

A Robust Graph-based Framework for Building Precise Maps from Laser Range Scans

Marian Himstedt Sabrina Keil Sven Hellbach Hans-Joachim Böhme

Artificial Intelligence Lab University of Applied Sciences Dresden

0000

Introduction

- Preparing mobile robots for industrial environments:
 - Requires precise position estimates
 - Setting of artificial markers is inconvenient
- Localization quality depends on:
 - Accuracy of sensors used
 - Computational power
 - Accuracy and resolution of prior map
- Requirements of a SLAM framework:
 - Robust in the presence of repetitive structures
 - High scalability for application in large scale environments
 - High precision of final map

Overview

- State-of-the-art graph optimization based methods used
- Use of feature based SLAM
 - Scales well with larger map sizes
 - Allows efficient map matching
- Perceptual aliasing poses a challenge
 - Limited observation space of 2D range scans
 - Industrial environments: high number of repetitive structures
- Decouple pose and map optimization
 - Estimate pose graph topology first
 - Map optimization based on correct pose graph

Framework Overview

Front-End: Feature Extraction

Features extracted from smoothed range readings

• Extraction of FLIRT interest points (Tipaldi et al., ICRA '10)

Beta grid describing local surroundings

Front-End: Feature Extraction

Example: Features detected, colors indicating scale

Front-End: Loop Closure Detections

- Match features of reference & observed scans
 - RANSAC based outlier rejection
 - Estimation of rigid transformation of feature sets
 - Minimize point wise reprojected error

Matching feature sets; blue: inliers, red: outliers

- Switchable Constraints (Sünderhauf et al., IROS '11):
 - Loop closure incorporation is subject to optimization
 - Loop closure constraints can be "switched off"
 - Joint optimization of odometry & loop closure constraints
- Switch priors: Confidence provided by frontend
- Different switch functions possible
- Research Lines:
 - Latif et al.: Robust Loop Closing over time (RSS '12)

A Robust Graph-based Framework for Building Precise Maps from Laser Range Scans

 Agarwal et al.: Max Mixture (RSS '12), Dynamic Covariance Scaling (ICRA '13)

10th May 2013

- Based on Sparse Surface Adjustment (Ruhnke et al., ICRA '11)
- Assumption: Given pose graph is topologically consistent
- Advanced Sensor Model incorporates:
 - Incident angle w.r.t. surfaces
 - Conic shape of beam
- Data Association: laser beams are assigned surface patches

A Robust Graph-based Framework for Building Precise Maps from Laser Range Scans

 Jointly optimize robot poses and laser measurements (range & direction)

Image courtesy by Ruhnke et al.

Experiments

SCITOS G5 operating in a warehouse

Experiments: Robust optimization

Initial Pose Graph

Nonrobust optimization

Experiments: Robust optimization

Experiments: Mapping Results (I)

No Optimization

Optimization using SSA

	GT [mm]	Δ [mm]
L_1	1490.0	49.24
L_2	762.0	47.05
L_3	791.0	40.82
L_4	650.0	8.34
L_5	892.0	39.48
L_6	1206.0	20.04
$\mu(L)$	-	34.16
Var(L)	-	26.64

Experiments: Mapping Results (II)

No Optimization

Optimization using SSA

Experiments: Mapping Results (II)

SCITOS G5 operating in a warehouse

- Framework is able to generate accurate maps
 - Front-end: FLIRT allows efficient place recognition
 - Pose graph: Robust optimization necessary
 - SSA: Promising results, particularly for large surfaces
- Finding the right representation for localization
 - Low resolution global occupancy grid map
 - High resolution submaps in workspaces
- Coping with dynamic change occuring over time
 - Dynamic Occupancy Grid Maps (Meyer-Delius et al., AAAI '12)