
6 Amplification Circuits

6.1 Requirements for Amplification

6.2 Structure of Amplifiers

6.3 Real Behaviour of Amplifiers
Input Resistances, Output Resistance, Offset-Voltage, 

Offset-Current, Bias-Current Drift, Transfer Behaviour, Output Voltage Swing,

Gain-Bandwidth-Product, Slew Rate , Common Mode Rejection

Difference Amplifier, Operation Amplifier

6.4 Correction of the Real Behavior 

6.4.1 Frequency Behavior

6.4.2 Zero Point Errors

6.4.3 Noise

6.4.1 Frequency Behavior
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6.5 Instrumentation Amplifier

6.6 Applications of Inverting Amplifiers
Multiplication, Division, Charge Amplifier, 

Schmitt-Trigger, Control Circuits

6.7 Active Filters



• defined transfer behaviour: 

�Linearity

�Amplification independent on aging, fluctuations, environment
influence and voltage supply

• high input sensitivity

• no influence on the measurand: � High input resistance

�for voltage amplifier very high

6.1 Requirements to Amplification

�for voltage amplifier very high

�for current amplifier very low

• stable output: � Low output resistance

• long life time

• low noise

• low energy consumption
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6.2 Structure of Amplifiers

Eingangswiderstand

negativer Eingangsruhestrom

Ue

Output Resistance

Input Resistance
Negative Input Bias Current

Un

Equivalent Circuit and Transfer Characteristic

3

Important: 
Ouput circuit is galvanically independent  
on the input circuit
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Positive Input Bias Current
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npd UUU −=

0V open loop voltage gain

Amplification

da UVU ⋅= 0

Real 104 < V0 < 107
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6.2 Structure of Amplifiers

CMCMda UVUVU ⋅+⋅=
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Total Amplification

with 740
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CMV

V

CMV common mode amplification Ideal 0
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(Gleichtaktverstärkung)
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Principle of the Difference Amplifier

6.2 Structure of Amplifiers

Ube1= Ube2 Ic1= Ic2 UA1= UA2

Ube1> Ube2 Ic1>> Ic2 UA1>> UA2

P. 6-5

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology



Simple Amplifier

6.2 Structure of Amplifiers

Difference Amplifier Output stage
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Integrated Standard Operation Amplifier xx741 (Principle)

Difference Amplifier

6.2 Structure of Amplifiers

Current Mirror

Second Amplification Stage Output  Stage

P. 6-7

Prof. Dr.-Ing. O. Kanoun

Chair for Measurement and Sensor Technology



6.2 Structure of Amplifiers

Integrated Standard Operation Amplifier xx741 (Principle)
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Small Signal Equivalent Circuit of an Op-Amps(1)

Difference Input Resistance

Offset Voltage

6.2 Structure of Amplifiers

uCM VCM

Common Mode Input ResistancesInput Bias Currents Output Resistances
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6.3 Real Behaviour of Amplifiers

Data Sheets
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6.3 Real Behaviour of Amplifiers

Data Sheet OPA 365 [Texas Instruments]

Rail-To-Rail-inputs 

� Input voltages are amplified until the level of the supply voltage distortion-free

2.2V, 50MHz, Low-Noise, Single-Supply Rail-to-Rail
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rCMrCM

u
r D
E

−∂

∂
=

1 ) (ideal   100TΩ ... 1GΩ ∞≈Er
Differential Input Resistance
(Differenzeingangswiderstand) 

6.3 Real Behaviour of Amplifiers

uCM VCM
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Output Resistance
(Ausgangswiderstand )
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Input Bias Current (Eingangsruheströme):   

(typ. 1 nA...500 nA)

IP  = Ib+IO mit Ib Bias Current

IN = Ib- IO IO Offset Current (typ. 20 fA...20 nA)
RCMP

+

-

Ri

ku‘e

=

UO

=

In

Ip

u‘e

ua

RCMN

ud

(Bipolar)A 1  (FET);fA 50 µ≈≈ bb II

6.3 Real Behaviour of Amplifiers

Common Mode Input Resistances RGlP RGlN

(Gleichtakteingangswiderstände)
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Differential Input Voltage (Differenz-Eingangsspannung): 
Ud (typ. ± 3V.... ± 30 V)

6.3 Real Behaviour of Amplifiers

Common Mode Input Voltage 

(Gleichtakteingangsspannung): 
UCM (typ. ±13V... ±16V )
Input voltage relative to ground

Output Voltage Swing (Ausgangsspannungshub): 
UAmax (typ. 27 V.... 32 V)
Maximal value of the output voltage without 
amplitude limitation
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Rail-to-Rail

� output voltage swing next the voltage supply VCC

+VCC

-VCC



6.3 Real Behaviour of Amplifiers

Input-Offset Voltage U0 (Offset-Spannung): 
(typ. 0,5 µV... 5 mV)
Voltage between difference inputs, so that
the output voltage 0V is reached

VUUU da 0)( 0 ==
RCMP

+
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Ri

ku‘e

=
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=

In

Ip

u‘e

ua

RCMN

ud

maximal output voltage
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Offset Voltage Drift (Offsetspannungsdrift): 
(typ. 0,01 µV/°C ... 15 µV/°C)

t
t

U
U

U V
V

∆
∂

∂
+∆

∂

∂
+∆

∂

∂
=∆ OOO

0
UUU

ϑ
ϑ

Input Current Drift (Eingangsstromdrift): 
(typ. 10 fA/°C ... 1 µA/°C)

6.3 Real Behaviour of Amplifiers

[OPA 365, TI]
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Different behaviour compared to µA 741 (see Page 13)
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6.3 Real Behaviour of Amplifiers

Transfer Function

Corresponds to the complex amplification
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6.3 Real Behaviour of Amplifiers
Feedback (Closed Loop)

• Smaller amplification, but just dependent on kg if  k‘ is sufficently high

� Selection of stabile circuit elements

� independence on changes of amplifier properties

• Band width (Frequenzbereich) becomes higher.

• Input resistance of voltage Amplifiers    and by Current Amplifiers 

• Output resistance    by voltage output and and    by current output

Advantages:
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6.3 Real Behaviour of Amplifiers
Feedback (Closed Loop)

Amplification

Amplification of the 
system with feed 

back

Amplification
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k
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Gain-Bandwidth-Product (Verstärkungs-Bandbreite-Produkt ): GBW 
(typ. 0.8 MHz..3 MHz)

In the sector in which the amplification is sinking with 20 dB/Dekade, the product of 
frequency and corresponding amplification is constant. 

00GBW gfV ⋅=

6.3 Real Behaviour of Amplifiers
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Slew Rate (Maximale Anstiegssteilheit): 
SWR (typ. 0.5 V/µs...50 V/µs)
SWR is the maximum possible change of 
the output voltage pro Time Unit

 ∂u

6.3 Real Behaviour of Amplifiers
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dB
V

V
CMR 12080lg20 L=





⋅=

Common Mode Rejection Ratio
(Gleichtaktunterdrückung ): CMRR 
(typ. 80dB...120dB)
Proportion of the open voltage gain to
the common mode gain

6.3 Real Behaviour of Amplifiers

dB
V

CMR
CM

12080lg20 L=





⋅=

Supply Voltage Rejection (Betriebsspannungsunterdrückung ): SVR 
(typ. -60dB..-100dB)
Proportion of the offset voltage change related to the changes of the voltage supply

Signal-Noise-Ratio: SNR 
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Families of Op-Amps

6.3 Real Behaviour of Amplifiers
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Ideal Amplifier

„is a useful Model for amplification circuits“

• any Ia, Ua are possible

• very high difference
amplification

• Ie � 0

• 0→eU

+

-

eU

aU

eI

6.3 Real Behaviour of Amplifiers

• Common mode amplification

• low output resistance

• no cut-off frequency

∞→V

0→aR

0→GlV

• High input resistance

∞→eR

+
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Frequency Behaviour

Open Loop Amplification
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6.4 Correction of the Real Behavior 

cut-off frequency
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Frequency Behaviour 
Correction

Frequency Behaviour

6.4 Correction of the Real Behavior 

• Smaller band width 
• Slew-Rate reduction
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Real amplifier
� Many amplification stages

Frequency Behaviour

6.4 Correction of the Real Behavior 
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|ϕ| > 180°
� Oscillation



Closed loop
� lower amplification
� more band width

Tg

gg

ffv

fvfv

==

=

100100

101011

Frequency Behaviour

6.4 Correction of the Real Behavior 

For every amplification level, a different compensation is necessary

A transimpedance amplifier is a special amplifier with very high band width and
a variable amplification
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ReN

ud

How can we treat offset voltages and input bias currents?

Zero Point Error

6.4 Correction of the Real Behavior 

ReP

- ku‘e=

In

ua

Application of the superposition principle

Example: u/u amplifier
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Superposition Principle

• The reaction on every source of errror is considererd alone:
...... additionally available voltage sources are short-circuited
...... additionally available current sources are broken

• The results are added to each other

UO

Ip

R

Zero Point Error

6.4 Correction of the Real Behavior 
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=
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=Uq
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R1

R2

IR

ug

ua
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6.4 Correction of the Real Behavior 
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Influence of Input Bias Current

Zero Point Error

6.4 Correction of the Real Behavior 
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Influence of Ip
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Zero Point Error

6.4 Correction of the Real Behavior 
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Noninverting Amplifier

Zero Point Error

6.4 Correction of the Real Behavior 

• Input bias currents flowing through the resistances at the input are acting like an off-set voltage

• If the resistances are equal to each other, no difference voltage is amplified

Rq

UE

qDn RR ≈

e
G

GT
a U

R

RR
U ⋅

+
=
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Inverting Amplifier
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� The Offset voltage is not amplified!
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Zero Point Error

6.4 Correction of the Real Behavior 
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Reduction of the Signal-to-
Noise- Ratio

Noise

6.4 Correction of the Real Behavior 
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... Is a precision amplifier 
with difference input and 
an output related to the ground
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Subtraction 

6.5 Instrumentation Amplifier (1)

But a high input impedance is not easy to realise!
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Impedance converter for amplification of difference voltages

For example for Bridges

6.5 Instrumentation Amplifier (2)

( )
12

1

2 UU
R

R
Ua −=

Amplification changes only by changing two resistances!
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Impedance Converter
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6.5 Instrumentation Amplifier (3)
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Multiplication

( ) ( )[ ]2
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uaX k
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6.6 Applications of Inverting Amplifier

e. g. Thermal Transducer
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6.6 Applications of Inverting Amplifier
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Realisation of arithmetic operations by closed loop
(Generalization)

ea iku
'−=

-

+

ei

gi

au

Gk

aGg uki =

'
k

eg ii −=

aGg uki =

e

G

ea i
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iku
1' −=−=

1

6.6 Applications of Inverting Amplifier

I � U
Gk

k
1' =

The amplification in the forward direction should be always the 
inverse operation to the element in the feedback

Forward  Amplification Feedback  Amplification

divide Multiply

square root square

integrate differenciate

logarithmize exponentiate P. 6-42



Charge Amplifier for Piezoelectric Sensors

6.6 Applications of Inverting Amplifier

F Force

Q Charge

k Transfer Faktor

++++
- - - -

FkQ =

ApF =

[N]

[As]

F

43
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Electric polarized Crystals, 
e.g. SiO2 (Quarz

F

F0

t

Uq

Uq0

t
τq = RqCq

~1 s
Output voltage should be integrated!



Charge Amplifier

dt

tdu
C

dt

tdQ
ti A )()(
)( ⋅−==

∫= dttitQ )()(Charge

6.6 Applications of Inverting Amplifier

Problem: Input bias currents will be also integrated!

)(
1

)( tQ
C

tuA ⋅−=⇒
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Regulator Circuits (1)

P-Regulator Simple Amplifier

I-Regulator Integration

PI-Regulator

R C

6.6 Applications of Inverting Amplifier
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Regulator Circuits (2)

PID- Regulator 
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6.6 Applications of Inverting Amplifier
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6.6 Applications of Inverting Amplifier
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Realisation of Defined Transfer Functions (1)

Zg

virtual ground

Short Circuit Kernel Impedance Short Circuit Kernel Impedance

Zk

I2

U1

Short Circuit Kernel Impedance

6.6 Applications of Inverting Amplifier
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Realisation of Defined Transfer Functions (2)

Short Circuit Kernel ImpedanceCircuit

s=p

6.6 Applications of Inverting Amplifier
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Realisation of Defined Transfer Functions (3)

Low pass filter
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6.6 Applications of Inverting Amplifier
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PID-Regulator
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Realisation of Defined Transfer Functions (3)

6.6 Applications of Inverting Amplifier
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Low pass

High pass

6.7 Active Filters

Pass Band

Attenuation Band

Filter: Circuit with a frequency dependent frequency response

53

Band pass

Notch

Passive Filter: R, L, C - Filter

Active Filter: Op-Amps, No Inductivities

sperrω



Ripple in the pass band 

Properties of real filters

6.7 Active Filters
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Ripple in the attenuation band

Cut-off frequency: decay of the modulus by )3(
2

1
dB−
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One negative Pol

Low pass- Filter 1st order

6.7 Active Filters

∑
=

+

=
n

i

i
i pc

A
pG

1

0

1

)(

Transfer Function of a Filter of order n
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Low pass filter High pass filter

6.7 Active Filters
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Active filter



Gauß (1): flat amplitude characteristic

Bessel (2): Optimal  Transfer of  square pulses for f < fg
group delay time indipendent on ω, low ripple.

Butterworth (3): Amplitude characteristic optimized for f < fg, constant.

Tschebyscheff (4): Filter with riple ε = 0,5 dB

Properties of different filter types
6.7 Active Filters
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gr

g

gr tT
π

ω

2
−=

t
tgr

∂

∂
−=

ω

Group delay time

Normed group delay time 



Amplitude characteristic of active Filter  of 4th Order

6.7 Active Filters
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1 RC with critical damping

2 Bessel

3 Butterworth

4 Tschebyscheff with 3 dB ripples

4. Ordnung

6.7 Active Filters

10. Ordnung

Butterworth 

� maximal constant 

frequency response

P. 6-59
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6.7 Active Filters

1 RC with critical damping

2 Bessel

3 Butterworth

4 Tschebyscheff with 3 dB ripples

Bessel 

� Group delay time 

independent on frequency 

in the pass Band

P. 6-60

Prof. Dr.-Ing. O. Kanoun
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Active Filter 2nd Order
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Multiple feedback
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6.7 Active Filters
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6.7 Active Filters

Active Filter 2nd Order
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General

6.7 Active Filters
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Low pass

Z1 = R1

Z2 = open

Z3 = 1/s C1

Z4 = R2

Z5 = 1/s C2

High pass

Z1 = 1/s C1

Z2 = open

Z3 = R1

Z4 = 1/s C2

Z5 = R2

Band pass

Z1 = R1

Z2 = open

Z3 = 1/s C1

Z4 = 1/s C2

Z5 = R3 // C3



General

6.7 Active Filters

Low pass High pass Band pass



Positive Feed Back Low Pass Amplifier 2nd Order

Transfer function

6.7 Active Filters

Amplification is hold on a 

specific value
2
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Transfer function
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α=0A

( )αω −= 11 RCa g

( )

Für R1=R2=R3=R und C1=C2=C

Special case:

)1(3 −αR

6.7 Active Filters

Positive Feed Back Low Pass Amplifier 2nd Order

66

α

( )22 RCa gω=

Critic 

Damping

Bessel-

Filter

Butterworth-

Filter

Tschebyscheff-Filter 

with 1 dB ripple

1,0 1,268 1,856 1,955

α defines the filter typ



Positive Feedback High Pass Filter

6.7 Active Filters
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Band Pass Filter with a Simple Positive Feed Back

6.7 Active Filters
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Resonance frequency

(Extreme low damping)

Performance of rejection
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Aktives Doppel-T-Sperrfilter, Notch-Filter

6.7 Active Filters

69

Resonance frequency

(unfinite barrier effect)

Performance of rejection
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