

Electrochemical behavior of modified phenyl substituents at a biferrocene backbone

Qing YUAN, Dominique MIESEL, Alexander HILDEBRANDT, Matthäus SPECK and Heinrich LANG*

Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany qing.yuan@s2011.tu-chemnitz.de

Introduction and Motivation

Biferrocene is commonly used as a model compound for investigating mixed-valent species, due to the chemical stability of its oxidized form and the electrochemical reversibility between its oxidized and neutral species.^[1,2] Although it is known that electron-donating or —withdrawing groups are used to modify the effectivity of intervalence charge transfer (IVCT),^[3,4] basic studies for biferrocene are pending.

Synthesis R = 4-NMe₂ 1 R + 2 eq (HO)₂B R i) Fe Br 4-NMe₂ 1 4-CH₃ 2 4-H 3 3-F 4 4-CN 5 3,5-CF₃ 6^[5]

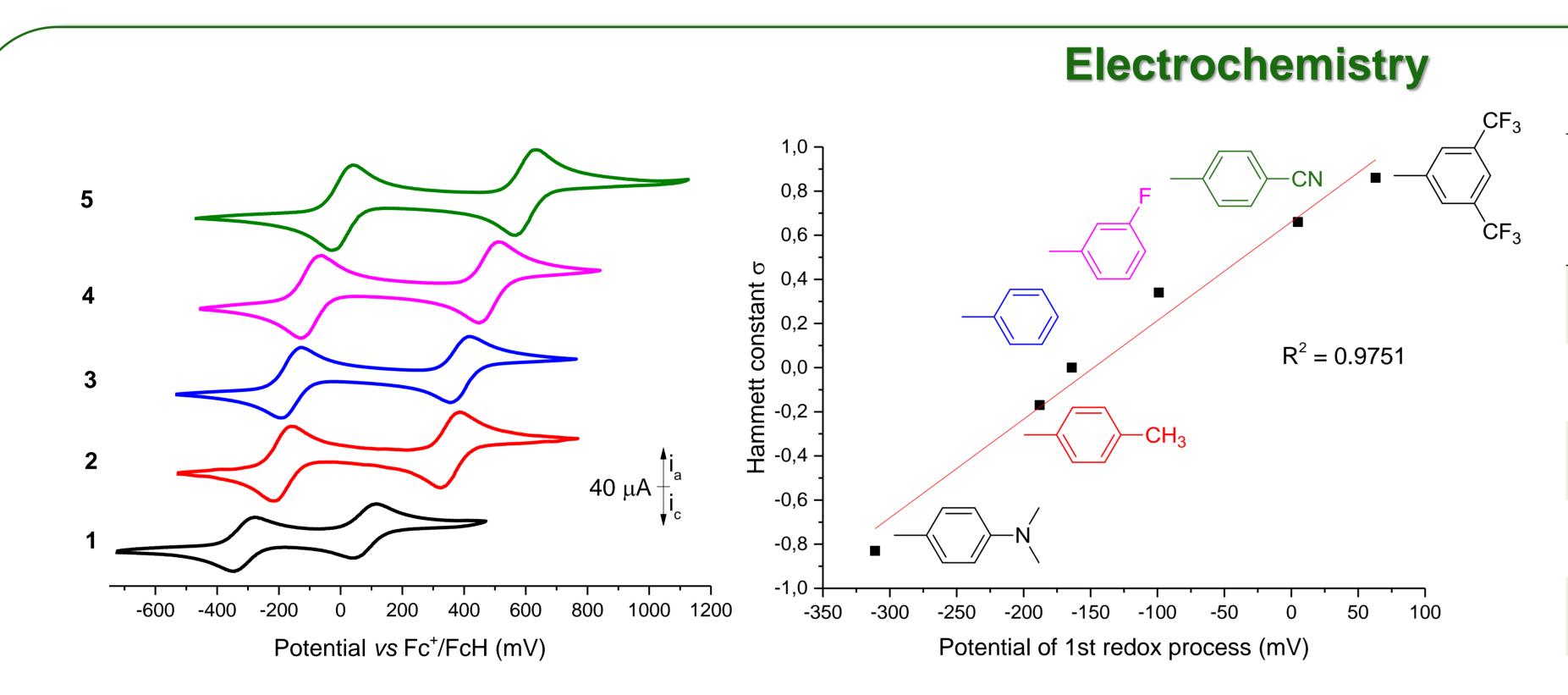

Figure 1. Synthesis of compounds **1-6** via Suzuki Miyaura *C,C* cross-coupling: i) 4 mol-% [Pd[dppf)Cl₂], K₃PO₄·H₂O, toluene or tetrahydrofuran, 80 °C.

Table 1. CV Data of compounds 1-6

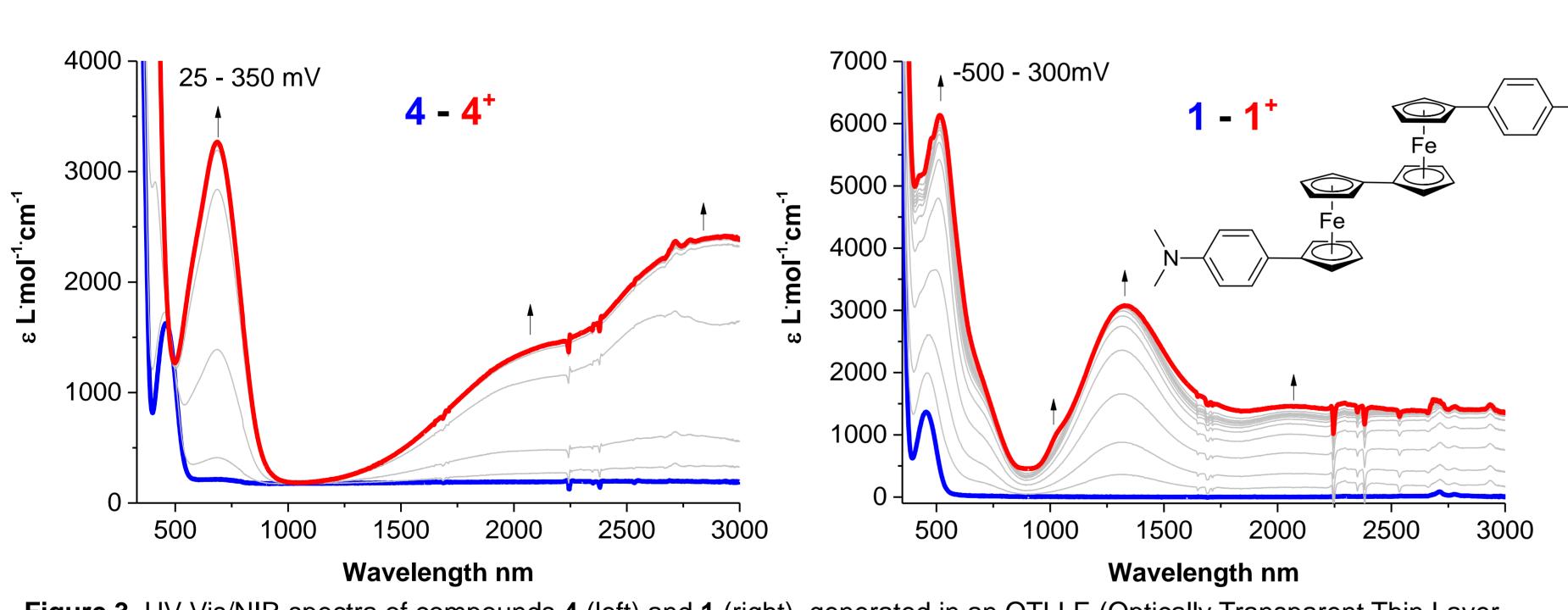
6^[5]

63

683

Figure 2. Cyclic voltammograms (CV) (left), correlation of the 1st redox potentials and the Hammett constants σ (right) of compounds **1-6** in dichloromethane solutions (1.0 mmol·L⁻¹) at 25 °C; scan rate 100 mV·s⁻¹; supporting electrolyte [NⁿBu₄][B(C₆F₅)₄] (0.1 mol·L⁻¹).

$\Delta \Delta E^{\circ}$ $[N^nBu_4][B(C_6F_5)_4]$ $[N^nBu_4]PF_6$ $E_1^{\circ'}$ (mV) $E_2^{\circ'}$ (mV) $\Delta E^{\circ'}$ (mV) $\Delta \mathbf{E}^{\circ\prime}$ (mV) (mV) -311 388 281 107 -188 355 362 543 181 386 3 -164 550 360 190 -99 440 539 375 164 5 560 373 182 5 555


Conditions of measurements: $[N^nBu_4][B(C_6F_5)_4]$ or $[N^nBu_4]PF_6$ as supporting electrolytes (0.1 mol·L⁻¹) in dichloromethane solutions (1.0 mmol·L⁻¹) at 25 °C; scan rate 100 mV·s⁻¹

620

380

240

Spectroelectrochemistry

Figure 3. UV-Vis/NIR spectra of compounds **4** (left) and **1** (right), generated in an OTLLE (Optically Transparent Thin Layer Electrochemical) cell in dichloromethane solutions (2.0 mmol·L⁻¹) at 25 °C; supporting electrolyte $[N^nBu_4][B(C_6F_5)_4]$ (0.1 mol·L⁻¹).

Spectroelectrochemical studies show that the generated mono-oxidized species **1**+-**6**+ possess broad IVCT absorptions in the NIR (near Infrared) region. The bands are shifted to lower energy, while increasing the electron-donating character of the substituents from 4430 cm⁻¹ to 5100 cm⁻¹. Compounds **2**+-**6**+ exhibit a similar absorption behavior (Figure 3. left). In contrast to them, mono-cationic **1**+ shows an additional strong absorption band at 1400 nm, due to the redox-active amino groups.

Table 2. IVCT band properties of oxidized species **1+-6+**.

	ν _{max} (cm ⁻¹) (ε (L·mol ⁻¹ ·cm ⁻¹))	Δν _{1/2} (cm ⁻¹)	Δν _{1/2theo} . ^a (cm ⁻¹)
1+	5132 (896)	3075	3443
2+	5040 (1228)	3300	2761
3+	4545 (1195)	2819	3240
4+	4461 (1415)	3121	2802
5 +	4454 (955)	2901	2793
6+ [5]	4429 (1528)	2903	3198

Conditions of measurements: generated in an OTLLE (Optically Transparent Thin Layer Electrochemical) cell in dichloromethane solutions (2.0 mmol·L⁻¹) at 25 °C; supporting electrolyte $[N^nBu_4][B(C_6F_5)_4]$ (0.1 mol·L⁻¹).

a): Values calculated as $\Delta v_{1/2\text{theo}} = (2320 \cdot v_{\text{max}})^{1/2}$ according to the Hush relationship for week coupling systems.^[6]

Conclusion

- CV investigations showed an increase of the 1st redox potential due to the enhanced electron-withdrawing character of the functionality.
- UV-Vis/NIR spectroelectrochemistry studies demonstrated that an electron-donating group can decrease the energie for IVCT.
- An additional charge transfer between a redox-active substituent and iron could be observed.

References and Acknowledgement

- [1] D. O. Cowan, F. Kaufman, *J. Am. Chem. Soc.* **1970**, *9*2, 219–220.
- [2] C. Levanda, K. Bechgaard, D. Cowan, *J. Org. Chem.* **1976**, *41*, 2700–2704.
- [3] A. Hildebrandt, H. Lang, *Dalton Trans.* **2011**, *40*, 11831–11837.
- [4] M. Lohan, H. Lang, Organometallics 2010, 29, 4804–4817.
- [5] J. M. Speck, *Dissertation: Ferrocenyl-substituted Thiophenes Electrochemical Behavior and Charge Transfer,* **2016**, TU Chemnitz
- [6] N. S. Hush, *Prog. Inorg. Chem.* **1967**, 391–444.