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3.1 Definitions
Signal parameters: value , course, frequency, phase

continuous analog signals

(Information-parameter: 
signal amplitude) (Information-parameter: 

phase relation of impulses)

discontinuous analog signals

Clock t

s(t)

t

s(t)

(Information-parameter: 
impulse-length or impulse-width)

t1 t2

t

s(t)

(Information-parameter: 
phase relation)

t

s(t)
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P 3-3

3.2 Classification of Signals

 Which signal parameter should we prefer,  if we assume that sensor signals 
can be affected with noise?

A measured quantity can be described by different signal parameters

 Which kind of signals do you already know?

6 – 8 – 12 – …

amplitude 
analog

frequency digital

Value

t

time analog

Value

t

Value

t

Value

t
Signal value 
~ Measured quantity

Time 
~ Measured quantity

Frequency 
~ Measured quantity

Digital value 
~ Measured quantity

t1 t2

f2f1



3.2 Classification of analog signals

t

a(t)

beat

temporarily

deterministic signals
(analytically describable)

stochastic signal
(disorderly variable)

periodic non periodic static not static

Sine
Triangle

Quasi periodic,
transient

P. 3-4
Prof. Dr.-Ing. O. Kanoun
Chair for Measurement and Sensor Technology

repetitive signals



5

Features:
amplitude, frequency, 
period, symmetry

linear mean-value

rectifying-value

effective value

Signal-power

3.2.1 Deterministic signals
Periodic signals

)()( 0Ttxtx  0T : period

Typical forms:
Sine, cosine, rectangle, 
pulsed, triangle, saw tooth
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





1
0 )cos()(

k
kk tkSSts 

Periodic non-sine-shaped signals
3.2.1 Deterministic signals

0S : Constant component (Gleichanteil)
1S : Amplitude of the fundamental wave 
kS : Amplitude of harmonics
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Quasi-periodic signals
3.2.1 Deterministic signals







1
0 )cos()(

k
kkk tSSts 

ground-vibration multiplied by a non whole number
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Example: Beat
3.2.1 Deterministic Signals

P. 3-8
Prof. Dr.-Ing. O. Kanoun
Chair for Measurement and Sensor Technology



Transient signals
3.2.1 Deterministic signals

temporary non recurring signals

Transient signals have a continuous spectrum and are described by 
a Fourier-integral

dtetss tj




  )()(

U(t)=0 für t>t2 und t<t1

P. 3-9
Prof. Dr.-Ing. O. Kanoun
Chair for Measurement and Sensor Technology



10

Typical forms:

• Step, ramp, pulse, monocycle (a 
Sine-cycle) 

• Burst, Halversine (half a Sinus), 

• Chirp / Sweep (frequency-
modulated, sine, frequency-
change mostly linear or 
logarithmic) 

• Spike (outlier in positive or 
negative direction) 

• Glitch (two consecutive outliers 
with different omen) 

Non-periodic signals
3.2.1 Deterministic signals



Non-periodic signals
3.2.1 Deterministic signals
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3.2.2 Stochastic signals

Example: random deviation is a stochastic signal

sensor-signal

N

systematic deviation

true value of the measured value

Stochastic signals are not predictable, not computable

Random deviation}

outlier
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3.2.2 Stochastic signals

Stationary wideband noise with 
negligible linear mean value

Non stationary wideband noise with
time dependent quadratic
mean value

Stationary wideband noise
with time dependent linear
mean value

The  course of a stochastic signal is dependent on statistic properties
Stationarity is given by the temporal behaviour of statistic signal-parameter

t

t

t
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x

p(x)

probability for the reaching of a specific signal-amplitude x

3.2.2 Stochastic signals

N
xnxhxp

NN

)()()( limlim




)(xn : number of amplitudes x
N : number of all amplitudes

)(xh : incidence of the amplitudes x

Amplitude-density-distribution or distribution-density-function

t
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3.2.2 Stochastic signals
Distributions function

probability, that an amplitude x happens, which is less or even of a predetermined 
upper limit x0





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x
dxxpxP
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integration

differentiation
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2
2 )()()( dtetsSW tj





 

Power density-spectrum of a low-
pass-percolating hissing-signals 

3.2.2 Stochastic signals
Further properties

power density-spectrum

Stochastic signals have a continuous spectrum with statistical 
fluctuating phase

phase-less
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3.3 Modulation/Demodulation

Problem: errors on little measurement signals

AC-amplifier

carrier-frequency generator
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3.3 Modulation/Demodulation

*

Amplitude modulation

)cos(ˆ)( 0 tuUtu 

Measured-signal

)cos()( ttu TT 

 
)cos()cos(ˆ)cos(

)cos()cos(ˆ)(

0

0
ttutU

ttuUtu

TT

TM







Carrier-frequency generator

Amplitude modulated signal

        ttutUtu TTTM   coscos
2
ˆ

cos)( 0

)cos()cos(coscos2  

carrier upper 
side band

lower 
side band

UM

 
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3.3 Modulation/Demodulation

        ttutUtu TTTM   coscos
2
ˆ

cos)( 0

Demodulation by two-way rectification and low-pass filtering
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but: phase-selective rectification!

ug(t)

Demodulation  cover signal is to be reconstructed
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Demodulation by further multiplication

)cos()()( ttutu TM 
modulated signal

)cos()( ttu TT 
carrier-frequency generator
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Low-pass filtering of the double 
carrier frequency
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2
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3.3 Modulation/Demodulation
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 Which measures do you know for avoiding 
disturbances in measurement and sensor 
systems

 Which kind of disturbances can happen on a 
sensor signal, sensor system, measurement 
system?

3.4 Influence of disturbances



3.4.1 network faults
3.4 Influence of disturbances

(f=)50 Hz-faults become interlink inductively

field of a even line
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û

mVu 5ˆ 
A
I

cm
rk 21,2

fault

I=10 A  rk=22 cm

21mAFl 
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3.4.2 Switch disturbances
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Avoid switching

Measuring systems install as far as possible from relay and contactors

Separate analog and digital ground
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3.4.3 High-frequency disturbances

0
00 µ

BZHZE 

 377
0

0
0 

µZ

Wave impedance of the room

)cos(ˆ)cos(ˆ
0

0 tutE
Z

Aµ
t

u fl 










)sin(ˆ tEE  HF-disturbance

E
Z

AµAB fl
fl

0

0 

E
Z

Afµu fl ˆ2ˆ
0

0 





21mAFl 

mmVE /1ˆ 

mVu 2ˆ )(100 rangeUKWMHzf 

P. 3-24
Prof. Dr.-Ing. O. Kanoun
Chair for Measurement and Sensor Technology



3.5 Precautions
3.5.1 Protection ground

operation-current

Neutral lead without current as 
neutral reference point

- Additional signal ground  is not necessary

- makes more errors

- loss are more than added value
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3.5 Precautions
3.5.1 Protection ground

Prof. Dr.-Ing. O. Kanoun
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Single-point series grounding

Single-point parallel grounding

Multi-point parallel grounding

  1321 ZIIIU A 

For low frequency

For high frequency (>10 MHz)

    2321321 ZIIZIIIUB 

    332321321 ZIZIIZIIIUC 



3.5.2 Shielding against magnetic fields

AB 

  0
Practical rule: 30 twist/metre

condition: homogeneously distributed magnetic field

twisted signal line 
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3.5.3 Shielding against electric fields

compensation-schematic of the capacitive dispersal at doublel-line

fault-voltage
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3.5.3 Shielding against electric fields (2)

fault-current

fault-voltage

shield must be grounded

problem: to state the reference-potential 

To avoid hum-grinding

If a shield is not grounded

Current flows within the shield

Voltage differences
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3.5.3 Shielding against electric fields (3)

shield ground

fault-current

A shield, who is not grounded, 
is useless
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What did we learn?

Modulation and Demodulation is important for weak signals. It is robust and not 
needing a lot of effort.
Prerequisites:
- Carrier frequency signal with a higher frequency (e. g. 100 times more)
- The new signal hast signal part at: t, : t - and t +
- The new signal is useful if we have a slow equipment which should measure 

high frequency
- Demodulation can be done by phase sensitive rectification and Low pass 

filtering,  but also by multiplication and low pass filtering.

Disturbing effects are in general Magnetic fields, electric fields, switching, 
cables, noise, …
Against magnetic fields: 
- To hold a certain distance from sources
- Reduce the surface of layout, measurement set-up, …
- To use twisted cables
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What did we learn?

Against disturbances by electric fields
- Using grounded shields
- Without grounding, a shield is useless

Against cable effects
- To use a direct connection to ground
- For high frequencies: To limit the length of cables/connectors

Against switching effects:
- Separate analog and digital ground in a system.

Against reflections:
- Maintain the cable impedances matching the inner resistance of the 
corresponding port
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