New Fe(II) Complexes with anion dependent Spin Crossover

Silvio Heider ${ }^{1}$, Holm Petzold ${ }^{1 *}$, Stephan Schlamp ${ }^{2}$ and Birgit Weber ${ }^{2}$

${ }^{1}$ Chemnitz University of Technology, Inorganic Chemistry, Straße der Nationen 62, 09111 Chemnitz, Germany phone: +49(0)371 531 39477, email: silvio.heider@chemie.tu-chemnitz.de ${ }^{2}$ University Bayreuth, Inorganic Chemistry II, Universitätsstraße 30, 95440 Bayreuth, Germany

Introduction

 new group of $\mathrm{Fe}^{2+} \mathrm{SCO}$ complexes and we could show the influence of the substitution pattern on the SCO transition temperature in solution. ${ }^{[2]}$
 Therefore the terminal donors of the ligand set were modified and weaker ligands were introduced. The obtained Fe^{2+} SCO complexes and their properties are presented below.

Synthesis

In the first step aldehydes $\mathbf{1}$ and $\mathbf{2}$ had to be synthesized. For the pyrazolyl derivative 1 a new simplified synthetic protocol was developed with superior yield compared to the published procedures. ${ }^{[3]}$ The benzothiazolyl derivative 2 was synthesized according to Bünzli et al. ${ }^{[4]}$

Then aldehydes 1 and 2 were used for a reductive amination with biphenylene-2,2'-diamine ${ }^{[2]}$ yielding hexadentate amines 3 and 4.

Reacting amines 3 and 4 with $\mathrm{FeX}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in acetonitrile and following precipitation with diethyl ether yielded the novel $\mathrm{Fe}(\mathrm{II}) \mathrm{SCO}$ compounds $5[\mathrm{X}]_{2}$ and $6[\mathrm{X}]_{2}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{ClO}_{4}\right)$, respectively.

Summary

We have synthesized the new hexadentate secondary amines 3 and 4 and used those for complexation of Fe^{2+} ions leading to the different complex salts $5[\mathrm{X}]_{2}$ and $6[\mathrm{X}]_{2}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{ClO}_{4}\right)$. These complexes show SCO behaviour below room temperature, the salts of $[5]^{2+}$ showing different transition temperatures $T_{1 / 2}$ depending on the counter ion and if measured in the solid state or in solution. Similar to $[5]^{2+}$ also $[6]^{2+}$ reveals its high-spin form at room temperature in solution, whereas [6] ${ }^{2+}$ is found to be in the low-spin configuration in the solid state at this temperature. Thus all these complexes show in solution higher transition temperatures $T_{1 / 2}$ than in their crystalline states, where intermolecular interactions are possible. For $5[\mathrm{X}]_{2}$ this was already investigated by SQUID measurements and Evans' method, for $6[\mathrm{X}]_{2}$ these investigations are currently accomplished.

References

[1] E. König, G. Ritter, S.K. Kulshreshtha, Chem. Rev. 1985, 85, 219; P. Gütlich, A. Hauser, Coord. Chem. Rev. 1990, 97, 1; J.A. Real, A.B. Gaspar, M.C. Munoz, Dalton Trans. 2005, 2062; B. Weber, Coord. Chem. Rev. 2009, 253, 2432.
[2] H. Petzold, S. Heider, Eur. J. Inorg. Chem. 2011, 1249-1254.
[3] B. Vacher, B. Bounnaud, P. Funes, N. Jubault, W. Koek, M.-B. Assié, C. Cosi, J. Med. Chem. 1998, 41, 5070-5083; F. Zeng, Z. Yu, Organometallics 2009, 28, 1855-1862. [4] N. M. Shavaleev, R. Scopelliti, F. Gumy, J.-C. G. Bünzli, Inorg. Chem. 2009, 48, 61786191.

Magnetic behaviour

Temperature dependent behaviour of the molar high-spin fraction of $[5][\mathrm{X}]_{2}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{ClO}_{4}\right)$ representing the SCO .

Paramagnetic ${ }^{1} \mathrm{H}$ NMR spectra of $[5]\left[\mathrm{BF}_{4}\right]_{2}$ and $[6]\left[\mathrm{BF}_{4}\right]_{2}$ at 298 K in $\mathrm{CD}_{3} \mathrm{CN}$ revealing the high-spin state.

The ${ }^{1} \mathrm{H}$ NMR spectra of complex salts $[5][\mathrm{X}]_{2}$ and $[6][\mathrm{X}]_{2}\left(\mathrm{X}=\mathrm{BF}_{4}, \mathrm{ClO}_{4}\right)$ clearly show that $[5]^{2+}$ and $[6]^{2+}$ adopt the paramagnetic high-spin state at room temperature. For both salts of $[5][\mathrm{X}]_{2} \mathrm{X}$-Ray structure analyses could be obtained and solved at 115 K and 298 K , showing a low-spin complex at low temperatures and a high-spin complex at high temperatures in both cases.
The SQUID measurements for $[5][X]_{2}$ reveal a dependency of the spin transition temperature on the counter ion. In both cases an abrupt spin change can be observed, in the case of $[5]\left[\mathrm{BF}_{4}\right]_{2}$ accompanied by a narrow hysteresis ($T \downarrow=$ $133 \mathrm{~K}, T \uparrow=140 \mathrm{~K}$), while the transition in $[5]\left[\mathrm{ClO}_{4}\right]_{2}$ occurs at ca. 157 K without hysteresis. Therefore the transition temperature $T_{1 / 2}$ can be shifted by approximately 20 K through changing the counter ion. This effect is attributed to different hydrogen bonding interactions in the crystal lattices.
In solution, where these intermolecular interactions are negligible, the spin transition is observed at ca. 196K. This once more exemplifies the important role of crystal packing effects and the lattice structure for the Spin Crossover process.
As stated above, salts $[6][\mathrm{X}]_{2}$ also show the high-spin configuration in solution at 298 K , however the crystal structure of $[6]\left[\mathrm{BF}_{4}\right]_{2}$ reveals the low-spin state at 298 K as well as at 115 K . Thus we are on the way to further characterize the SCO behaviour of complex compounds $[6][\mathrm{X}]_{2}$.

Acknowledgement

We are grateful to the Fonds der Chemischen Industrie for a Liebig Stipendium (H. P.) as well as a Doktorandenstipendium (S. H.).

