Introduction

Recently, we investigated a number of ferrocenyl-substituted 5-membered heterocycles regarding the electronic interaction between the Fe/C-Fc units via the heterocyclic core in the appropriate mixed-valent species.\(^1\) Thereby, phospholes offer interesting possibilities to influence the metal-metal interaction of terminal Fc units, due to the pyramidal geometry of the phosphorus and the resulting reactive lone-pair of electrons and dentic system.\(^2\) A possibility to increase the delocalization within the phosphole ring is the use of sterically demanding substituents bonded to the phosphorous atom as shown by Quin and Keglevich.\(^3\)

Variable-Temperature NMR

An increase of the steric demand of the substituents results in decreased activation enthalpies \(\Delta H^\ddagger\), and entropies \(\Delta S^\ddagger\). Compound 5 with the bulky tert-butyl groups exhibits the lowest inversion barrier within this series as demonstrated by a coalescence temperature below \(-100^\circ\text{C}\).

X-ray Discussion

The geometric criteria are an indication for an increase of planarity of the pyramidal phosphorous environment in 5 and hence an increase of delocalization in the heterocyclic ring.

Conclusion

In order to planarize the phosphorous environment, 2,5-diferrocenyl-phospholes 1–5 with increasing sterically demanding substituents have been synthesized. An increase of the steric demand results in a more planar geometry around the phosphorous atom as demonstrated by X-ray diffraction and VT-NMR studies. Electrochemical and spectroelectrochemical investigations showed that the flattening of the phosphorous environment increased the interactions between the ferrocenyl units in 2.5 position, which might be attributed to a better delocalization within the phosphole motif.

References and Acknowledgement

We are grateful to the Fonds der Chemischen Industrie (FCI) for generous financial support. Marcus Korb thanks the Fonds der Chemischen Industrie for a fellowship.