗
1:n,M

∗〉 = argmin
x1:n,M

N
∑

n=1

e
od
n +

∑

〈i,j〉

e
surf
ij +

∑

〈n,k〉

e
meas
nk . (9)

To find this minimum we utilize the Gauss-Newton al-
gorithm. Whereas the number of variables to optimize is
typically large (in the order of one million of elements),
the resulting linear system is typically sparse. The objective
function is the sum of factors involving only pairs of state
variables. Thus the approximated Hessian contains a number
of non-zero entries that is proportional to the number of con-
straints. Since the range of the sensor is limited, this results
in a sparse approximated Hessian. We can achieve the desired
performance by solving the linear system by sparse Cholesky
decomposition using the CHOLMOD algorithm [7]. Given
this algorithm, our current system can perform one iteration
of non-linear optimization of a system consisting of 172,522
surface patches acquired from 616 robot positions, 996,451
surface constraints, and 671,550 constraints between surface
patches in less than 5 seconds using one core of a Core
Quad running at 2.6Ghz. Figure 5 shows the typical non-
zero pattern of the sparse Hessian.

In the Gauss-Newton algorithm we do not directly opti-
mize the covariances of the patches Σniki

, since we inter-
nally store them relative to the robot position from where
they have been acquired. In this way, when a robot position
is updated, we implicitly rotate the covariances of the patches
that have been seen from that position. However, the error
functions for the landmarks (Eq 6) require these covariances
to be expressed in the global reference frame to compute the
information matrices Ωij . We carry on this operation in the
linearization step of the Gauss-Newton algorithm.

D. Data Association

In the previous section we assumed the correspondences
between the surface patches to be known. This assumption is

Fig. 5. Non-zero entries of the approximated Hessian of your optimization
procedure. The “dense” bands on the top and on the right correspond to
constraints between the robot poses and the patches.

obviously not true in reality. In this section we will explain
how we determine the potential correspondence between two
patches in different scans.

Given an initial configuration of two patches 〈µi,Σi〉 and
〈µj ,Σj〉, where the normals are well defined, we utilize the
“normal-shooting” heuristic proposed in Chen et al. [6]. The
idea is to consider every surface patch where the normal is
well defined and to search along its normal direction for the
closest patch of another scan whose ellipsoid has a similar
shape as well as a similar orientation of the normal. If such a
patch is found, we add a constraint between them. Whenever
two robot poses are connected by an odometry constraint,
we apply this heuristic to introduce a constraint between the
surface patches of the scans. Furthermore, we consider the
surface patches that are closer than 0.2m to each other. If
a surface patch has more than one neighbor, we only add a
constraint to the one having the smallest index. By doing
so, we enforce a high degree of sparsity of the Hessian
without a substantial decrease in the final map accuracy. The
data association is updated after every optimization run. We
consider a system converged if changes in the χ2 error are
below a given threshold for at least 5 optimization runs.

IV. EXPERIMENTS

In this section, we present experiments carried out to
evaluate the performances of our approach. Throughout our
experiments we used the Freiburg indoor building 079, the
Intel Research Lab, the MIT CSAIL Building, and the ACES
Building data sets. We choose those datasets because they are
publicly available and well known in the SLAM community.
Another important advantage of this dataset collection is
the fact that they were acquired with different laser sensors
and give an intuition of the generality of our sensor model.
For further quantitative evaluations we furthermore used a
simulated map resembling the Freiburg indoor building 079
map.

A. Entropy on Real World Data

In the first experiment we evaluated the impact of the
combined pose and observation optimization on a set of
real world datasets. The main purpose of our method is
to produce accurate maps, which typically results in a low
entropy of the corresponding occupancy grid map, which

Image courtesy by Ruhnke et al.
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Experiments
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SCITOS G5 operating in a warehouse



Himstedt, Keil, Hellbach, Böhme A Robust Graph-based Framework for Building Precise Maps from Laser Range Scans 10th May 2013

Experiments: Robust optimization
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Initial Pose Graph
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Experiments: Robust optimization
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Nonrobust optimization
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Experiments: Robust optimization
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Switchable Constraints
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Experiments: Mapping Results (I)
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No Optimization Optimization using SSA
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Experiments: Mapping Results (II)
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B. Contribution of a robust back-end

Even though FLIRT interest points are very distinctive
the number of false loop closure detections is high. This is
mainly due to perceptual aliasing arising from the limited
scene representation of 2D laser scans. Geometric consistency
checks cannot prevent this in all cases since the environment
is rich of repetitive structures such as shelves and boxes.
Figure 3 illustrates the results of the pose graph optimization
emphasizing the importance of a robust back-end. We used the
Switchable Constraints [14] implementation, coined vertigo,
with a linear switch function. Furthermore we made use
of the generic graph optimization back-end g2o [1]. Both
implementations are obtained from the openslam2 platform.

C. Mapping performance

Given the optimized pose graph as shown in Figure 4 a
final map is built by concurrently optimizing robot poses and
laser measurements as explained in Section III-C. It can be
clearly seen that pure pose graph optimization is not sufficient
to get accurate and consistent maps. The map consistency is
significantly improved by the joint optimization of robot poses
and laser measurements.

In order to estimate the final map accuracy a second exper-
iment was carried out in a subarea of the warehouse which is
illustrated by Figure 2. The robot was steered two loops in that
subarea. Ground truth was obtained by measuring distances
L1... L6 between salient points using a tape measure (see also
Figure 5a). The distances ∆ between these salient points were
also manually estimated in the final map obtained after opti-
mization (see Figure 5c). The results are shown in Table I. The
differences ∆ are supplemented by the mean µ and variance
Var over all differences. Note that GT determine the actual
ground truth distances measured. The values ∆, in contrast, are
the differences obtain from the distances that were manually
measured on the final map and the GT measurements. The
mean µ(L) is around 3cm, the high variance Var(L) is mainly
achieved due to the rather low distance for L4. Similiarly to
[15] we further estimated the entropy of the maps shown in
Figure 5b and 5c respectively which are given in Table II for
ICP, pose graph SLAM (pose only) and joint pose and laser
measurement optimization (SSA). The optimization of laser
measurements helps minimizing that points are spread around
objects which results in a lower entropy. As we do not aim
to reduce the actual information (here obstacles on the height
of the laser range finder), a lower boundary determining the
optimal representation should be approached.

V. CONCLUSIONS

This paper presented a framework consisting of state-of-the-
art algorithms in graph based SLAM. We combined existing
methods to achieve an overall solution which is able to
generate maps at high accuracy using laser range scans. The
importance of each component for achieving this final goal

2http://www.openslam.org

GT [mm] ∆[mm]
L1 1490.0 49.24
L2 762.0 47.05
L3 791.0 40.82
L4 650.0 8.34
L5 892.0 39.48
L6 1206.0 20.04
µ(L) - 34.16

Var(L) - 26.64

Table I
RESULTS OF EXPERIMENT 2.

ICP Pose only SSA
0.186 0.132 0.102

Table II
ENTROPY ON MAPS OF EXPERIMENT 2.

is extensively demonstrated for a complex industrial envi-
ronment, more precisely a warehouse, which poses the main
contribution of this work. The robust pose graph optimization
was shown to be essential in the presence of a multitude
of repetitive structures which naturally occur in 2D range
scans for this type of environment. The FLIRT interest points
were shown to be beneficial for loop closure detections. The
combination with a robust optimization back-end allows us to
tackle environments at much larger scales. Finally incorporat-
ing a post-optimization of robot poses and laser measurements
brings us significantly closer to more local map accuracy.
We evaluated the overall accuracy of the map that can be
achieved by means of ground truth comparisons obtained for
a specific scene in the warehouse. These high-resolution maps
are very contributive for the autonomous operation of mobile
robots in industrial settings. This specifically addresses the
localization in such environments hampering the setting of
artificial markers. It further enables precise positioning in
order to get close to surrounding objects or charging stations.
Most common environments in mobile robotics are represented
by occupancy grid maps serving as input for path planning,
obstacle avoidance and localization. In order to achieve op-
timal results it is recommended to keep grid sizes small
ensuring less information loss. However, holding maps of
large-scale environments at fine resolution is computationally
expensive. Hence, methods as presented by Einhorn et al.
[21] enable to manage occupancy grid maps with adaptive
grid sizes. In this way large free space can be described by
larger grid cells, whereas fine local structures can be kept at
high resolution. We will incorporate this technique in future
work in order to enable more autonomy for mobile robots in
industrial environments by achieving more robust navigation
and positioning.
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Experiments: Mapping Results (II)
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No Optimization Optimization using SSA
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Experiments: Mapping Results (II)
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SCITOS G5 operating in a warehouse
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• Framework is able to generate accurate maps
‣ Front-end: FLIRT allows efficient place recognition

‣ Pose graph: Robust optimization necessary

‣ SSA: Promising results, particularly for large surfaces

• Finding the right representation for localization
‣ Low resolution global occupancy grid map

‣ High resolution submaps in workspaces

• Coping with dynamic change occuring over time
‣ Dynamic Occupancy Grid Maps (Meyer-Delius et al., AAAI ’12)

Conclusion & Future Work
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