
IMPATIENT PPSZ — A FASTER ALGORITHM FOR CSP

Shibo Li
Shanghai Jiao Tong University

Shanghai
ShiboLi@sjtu.edu.cn

Dominik Scheder
Shanghai Jiao Tong University

Shanghai
dominik@cs.sjtu.edu.cn

ABSTRACT

PPSZ is the fastest known algorithm for (d, k)-CSP problems, for most values of d and k. It goes
through the variables in random order and sets each variable randomly to one of the d colors, excluding
those colors that can be ruled out by looking at few constraints at a time.
We propose and analyze a modification of PPSZ: whenever all but 2 colors can be ruled out for some
variable, immediately set that variable randomly to one of the remaining colors. We show that our
new “impatient PPSZ” outperforms PPSZ exponentially for all k and all d ≥ 3 on formulas with a
unique satisfying assignment.

Keywords Randomized algorithms · Constraint Satisfaction Problems · exponential algorithms

1 Introduction

A Constraint Satisfaction Problem, or CSP for short, consists of a finite a set of variables x1, . . . , xn, a domain
[d] := {1, . . . , d} of potential values, and a set of constraints. A constraint is of the form (xi1 , . . . , xik) ∈ S, where
S ⊆ [d]k. In analogy to CNF-SAT, we assume in this paper that |S| = dk − 1, i.e., all but one possible assignments
satisfy the constraint. We speak of a (d, k)-CSP if all constraints are over k variables. In a slight abuse of notation, we
also use (d, k)-CSP to denote the associated decision problem: is there a way to assign values in [d] to the variables
that satisfies all constraints? This is NP-complete except when d = 1 or k = 1 or k = d = 2, so researchers focus
on finding moderately exponential algorithms: algorithms of running time cn for c < d. Examples include Beigel
and Eppstein’s randomized algorithm for (d, 2)-CSP with running time O((0.4518d)n) [1];Schöning’ s random walk
algorithm of running time O∗((d(k−1)

k)n) [2]; Paturi, Pudlák, and Zane encoding-based randomizedalgorithm called
PPZ [3] for k-SAT (i.e., d = 2), which runs in time O(2(1−1/k)n). Paturi, Pudlák, Saks and Zane [4] improved PPZ by
introducing a pre-processing step using small-width resolution. Both PPZ and PPSZ can be easily modified to work
for (d, k)-CSP as well, as done by Scheder [5] for PPZ and Hertli et al. [6] for PPSZ. In both cases, several subtleties
and technical difficulties arise, which are not present for k-SAT. Furthermore, [6] is the currently fastest algorithm for
(d, k)-CSP when k ≥ 4.

1.1 The PPSZ Algorithm

Let us give an informal description of PPSZ, first for SAT, and then for CSP. In either case, it chooses a random ordering
π on the variables x1, . . . , xn. Then it goes through the variables one by one, in the order of π; when processing xi, it
fixed xi randomly to true or false, unless the correct value can be inferred by a set of up to D clauses (in which case
we say xi has been inferred by D-implication). For CSP, the only difference is that when processing xi, it checks (with
brute force) for which colors c ∈ [d] the statement [xi 6= c] can be inferred by a set of up to D constraints; if so, we say
[xi 6= c] is D-implied, and color c is obviously ruled out. It then fixes xi randomly to one of the colors not yet ruled out
(or declares failure if all colors have been ruled out).

Unique-SAT versus general-SAT. A peculiar feature of PPSZ, as analyzed in the seminal paper [4], is that it performs
better if the input instance F has a unique satisfying assignment. Certain properties, such as the existence of critical
clause trees, break down once F has multiple solutions. In [4], the authors proposed a clever but technical workaround,

Impatient PPSZ — a Faster algorithm for CSP

which incurred an exponential overhead for k = 3, 4. In his 2011 breakthrough paper, Hertli [7] showed that this
peculiarity is in fact an artifact of the analysis, and gave a very abstract and high-level proof that PPSZ on formulas
with many solutions is indeed no worse. His proof was later simplified by Scheder and Steinberger [8]. The proofs in
[7] and [8] work only provided that the internal machinery of the PPSZ algorithm (e.g., checking D-implication) is “not
too good”. Curiously, in [6] it turned out that, for k = 2, 3 and certain values of d, the PPSZ machinery is indeed “too
good”, and consequently their time complexity for the general case (multiple solutions) is worse than for the unique
case (exactly one solution). For formulas with a unique solution, their analysis gives the best known running time for
all d, k except for k = 2 and d ∈ {3, 4}.

Improvements to PPSZ for k-SAT. Two recent results improve PPSZ. Hansen, Kaplan, Zamir, and Zwick [9] define a
biased version of PPSZ and show that it achieves an improvement for all k ≥ 3. Scheder [10] shows that PPSZ itself
performs exponentially better than in the analysis of [4]. We would not be surprised if both improvements carry over to
(d, k)-CSP, although to our knowledge, this has not been analyzed so far. The improvement presented in this work is of
different quality: it is not a generalization of some idea for k-SAT; in fact, the main idea only makes sense for d ≥ 3
and thus is particular to (d, k)-CSP problems.

The time complexity of PPSZ for Unique (d, k)-CSP. A main result of [6] is that PPSZ solves Unique (d, k)-CSP in
time O

(
2Sd,k n+o(n)

)
, where Sd,k is defined by the following random experiment: let T∞ be the infinite rooted tree in

which each node on even depth (which includes the root at depth 0) has k− 1 children and every node on odd depth has
d − 1 children. Let T1, . . . , Td−1 be disjoint copies of T∞, sample p ∈ [0, 1] uniformly, and delete every odd-level
node with probability p, independently. Let Jc be the indicator variable that is 1 if the root of Tc is contained in an
infinite component after this deletion step. Then

Sd,k := E[log2(J1 + · · ·+ Jd−1 + 1)] . (1)

1.2 Our Contribution

In this work, we focus on the case that F has a unique satisfying assignment α∗, without loss of generality α∗ :=
(d, d, . . . , d). The idea behind our improvement is as follows: suppose x, y, z are variables appearing in the order y, x, z
in π. Focus on the point in time when PPSZ processes x, and assume every assignment prior to x has been correct. For
example, the variable y has already been replaced by the constant d. In other words, when PPSZ tries to infer statements
like [x 6= c] from small sets of constraints, it can use the information [y = d]. It cannot use [z = d], however. Or can it?
Maybe PPSZ can already infer [z 6= 1], . . . , [z 6= d− 1]; in this case, it can also infer [z = d], and it would be safe to
fix z to d. Let us propose the following rule:

Rule of One. Whenever [z = c] can be inferred by D-implication, fix z to c.

This rule is “uncontroversial” in the sense that it will never make a mistake. However, the reader who is familiar with
the literature about PPSZ, in particular with its original version using small-width resolution, will notice that resolution
implicitly implements the above rule. We propose the following more aggressive rule:

Rule of Two. Whenever [z = c1 ∨ z = c2] can be inferred by D-implication, i.e., if all but 2
colors can be ruled out, pick c ∈ {c1, c2} arbitrarily and fix z to c.

Obviously, this rule can introduce mistakes. On the plus side, it might be very unlikely that the range of plausible (i.e.,
not ruled out) colors for z further decreases from 2 to 1. Better to bite the bullet now, decide on a value for z, hope that it
is correct, and use that information for subsequent D-implications. For example, it might be that using the information
[z = d] lets us rule out additional colors for x, the variable currently being processed by PPSZ. Unfortunately, this rule
does more bad than good: consider the variables coming towards the very end of π. For each of them, it is very like that
all but one color can be ruled out; thus, PPSZ would set them correctly with high probability; using our Rule of Two,
this probability would go down from (almost) 1 to (roughly) 1/2 since we decide on a value once only two values are
left. We propose a less impatient rule:

Conservative Rule of Two. Apply the Rule of Two only to variables z that are among the first
θn in π; don’t apply it to the last (1− θ)n variables.

We will show that for those early variables, it is extremely unlikely that the set of plausible colors gets narrowed down
to only one color; and that it is somewhat more likely that the Rule of Two helps us rule out one additional colors for a
variable. In particular, we prove the following theorem:

2

Impatient PPSZ — a Faster algorithm for CSP

Theorem 1 For every d ≥ 3 and k ≥ 2, there is some ε > 0 and a randomized algorithm solving (d, k)-CSP in time
2n(Sd,k−ε)poly(n).

1.3 Notation

Let V = {x1, . . . , xn} be a set of variables and [d] = {1, . . . , d} be the set of possible colors. A literal is an expression
(x 6= c), where x ∈ V, c ∈ [d]. A clause is a disjunction of literals: (v1 6= c1∨v2 6= c2∨ ...∨vk 6= ck). A (d, k)-CSP is
a conjunction of clauses of size k each. An assignment α is a function V → [d]. It satisfies a literal (x 6= c) if α(v) 6= c;
it satisfies a clause if it satisfies at least one literal therein; it satisfies a (d, k)-CSP F if it satisfies all clauses in F . If
V ′ ⊆ V and α : V ′ → [d], we call α a partial assignment; vbl(α) denotes its domain, i.e., V ′. F [α] is the simplified
formula after setting all variables in V ′ according to α. We will write partial assignments like this: [x 7→ 2, y 7→ 3, ...]
and therefore F [x 7→2] will denote the formula after replacing x with 2. For a clause C and a (d, k)-CSP F , vbl(C) and
vbl(F) denote the sets of variables in C and F , respectively. For a rooted tree T and a node v therein, the subtree of T
rooted at v is the tree containing v (as root) and all its descendants. We use the notation [statement], which evaluate
to 1 if statement holds, and to 0 otherwise.

1.4 PPSZ and impatient PPSZ

Definition 2 (D-implication [6]) Let F be a (d, k)-CSP formula and u be a literal of F . We say F implies u and
write F � u if all assignment satisfying F also satisfy u. We say F D-implies u and write F �D u if there is some
G ⊆ F with |G| ≤ D and G � u.

For the rest of the paper, D = D(n) will be some slowly growing function in n, so F �D u can be checked in time
O(|F |Dpoly(n)), which is subexponential in n.

Definition 3 (Plausible values) Let F be a (d, k)-CSP formula and x a variable. We say color c ∈ [d] is D-plausible
for x in F if F does not D-imply (x 6= c). Let Plaus(x, F,D) denote the set of all colors that are D-plausible for x.
We will drop the parameter D if it is understood from the context.

Algorithm 1 PPSZ algorithm
1: procedure PPSZ(F, π)
2: α← the empty assignment
3: for x ∈ vbl(F) in the order of π do
4: choose c ∈ Plaus(x, F [α]) uniformly at random
5: α := α ∪ [x 7→ c]
6: end for
7: return α if it satisfies F , else failure
8: end procedure

Note that our code specifies π as an explicit input parameter; it is the responsibility of the “user” to make sure
PPSZ(F, π) is called with a random π; furthermore, we implicitly assume that PPSZ declares failure if the set
Plaus(x, F [α]) in Line 4 is empty. From now on, we view π not as a permutation of the variables but as a function
V → [0, 1]; note that if π : V → [0, 1] is sampled uniformly at random, it will be an injection with probability 1;
sorting V in ascending order by their π-value will give a permutation of V . Additionally, we fix two parameters θ (to
be determined later) and c := 2− log2(3), and mark every variable x as eligible for impatient assignment as follows:

Definition 4 (Eligible for impatient assignemnt) For each variable x, define Ix ∈ {0, 1} as follows. (1) If π(x) ≥ θ,
set Ix := 0; (2) if π(x) < θ, set Ix := 1 with probability c and to 0 with probability 1− c, independently of all other
choices. If Ix = 1 we say x is eligible for impatient assignment.

2 Analysis of ImpatientPPSZ

Notation for sets of variables coming before variable x: Vx and V imp
x . To analyze PPSZ and our variant Impa-

tientPPSZ, we need to talk about the point in time where the algorithm processes a variable x, and in particular, we need
to talk about the set of variables that have already been assigned a value at this point. For PPSZ, this is easy: we define
Vx := {y ∈ vbl(F) | π(y) < π(x)}. For ImpatientPPSZ, it’s a bit more complicated: imagine we run ImpatientPPSZ

3

Impatient PPSZ — a Faster algorithm for CSP

Algorithm 2 Impatient PPSZ
1: procedure IMPATIENTPPSZ(F, π)
2: α := the empty assignment
3: for x ∈ vbl(F) in ascending order of π do
4: while ∃y ∈ vbl(F) \ vbl(α) with Iy = 1 and |Plaus(y, F [α])| ≤ 2 do
5: choose c ∈ Plaus(y, F [α]) uniformly at random
6: α := α ∪ [y 7→ c]
7: end while
8: if x 6∈ vbl(α) then
9: choose c ∈ Plaus(x, F [α]) uniformly at random

10: α := α ∪ [x 7→ c]
11: end if
12: end for
13: return α if it satisfies F , else failure
14: end procedure

but feed it the “correct” values in every assignment; that is, whenever a color c is chosen, make sure that c = d (we
manipulate this random source to always choose the correct color); pause the algorithm in the iteration when variable x
is being processed, just after line 7, and look at the partial assignment α built so far. We set V imp

x := vbl(α) \ {x}. We
remove x for purely technical reasons; if x happens to be already set at that time, then line 9 and 10 will be skipped by
the algorithm anyway.

Observation 5 If line 9 is executed then c is chosen uniformly at random from the set Plaus(x, F [V imp
x 7→d]).

We define the following indicator variables:

Ax,c :=

{
1 if c ∈ Plaus(x, F [Vx 7→d], D)

0 else.

Aimp
x,c :=

{
1 if c ∈ Plaus(x, F [V imp

x 7→d], D)

0 else.

and Ax :=
∑
cAx,c and Aimp

x :=
∑
cA

imp
x,c . These are random variables in our random placement π. Note that

Ax,d = Aimp
x,d = 1 because color d is always plausible; also, Aimp

x,c ≤ Ax,c simply because Vx ⊆ V imp
x , i.e.,

ImpatientPPSZ has at least as much information as PPSZ.

Lemma 6 [6] For a fixed permutation π, Pr[PPSZ(F, π) finds α∗] =
∏
x

1
Ax(π) . For a random permutation,

Prπ[PPSZ(F, π) finds α∗] ≥ 2−
∑
x Eπ [log2 Ax(π)].

The second statement follows from the first by Jensen’s inequality. To obtain a similar formula for ImpatientPPSZ, we
need to take into account that a variable x might be assigned in line 6 or in line 10.

Lemma 7 For a fixed permutation π, Pr[PPSZ(F, π) finds α∗] ≥
∏
x

1

max(1+Ix,Aimp
x (π))

. For a random permutation,

the probability that ImpatientPPSZ succeeds is at least

Pr
π

[PPSZ(F, π) finds α∗] ≥ 2−Eπ[
∑
x log2(max(1+Ix,Aimp

x (π)))].

Proof 1 If Ix = 0 then x will be assigned in line 10 and thus its value will be correct with probability 1/Aimp
x (π),

conditioned on all prior assignments being correct. If Ix = 1 then either it is assigned in line 6, and is correct with
probability 1/2; or it is still assigned regularly in line 10, and is correct with probability 1/Aimp

x (π). This proves the
first inequality. The second inequality in the lemma follows from the first by Jensen’s inequality.

2.1 Independence between colors

The crucial quantity in the analysis of ImpatientPPSZ is the random variable Aimp
x =

∑
cA

imp
x,c . The next lemma states

that we can focus on analyzing the indicator variables Aimp
x,c individually; that is, if we condition on π(x) = p, then the

d indicator variables are independent in the worst case. More formally:

4

Impatient PPSZ — a Faster algorithm for CSP

Lemma 8 (Independence between colors) Let π : V → [0, 1] be uniformly random and set p := π(x). We sample
d random variables Ãimp

x,c ∈ {0, 1}, c = 1, . . . , d by setting each Ãimp
x,c to 1 with probability Pr[Aimp

x,c = 1 | π(x) = p],
independently. Set Ãimp

x :=
∑
c Ã

imp
x,c . Then

E
π

[
log2

(
max

(
1 + Ix, Aimp

x (π)
))]
≤ E

π

[
log2

(
max

(
1 + Ix, Ãimp

x (π)
))]

(2)

Proof idea. We would like to prove this along the lines of Lemma 3.5 of [6]. The additional problem here is that
although the function f : t 7→ log(t) is concave, the function g : t 7→ log(max(2, t)) isn’t. This is why, if π(x) < θ,
we set Ix to 1 with probability c and to 0 with probability 1 − c. The convex combination c · f + (1 − c) · g
is concave1 and the proof goes through just as for Lemma 3.5 in [6]. See Lemma 24 in the appendix for a complete proof.

The upshot is that it is sufficient to bound Pr[Aimp
x,c = 1 | π(x) = p] from above, for each variable x and color c,

individually.

2.2 Critical Clause Trees and Brief Analysis of PPSZ

In this section, we define critical clause trees and review some results from [6]. Let x ∈ vbl(F) and c ∈ {1, . . . , d− 1}.
The critical clause tree Thx,c of height h has two types of nodes: a node u on an even level (which includes the root at
level 0) is a clause node, has a clause label clauselabel(u) and an assignment label βu; it has at most k − 1 children. A
node v on an odd level is a variable nodes and has a variable label varlabel(u); it has exactly d− 1 children. An edge
(v, w) from a variable node v to a clause node w has an edge color EC(e) ∈ [d− 1]. The critical clause tree Thx,c is
constructed as in algorithm 3.

Algorithm 3 BuildCCT(F, x, c, h)
1: Create a root node and set βroot := α[x = c]
2: while ∃ clause node u of height less than h− 1 without a clause label do
3: Find a clause C which is not satisfied by βu
4: Set clauselabel(u) := C
5: for each literal (y 6= d) ∈ C do
6: Create a new child v of u
7: varlabel(v) := y
8: for i ∈ [d− 1] do
9: Create a new child w of v

10: Set βw := βv[y = i]
11: Set EC(v, w) = i
12: end for
13: end for
14: end while
15: remove clause nodes at height h+ 1
16: return Thx,c

Let us assume h is always odd, so the lowest layer of Thx,c consists of variable nodes. Thx,c has two types of leaves:
those variable nodes at height h; we call them safe leaves; and clause nodes whose clause label does not contain any
literal of the form (y 6= d); we call them unsafe leaves.

Proposition 9 [6]

1. Suppose v is a clause node in Thx,c with clause label C and (y 6= i), i ∈ [d] is a literal in C. Then if i = d, v
has a child whose variable label is y. If i < d, v has an ancestor node whose variable label is y.

2. No variable appears more than once as variable label on a path from root to a leaf.

Definition 10 (labeled tree) A labeled tree is a possibly infinite tree such that: (1) every node is either a variable node
or a clause node; (2) a variable node u has a label varlabel(u) ∈ L in some label space L ⊇ V ; (3) they alternate,

1The attentive reader might notice: it’s not concave; however, if we change the definition of “log” in the definition of f and g
from the usual log to “log on N and linear between integers, then it is concave.

5

Impatient PPSZ — a Faster algorithm for CSP

i.e., if a variable node has children, they are all clause nodes, and vice versa; (4) its degree is bounded: there is some
∆ ∈ N such that every node has at most ∆ children. A leaf in a labeled tree is a safe leaf if it is a variable node;
Otherwise, it is an unsafe leaf.

Note that each subtree of a critical clause tree is a labeled tree. A safe path in a labeled tree is a path that starts at the
root and is either infinite or ends at a safe leaf.

Definition 11 (Cutp and Cut) Let T be a labeled tree. The event Cutp(T) is an event in the probability space of all
placements π : L→ [0, 1] that happens if every safe path in T contains a node v with π(varlabel(v)) < p.

Suppose T is a labeled tree, and let T1, . . . , Tl be the subtrees rooted at the l children of the root of T . Note that the Ti
are themselves labeled trees. If the root of T is a clause node then Cutp(T) =

∧l
i=1 Cutp(Ti). If it is a variable node,

let y := varlabel(root(T)), and observe that Cutp(T) = [π(y) < p] if root(T) itself is a safe leaf (i.e., if l = 0) and
Cutp(T) = [π(y) < p] ∨

∧l
i=1 Cutp(Ti) else .

Next, we connect the notion of cuts to our notion of being a plausible color. For this, set L := (d−1)(k−1) and observe
that Thx,c has at most Li clause nodes at depth 2i. Choose h̃ to be the largest integer for which 1+L+L2 +· · ·+Lh̃ ≤ D
(recall D, our strength parameter in the definition of D-implication), and set h := 2 h̃+ 1. Then Thx,c has at most D
clause nodes and h is also a slowly growing function in n.

Lemma 12 ([6]) If Cut(Thx,c) happens then Ax,c = 0.

Recall the infinite trees T∞ and T1, . . . , Td−1 and the indicator variables J1, . . . , Jd−1 defined above, just before (1),
and observe that Jc = 1 iff Cutp(Tc) does not happen. Let T∞ be the subtree of T∞ rooted at the first child of the
root. Define Q(p) := Pr[Cutp(T∞)] and R(p) := Pr[Cutp(T∞)]. The next proposition is from [6], adapted for our
purposes.

Proposition 13 ([6]) Set L = (k− 1)(d− 1). If p ≥ 1− 1
L then Q(p) = R(p) = 1; otherwise, Q(p) and R(p) are the

unique roots in [0, 1] of the equations Q =
(
p+ (1− p)Qd−1

)k−1
and R = p+ (1− p)RL, respectively. Furthermore,

Q(p) = R(p)k−1.

As our height parameter h grows (roughly logarithmic with our strength parameter D), the critical clause trees Thx,c will
look more and more like T∞, and thus the cut probability will converge to Q(p). Formally, let error(d, k, h, p) and
error(d, k, h) stand for any functions that converge to 0 as h→∞.

Proposition 14 (Lemma 3.6 in [6]) Pr[Cutp(Thx,c)] ≥ Pr[Cutp(Tc)]− error(d, k, p, h).

To summarize: conditioned on π(x) = p, the sum Ax = Ax,1 + · · · + Ax,d has the worst behavior if all Ax,c are
independent (Lemma 8); furthermore, Ax,c ≤ Jc except with probability error(d, k, p, h), for all c ≤ d − 1, and
therefore:

Lemma 15 [6] Eπ[log2(Ax)] ≤ E[log2(J1 + · · ·+ Jd−1 + 1)] + error(d, k, h) = Sd,k + error(d, k, h).

3 Analysis of ImpatientPPSZ

Just as [6] analyzes PPSZ by studying the random variables Ax,c, we have to study Aimp
x,c . We can always resort to the

“old” analysis via Aimp
x,c ≤ Ax,c. However, the whole point of this work is to show that this inequality is often strict. To

understand how and when this might happen, we discuss an example for d = 3.

6

Impatient PPSZ — a Faster algorithm for CSP

xyz 6= 133

y z

yuv 6= 133 yab 6= 233 zew 6= 133 zrs 6= 233

z 7→
2

y
7→

2y 7→
1

z
7→

1

u v a b e w r s

This is T 3
x,1, the critical clause tree for x and 1 built up to height 3. The formula F in question contains the constraints

shown as clause labels, but of course contains many more constraints. Suppose that u, v, a, b, z come before x in π,
and e, w, r, s, y come later. In the normal PPSZ, we have already set u, v, a, c, z 7→ 3 when considering x, and thus the
clauses of F will have shrunk:

• (yuv 6= 133) shrinks to (y 6= 1);

• (yab 6= 133) shrinks to (y 6= 2);

• (zew 6= 133) and (zrs) 6= 233 don’t shrink but disappear: they are satisfied by z 7→ 3;

• (xyz 6= 133) shrinks to (xy 6= 13).

Together, the three shrunk clauses (y 6= 1), (y 6= 2), and (xy 6= 13) imply (x 6= 1); since D ≥ 3 this means that x = 1
can be ruled out, i.e., Ax,1 = 0. Next, suppose π, viewed as a placement π : V → [0, 1], looks like this:

θ 10 x z e wr s u v y a b

and assume for simplicity that all variables l with π(l) < θ in vbl(F) are eligible for impatient assignment (i.e., have
Il = 1). Note that Cut(T 3

x,1) does not happen. Namely, the path from root to c contains two variable labels, y and b,
and π(y), π(b) ≥ π(x). Analogously, the alternative assignment α∗[x 7→ 1, y 7→ 2, b 7→ 2] satisfies all clauses in the
figure above, and thus the algorithm cannot infer x 6= 1 from those clauses alone, and Ax,1 = 1. Observe now what
happens in ImpatientPPSZ:

• r, s, u, v 7→ 3 before x is even considered;

• (yuv 6= 133) shrinks to (y 6= 1), and thus Plaus(y, F [α]) shrinks to {2, 3};

• y is assigned a value in line 6;

• the analogous thing happens to z;

• r, s, u, v ∈ Vx, and r, s, u, v, y, z ∈ V imp
x ;

• (xyz 6= 133) shrinks to (x 6= 1) and thus Aimp
x,1 = 0.

We can now try to work out a formula for the probability that x = c is ruled out in this manner; however, our above
example and analysis contains two silent assumptions that cannot be taken for granted in general:

1. All variable labels in T 3
x,c are distinct.

2. All clause labels of T 3
x,c are critical clauses, i.e., k − 1 of its literals are of the form y 6= d.

The original PPSZ paper [4] addresses Point 1 by using the FKG inequality to show that having multiple labels can
never hurt us. But now we are talking about a more complicated event; it is not clear whether an FKG-like result applies.
Point 2 is more troublesome. Consider the alternative scenario that T 3

x,c looks like this:

7

Impatient PPSZ — a Faster algorithm for CSP

xyz 6= 133

y z

yxu 6= 113 yab 6= 233 zew 6= 133 zxr 6= 213

z 7→
2

y
7→

2y 7→
1

z
7→

1

u a b e w r

and consider the same π as above: r, s, u, v, x, z, y, θ, e, w, a, b. After setting r, s, u, v 7→ 3, the shrunk clauses are
(yx 6= 11), (yab 6= 233), (zew 6= 133), and (zx 6= 21). Neither for y nor for z can we rule out any color, and therefore
our impatient mechanism will not kick in. We will have Vx = V imp

x = {r, s, u, v}. In other words, non-critical clauses
seem useless for ImpatientPPSZ. But looking at the above example tree, we see what comes to the rescue: the right-most
clause node is missing a child; it has at most k − 2 children instead of k − 1. This alone will be enough to improve our
success probability by a bit. It is time for some formal definitions.

Definition 16 (Privileged variables) A variable x is privileged if there is some color c ∈ {1, . . . , d− 1} such that

1. Thx,c has fewer than (k − 1)2(d− 1) variable nodes at level 3 or

2. T 3
x,c has two variable nodes u and w with varlabel(u) = varlabel(w).

Proposition 17 There is an εprivileged > 0, depending only on d and k, such that

E [log2(Ax)] ≤ Sd,k − εprivileged + error(d, k, h) ,

for every privileged variable x in F .

See Proposition 25 in the appendix for a proof.

Corollary 18 E
[
log2(max(1 + Ix, Aimp

x))
]
≤ Sd,k − εprivileged + cθ + error(d, k, h)

Proof 2 Since max(a, b) ≤ a · b when a, b ≥ 1, we get

E
[
log2(max(1 + Ix, Aimp

x))
]
≤ E

π
[log2(1 + Ix)] + E

π
[log2(Aimp

x)] .

The first term equals Pr[Ix = 1] = cθ; the second is at most E [log2(Ax)], which by Proposition 17 is at most
Sd,k − εprivileged + error(d, k, h). This concludes the proof.

Lemma 19 There is a constant ε > 0, depending only on d and k, such that

E
[
log2(max(1 + Ix, Aimp

x))
]
≤ Sd,k − 0.1699

(
c

L+ 1
θL+1 +O

(
θL+2

))
+ error(d, k, h) .

for all non-privileged variables x. The constant factor hidden in the O(·) depends only on d and k.

By choosing θ sufficiently small, we can make sure that the bounds in Lemma 19 and Corollary 18 are both at most
Sd,k − εd,k + error(d, k, h), for some εd,k depending only on d and k. Together with Lemma 7, this proves Theorem 1.

Proof 3 (Proof of Lemma 19) For a color 1 ≤ c ≤ d− 1, fix the critical clause tree Thx,c and let us introduce a bit of
notation. The root of Thx,c has a label

Croot = (x 6= c ∨ y1 6= d · · · ∨ yk−1 6= d) .

It has k − 1 children v1, . . . , vk−1, whose respective variable labels are y1, . . . , yk−1. Let Ti denote the subtree of Thx,c
rooted at vi. Each yi in turn has d − 1 children; each such level-2 node v has a clause label Cv; note that Cv is a

8

Impatient PPSZ — a Faster algorithm for CSP

critical clause, i.e., k − 1 of its literals are of the form (z 6= d), since otherwise it would have fewer than k − 1 children,
and Thx,c would have fewer than (k − 1)2(d− 1) nodes at level 3; in other words, x would be privileged.

We need to define an event ImpCutp(T
h
x,c) which, analogous to Cutp(Thx,c), describes the event Aimp

x,c = 0 in terms of
Thx,c only. Going for a full such characterization is possible but messy, and it is not clear what the worst-case structure
of such Thx,c will be; this is the reason why we, when considering our impatient assignment mechanism, will look only
up to depth 3 in Thx,c. For each node w of Thx,c at level 1, 2, or 3, we define event LocalImpCutp(v) as follows:

1. If v is at level 3 of Thx,c then LocalImpCutp(v) happens if π(varlabel(v)) < p.

2. If v is at level 2 of Thx,c then LocalImpCutp(v) happens if LocalImpCutp(w) happens for the k− 1 children w
of v (recall that clauselabel(v) is a critical clause and therefore v has exactly k − 1 children);

3. If v is at level 1, set y := varlabel(v); LocalImpCutp(v) happens if

(a) π(y) < p or
(b) Iy = 1 and LocalImpCutp(v) happens for at least d− 2 of the d− 1 children of v.

Finally, we define

ImpCutp(T
h
x,c) :=

k−1∧
i=1

(
Cutp(Ti) ∨ LocalImpCutp(vi)

)
(3)

The next lemma is the “impatient analog” of Lemma 12.

Lemma 20 Let p = π(x). If ImpCutp(T
h
x,c) happens then Aimp

x,c = 0.

The proof is very similar to that of Lemma 12, just taking into account the impatient assignment mechanism. We restate
and prove it as Lemma 26 in the appendix. Next, we prove a lower bound on Pr[ImpCutp(T

h
x,c)]. For q ∈ [0, 1] and

l ∈ N, define

abamo(q, l) := ql + l(1− q)ql−1 . (4)

The name abamo is the acronym of “all but at most one” and is indeed the probability that, among l independent
events of probability q each, all or all but one happen. Recall the definition of Q(p) := Pr[Cutp(T∞)] just before
Proposition 13.

Lemma 21 If p < θ then Pr[ImpCutp(T
h
x,c) | π(x) = p] is at least(

p+ c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1
)k−1 − error(d, k, h) .

If p ≥ θ then it is at least Q(p)− error(d, k, h).

Proof sketch. For each subtree Ti of Thx,c, either Cutp(Ti) or LocalImpCutp(vi) must happen. Now this happens
if either (1) π(y) < p, which explains the first term of the sum in the parentheses; (2) π(y) ≥ p and Iyi = 1 and
LocalImpCutp(vi), which is the second term; or (3) π(y) ≥ p and Iyi = 0 and Cutp(Ti), which is the third term. See
Lemma 27 for a complete proof.

Let us summarize our reasoning so far. Define an ensemble J imp
1 , . . . , J imp

d−1 of random variables in {0, 1} as follows:
set p := π(x); then independently set each J imp

c to 0 with probability W k−1 and 1 with probability 1−W k−1, where

W = W (p) :=

{
p+ c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1 if p < θ

R(p) else.

One checks that W (p) is continuous at p = θ since R(p) = p+ (1− p)R(p)(k−1)(d−1) = p+ (1− p)Q(p)d−1. Set
J imp := J imp

1 + · · ·+ J imp
d−1 + 1. We have shown so far that

E
[
log2 max(1 + Ix, Aimp

x,c)
]
≤ E

[
log2 max(1 + Ix, J imp)

]
+ error(d, k, h)

= Pr[J imp = 1 ∧ Ix] + E
[
log2(J imp)

]
+ error(d, h, k) . (5)

9

Impatient PPSZ — a Faster algorithm for CSP

Proposition 22 Pr[J imp = 1 ∧ Ix] ≤ c
L+1θ

L+1 +O
(
θL+2

)
.

Proposition 23 E
[
log2(J imp)

]
− Sd,k ≤ (d− 1) log2(1− 1/d) ·

(
c

L+1θ
L+1 +O

(
θL+2

))
.

We prove the two propositions in Section E in the appendix. Together with (5), they imply that

E
[
log2 max(1 + Ix, Aimp

x,c)
]
− Sd,k is at most(

c

L+ 1
θL+1 +O

(
θL+2

))
(1 + (d− 1) log2(1− 1/d)) + error(d, k, h) .

The expression in the first parenthesis is positive for sufficiently small θ; in fact, we have to choose θ small enough to
beat the hidden constant in the O(·), which in turn depends only on d and k. The expression in the second parenthesis,
1+(d−1) log2(1−1/d), is negative for all d ≥ 3. It is maximized for d = 3, where it becomes 2−2 log2(3) < −0.1699.
Thus, we can choose θ such that the whole expression is at most Sd,k−εd,k+error(d, k, h) for some εd,k > 0 depending
only on d and k. This concludes the proof of Lemma 19.

4 Future Work

In the analysis of PPSZ, the worst case happens if all everything looks “nice”: all variable nodes in Tx,1, . . . , Tx,d−1

have different labels; all clause labels are critical clauses.

In this scenario, our analysis for impatient assignment could go deeper than level 3; we could define a more powerful
event ImpCut and obtain much better bounds on the running time. Indeed, future work hopefully will identify the
worst-case shape of the Thx,c and allow us to analyze the full power impatient assignment.

The condition |Plaus(y, F [α])| ≤ 2 in Line 4 in Algorithm 2 is arbitrary. Why “≤ 2”? Why not “≤ 3”? For large d,
what would the optimal cut-off value be?

Acknowledgments

Dominik Scheder wants to thank Timon Hertli, Isabelle Hurbain, Sebastian Millius, Robin A. Moser, and May Szedlák,
his co-authors of [6]. The idea of impatient assignment came up when we were working on [6].

References

[1] Richard Beigel and David Eppstein. 3-coloring in time O (1.3289n). J. Algorithms, 54(2):168–204, 2005.

[2] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science, pages 410–414. IEEE Computer Society, Los
Alamitos, CA, 1999.

[3] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 566–574. IEEE, 1997.

[4] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved exponential-time algorithm
for k-SAT. Journal of the ACM (JACM), 52(3):337–364, 2005.

[5] Dominik Scheder. PPZ for more than two truth values-an algorithm for constraint satisfaction problems. arXiv
preprint arXiv:1010.5717, 2010.

[6] Timon Hertli, Isabelle Hurbain, Sebastian Millius, Robin A Moser, Dominik Scheder, and May Szedlák. The
PPSZ algorithm for constraint satisfaction problems on more than two colors. In International Conference on
Principles and Practice of Constraint Programming, pages 421–437. Springer, 2016.

[7] Timon Hertli. 3-SAT faster and simpler—unique-SAT bounds for PPSZ hold in general. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science—FOCS 2011, pages 277–284. IEEE Computer Soc.,
Los Alamitos, CA, 2011.

[8] Dominik Scheder and John P. Steinberger. PPSZ for General k-SAT - making Hertli’s analysis simpler and 3-SAT
faster. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga,
Latvia, volume 79 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

10

Impatient PPSZ — a Faster algorithm for CSP

[9] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms using biased-PPSZ.
In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 578–589. ACM, 2019.

[10] Dominik Scheder. PPSZ is better than you think. Electron. Colloquium Comput. Complex., 28:69, 2021.

A Independence between colors

Lemma 24 (Lemma 8, restated) Let π : V → [0, 1] be uniformly random and set p := π(x). We sample d random
variables Ãimp

x,c ∈ {0, 1}, c = 1, . . . , d by setting each Ãimp
x,c to 1 with probability Pr[Aimp

x,c = 1 | π(x) = p], independently.
Set Ãimp

x :=
∑
c Ã

imp
x,c . Then

E
π

[
log2

(
max

(
1 + Ix, Aimp

x (π)
))]
≤ E

π

[
log2

(
max

(
1 + Ix, Ãimp

x (π)
))]

(6)

Proof 4 We prove (6) conditioned on π(x) = p. Let Z ∈ {0, 1}V \{x} be defined by Zy := [π(y) ≥ p]. Note that
each Zy is 1 with probability 1− p, independently. Next, observe that each Aimp

x,c is a monotone increasing Boolean
function fc(Z): moving some π(y) above p can only increase Aimp

x,c . Let Z(1), . . . ,Z(d) be d independent copies
of Z; that is, each has the same distribution as Z but they are independent. Conditioned on π(x) = p, we have
(f1(Z), . . . , fd(Z)) ∼ (Aimp

x,1, . . . , A
imp
x,d) and (f1(Z(1)), . . . , fd(Z

(d))) ∼ (Ãimp
x,1, . . . , Ã

imp
x,d), where A ∼ B means that

the random variables A and B have the same distribution.

Now if p > θ and therefore Ix = 0, then the function log2(max(1 + Ix, ·)) in (6) becomes log2(·) and we can directly
apply the Concave Correlation Lemma (Lemma A.1 of the full version of [6]).

If Ix = 1, the trouble is that the function t 7→ log2(max(2, t)) is not concave anymore. However, note that if π(x) < θ,
we set Ix to 1 with probability c and 0 with probability 1− c. Conditioned on π(x) = p, the randomness in (6) comes
from two sources: (1) the choice of Ix; (2) the randomness in Z (or Z(1), . . . ,Z(d) for the right-hand side). We can
break down both sides of (6) as follows:

E
Z,Ix

[log2(max(1 + Ix, Aimp
x))] = E

Z

[
c log2(max(2, Aimp

x)) + (1− c) log2(Aimp
x)
]
, (7)

where c = 2− log2(3). Now the function t 7→ c log2(max(2, t)) + (1− c) log2(t) is still not concave. However, note
that the arguments of log2(t) in (6) and (7) are integers; define g(t) to be the function that equals log2(t) if t is an
integer, and is linear between integers. Now g is concave and t 7→ cg(max(2, t)) + (1− c)g(t) is concave, too. In fact,
this function is linear on [1, 3] and agrees with g for t ≥ 3. Now the lemma again follows by the Concave Correlation
Lemma (Lemma A.1 of [6]).

B PPSZ for privileged variables

Proposition 25 (Proposition 17, restated) Suppose x ∈ vbl(F) is a priviledged variable. Then there is an εprivileged >
0, depending only on d and k, such that

E [log2(Ax)] ≤ Sd,k − εprivileged + error(d, k, h) ,

for every privileged variable x in F .

Proof 5 This proof is similar in spirit and also technical details to the proof of Lemma 19 in [10], except that the latter
is concerned with SAT (i.e., the case d = 2).

Note that a variable x can be privileged for two reasons: first, there is some color c such that the critical clause tree Thx,c
has fewer than (k − 1)L leaves at level 3; in other words, some clause node v at level 2 has fewer than k − 1 children
(note that the nodes at level 0 and 1 have the “right” numer of children; the clause label of 0 is a critical clause, and
therefore the root has always k− 1 children; an odd-level node always has d− 1 children). The second reason would be
that, for some color c, level 1 and 3 of the critical clause tree Thx,c contain nodes u and v with varlabel(u) = varlabel(v).

It is easy to see that the first kind of privilege is stronger: let v be the level-2 node with fewer than k − 1 children.
We can add “fictitious” subtrees until v has k − 1 children, and make sure that one of the added children shares its
variable label with an already-existing level-3 node. The result of this operation, T ′x,c, exhibits a privilege of the second

11

Impatient PPSZ — a Faster algorithm for CSP

kind, and Cutp(Thx,c) ⊇ Cutp(T ′x,c).

Thus, let us assume that x is privileged because Thx,c contains two nodes v and w with varlabel(v) = varlabel(w) = z
and the depths of v and w are in {1, 3}. Analogous to the proof of Proposition 14 (Lemma 3.5 in [6], we start with
iteratively assign fresh labels to variable nodes; as shown in [6], this never increases Pr[Cutp(Thx,c)]. We apply this to
all variable nodes except v and w, and obtain a new tree T . We make sure that there are no “missing children” in T ,
i.e., that every clause has k − 1 children; this can be achieved by attaching fictitious subtrees, which does not increase
Pr[Cutp(T)]. Also, we will for convenience assume that T is infinite, i.e., has no safe leaves (and no unsafe leaves,
either). This does increase Pr[Cutp], but by at most error(d, k, h). In T we still have varlabel(v) = varlabel(w) = z,
but all other labels are distinct. Let T ′ be the tree where v and w receive fresh labels zv, zw. We already know that
Pr[Cutp(T ′)] = Q(p). It remains to show that Pr[Cutp(T)] is substantially larger than Pr[Cutp(T ′)]. For this, let L be
the set of variable labels appearing in T and T ′, and let τ : L \ {z, zv, zw} → [0, 1]. We will analyze the difference

Pr[Cutp(T) | τ]− Pr[Cutp(T ′) | τ] (8)

for fixed τ . Introduce the three Boolean variables a := [π(z) < p], av := [π(zv) < p], and aw := [π(zw) < p]. Note
that under τ , the event Cutp(T ′) reduces to fτ (av, aw) for some monotone Boolean function and Cutp(T) reduces
to fτ (a, a), for the same function fτ . There are only six possible such functions: fτ (av, aw) is either 0, 1, av, aw,
av ∧ aw, or av ∨ aw. If it is one of the first four, then Pr[fτ (av, aw)] = Pr[fτ (a, a)] and (8) is 0. It cannot be av ∨ aw:
the nodes v and w are not ancestors of each other. Finally, if fτ (av, aw) = av ∧ aw then we call τ pivotal and observe
that (8) becomes p− p2.

From here on, our plan is to lower bound the probability that τ is pivotal. We give a necessary and sufficient criterion
for τ to be pivotal.2 It is best illustrated with a figure.

v w

.

.

.

.

aunts aunts

aunts

uncles uncles

children

grandparent of v grandparent of w

Squares are the clause nodes and circles are the variable nodes. Note that we assume that v and w are both on level 3,
and their lowest common ancestor is the root. In the other cases, the picture and the subsequent calculation will be
slightly different. To ease notation, we adopt the notation Cutp(u) := Cutp(Tu), where Tu is the subtree of T ′ rooted at
u (note that T ′ and T have the same node set, only some labels differ). In the case depicted in the figure, τ is pivotal if
and only if

1. Cutp(u) happens for all aunts and uncles u;

2. Cutp(u) does not happen for all children u of v; neither for all children u of w.

3. π(grandparent of v), π(grandparent of w) ≥ p.

Furthermore, note that Pr[Cutp(u)] equals Q(p) if u is an uncle and R(p) if u is an aunt. Therefore,

Pr[Cutp(T)]− Pr[Cutp(T ′)] ≥ (p− p2) · Pr[τ is pivotal] =

(p− p2)Q(p)uncles ·R(p)aunts ·
(
1−Q(p)d−1

)2
(1− p)2

=: δ(p) .

2Actually, it is sufficient for our purposes that the criterion be sufficient, and not necessary that it be necessary.

12

Impatient PPSZ — a Faster algorithm for CSP

It is clear that δ(p) > 0 for 0 < p < 1 − 1/N and δ(p) = 0 for p ≥ 1 − 1/N . Recalling the definition of
Sd,k = E[log(J1 + · · · + Jd−1 + 1)] comparing it to E[log2(Ax)] = E[log2(Ax,1 + · · · + Ax,d−1 + 1)], we can
couple the ensembles A := (Ax,c)

d−1
c=1 and J := (Jc)

d−1
c=1 such that A ≤ J except with probability error(d, k, p, h), and

Ax,c = 0, Jc = 1, conditioned on π(x) = p, happens with probability at least δ(p)− error(d, k, p, h). In fact, let us
ignore the term error(d, k, h) for now and simply assume that A ≤ J (more rigorously, we would have to replace every
Thx,c by the appropriate infinite version; we decide to simply ignore error(d, k, h) in the following, lest we overload the
reader with our notation). Set ∆ := J −Ax, and observe that ∆ ≥ 0 and Pr[∆ ≥ 1 | π(x) = p] ≥ δ(p).

E[log2(J)]− E[log2(Ax)] = −E
[
log2

(
J −∆

J

)]
= −E

[
log2

(
1− ∆

J

)]
≥ −E

[
log2

(
1− ∆

d

)]
≥ log2(e)

d
E [∆]

≥ log2(e)

d

∫ 1

0

δ(p) dp =: εprivileged .

This is some positive number, and it depends only on d and k.

C Local reasoning for ImpatientPPSZ

Lemma 26 (Lemma 20, restated) Suppose x ∈ vbl(F) is non-priviledged. Let p = π(x). If ImpCutp(T
h
x,c) happens

then Aimp
x,c = 0.

Proof 6 We will prove the contrapositive: assume that Aimp
x,c = 1 and show that ImpCutp(T

h
x,c) does not happen.

Let F (Thx,c) denote the set of clause labels appearing in Thx,c. Since Aimp
x,c = 1 by assumption, the formula

F [V imp
x 7→d] does not D-imply (x 6= c). In particular, |F (Thx,c)| ≤ D and therefore F (Thx,c)

[V imp 7→d] does not imply
(x 6= c). This means that there is an assignment γ that (1) satisfies F (Thx,c), (2) γ(x) = c, (3) γ(y) = d for all y ∈ V imp

x .

As a first step, we will show that Cutp(Thx,c) does not happen. For this, we will construct a sequence of clause nodes
u0, u1, . . . , with u0 being the root andn ui+1 being a grandchild of ui, keeping the following invariant:

Invariant. For every clause node u in the sequence, βu(y) 6= d⇒ γ(y) = βu(y).

Note that the invariant is satisfied for the root: x is the only variable with βroot(x) 6= d, and γ(x) = c = βroot(x). To
find ui+1 from ui, let Ci be the clause label of ui, and write Ci as

Ci = (y1 6= c1 ∨ · · · ∨ yl 6= cl ∨ zl+1 6= d ∨ · · · ∨ zk−1 6= d) ,

where c1, . . . , cl 6= d. By construction, βui violates Ci, and therefore βui(yj) = cj for 1 ≤ j ≤ l; by the invariant,
γ(yj) = cj , too. But γ satisfies Ci (it satisfies every clause label in Thx,c), and therefore γ(zj) = c 6= d for some
l + 1 ≤ j ≤ k − 1. In particular, ui has children. Let v be the child of ui with variable label zj . If v is a leaf (a safe
leaf), terminate the process and call the path from root to v the witness path. Otherwise, and let ui+1 be the child of v
with EC(v, ui+1) = c. Note that ui+1 satisfies the invariant.

Since Thx,c is finite, this process terminates with a witness path. Note that γ(y) 6= d for all variable labels y appearing
on that path. In particular, this means that y 6∈ V imp

x , thus y 6∈ Vx, thus π(y) ≥ π(x). In other words, Cutp(Thx,c) does
not happen.

Without loss of generality, let v1 be the level-1-node on the witness path, and T1 be the tree rooted at v1, and
y1 := varlabel(v1). Observe that Cutp(T1) does not happen. We will now show that LocalImpCutp(v1) does not
happen, either. Assume, for the sake of contradiction, that LocalImpCutp(v1) happens. Does it happen because of

13

Impatient PPSZ — a Faster algorithm for CSP

Point 3a in the definition? Certainly not: γ(y1) 6= d since v1 is on the witness path, and thus π(y1) ≥ p. So it happens
because of Point 3b, and Iy1 = 1; without loss of generality, this means that LocalImpCutp(v1) happens for the first
d− 2 children w1, . . . , wd−2 of v1; let C1, . . . , Cd−2 be the respective clause labels. All those Ci are critical clauses
(x is non-priviledged, remember), and have k − 1 children each. So LocalImpCutp happens for the first (k − 1)(d− 2)

of the (k − 1)(d− 1) grandchildren of v1. In other words, all their variable labels z have π(z) < p and thus z ∈ Vx.
Under the assignment [Vx 7→ d], each of Ci reduces to a unit clause; this unit clause is still violated by βwi and
is therefore either (y1 6= i) or (x 6= c). If it was (x 6= c) then F (Thx,c)

[Vx 7→d] would imply (x 6= c) and therefore
Ax,c = Aimp

x,c = 0, contradicting our assumption. So it is (y1 6= i). In other words, F (Thx,c)
[Vx 7→d] contains the unit

clauses (y1 6= 1), . . . , (y1 6= d− 2); thus, when x is being processed by ImpatientPPSZ, the set of plausible values for
y has been reduced to at most two values: d− 1 and d; since Iy1 = 1, the algorithm will assign y1 a value in Line 6,
and y1 ∈ V imp

x . This is again a contradiction: γ(y1) 6= d since v1 is on the witness path; γ(y1) = d since y1 ∈ V imp
x .

This concludes the proof.

D ImpCut probability

Suppose x ∈ vbl(F) is non-priviledged and Thx,c is a critical clause tree for x and c ∈ [d].

Lemma 27 (Lemma 21, restated) If p < θ then Pr[ImpCutp(T
h
x,c) | π(x) = p] is at least(

p+ c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1
)k−1 − error(d, k, h) .

If p ≥ θ then it is at least Q(p)− error(d, k, h).

Proof 7 If p ≥ θ then this is obvious since already Cutp(Thx,c) has probability at least Q(p) − error(d, k, h), by
Proposition 14. Thus we assume p < θ. The root of Thx,c has k − 1 children v1, . . . , vk−1, whose respective variable
labels are y1, . . . , yk−1. Let Ti denote the subtree of Thx,c rooted at vi.

Pr
[
ImpCutp(T

h
x,c)
]

= Pr

[
k−1∧
i=1

(
Cutp(Ti) ∨ LocalImpCutp(vi)

)]

≥
k−1∏
i=1

(
Pr[Cutp(Ti) ∨ LocalImpCutp(vi)]

)
. (FKG inequality)

We can apply the FKG inequality because each event Cutp(Ti) ∨ LocalImpCutp(vi) is a monotone increasing Boolean
function in the variables [π(z) < p] and Iyi . It remains to show that, for each 1 ≤ i ≤ k − 1, the event Cutp(Ti) ∨
LocalImpCutp(vi) happens with probability at least

p+ c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1 − error(d, k, h) (9)

For this, let us abbreviate T := Ti, v := vi its root, and y := varlabel(v) = yi; also, we define the events
A := LocalImpCutp(v) and B := Cutp(T). We distinguish three cases:

(i) if (1) π(y) < p then the desired event A ∨B happens;

(ii) if π(y) ≥ p and Iy = 1 (which implies π(y) < θ) then we ignore B and focus on A;

(iii) if π(y) ≥ p and Iy = 0, then A does not happen, so focus on B.

Formally,

Pr[A ∨B] ≥ Pr[(i)] + Pr[(ii)] · Pr[A | (ii)] + Pr[(iii)] · Pr[B | (iii)]

Next, let us look at each case.

1. Pr[(i)] = p; this explains the first term in (9).

2. Pr[(ii)] = c(θ − p). Furthermore, if if (ii) happens, then A happens if and only if for at least d − 2 of the
children w1, . . . , wd−1, the event Aj := LocalImpCutp(wj) happens. Each Aj happens with probability

14

Impatient PPSZ — a Faster algorithm for CSP

ρ := pk−1; they are independent since all (d− 1)(k − 1) grandchildren of v have distinct labels. Therefore,

Pr[A | (ii)] = Pr[A1 ∧ · · · ∧Ad−1] +

d−1∑
j∗=1

Pr[¬Aj∗ ∧
∧
j 6=j∗

Aj]

= ρd−1 + (d− 1)(1− ρ)ρd−2 = abamo(pk−1, d− 1) .

This explains the second term in (9).

3. Pr[(iii)] = 1 − p − c(θ − p). If (iii) happens, then B happens if and only if Cutp(T ′) happens for each of
the d − 1 subtrees of T . By Proposition 14, this happens with probability (Q(p)− error(d, k, h))

d−1. This
explains the third and fourth term in (9).

This concludes the proof.

E Bounding losses and gains. Proofs of Propositions 22 and 23

First, we need some good-enough estimates for our probabilities R(p), Q(p), and W (p). Note that R(p) and Q(p) are
the roots of certain polynomials, and we do not have an explicit formula for them. The bounds in Proposition 28 are
somewhat crude but sufficient for our purposes.

Proposition 28 R(p) ≤ p+ 4 pL; Q(p) ≤
(
p+ 4 pL

)k−1
; and W (p) ≤ p+O(θp(d−2)(k−1)). The hidden constant

in the O depends on d and k only.

Proof 8 One checks that R(p) is convex on the interval [0, 1− 1/L]. To see this, note that for p ≤ 1− 1/L, R(p) is
the unique solution in [0, 1] of the equation

R = p+ (1− p)RL ,
by Proposition 13. We can solve explicitly for p and check that p(R) is concave, by elementary calculus. Since R is
convex, R(0) = 0, and R(1− 1/L) = 1, the graph of R(p) is below the line from (0, 0) to (1− 1/L, 1), and therefore
R(p) ≤ L

L−1p. This is not enough yet, but applying the equation of R to this estimate gives

R = p+ (1− p)RL ≤ p+ (1− p)
(

L

L− 1
p

)L
≤ p+ 4 pL .

The upper bound for Q follows directly from Q(p) = R(p)k−1. It remains to prove the upper bound on W (p):

W (p) = p+ c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1

≤ p+ θabamo(pk−1, d− 1) +Q(p)d−1

= p+ θp(k−1)(d−1) + θ(d− 1)(1− pk−1)p(k−1)(d−2) +Q(p)d−1

≤ p+ (d− 1)θp(d−2)(k−1) +RL

≤ p+ (d− 1)θp(d−2)(k−1) + (p+ 4 pL)L

≤ p+O
(
θp(d−2)(k−1)

)
.

Proposition 29 (Proposition 22, restated) Pr[J imp = 1 ∧ Ix] ≤ c
L+1θ

L+1 +O
(
θL+2

)
.

Proof 9 Recall that if π(x) < θ then Ix is 1 with probability c and 0 with probability 1− c. If π(x) ≥ θ then Ix = 0.
Also, J imp = 1 if and only if J imp

1 = · · · = J imp
d−1 = 0. Therefore,

Pr[J imp = 1 ∧ Ix] = c ·
∫ θ

0

Pr[J imp = 1 | π(x) = p] dp = c ·
∫ θ

0

W (d−1)(k−1) dp

= c ·
∫ θ

0

(p+O(θp(d−2)(k−1)))L dp ≤ c ·
∫ θ

0

pL(1 +O(θ)) dp (since (d− 2)(k − 1) ≥ 1)

=
c

L+ 1
θL+1 +O

(
θL+2

)
This proves the proposition.

15

Impatient PPSZ — a Faster algorithm for CSP

Proposition 30 (Proposition 23, restated) E
[
log2(J imp)

]
−Sd,k ≤ (d−1) log2(1−1/d) ·

(
c

L+1θ
L+1 +O

(
θL+2

))
.

Proof 10 Recall the definition of Sd,k: sample random variables J1, . . . , Jd−1 by setting p := π(x) and setting each Jc
to 0 with probability Q(p) and to 1 with probability 1−Q(p), and J = J1 + · · ·+Jd−1 + 1. So the Jc are independent
conditioned on π(x) = p. Then Sd,k = E[log2(J)]. Set ∆c := Jc − J imp

c and ∆ =
∑
c ∆c. Note that all ∆c have the

same distribution.

Proposition 31 E[∆1 | π(x) = p] ≥ c(θ − p)L
(
pL−1 −O(pL)

)
for all 1 ≤ c ≤ d− 1.

In particular, if p < θ and θ is sufficiently small then E[∆1] ≥ 0. Therefore, E[Jc] ≤ E[J imp
c] and we can couple the

ensemble (J1, . . . , Jd−1) and (J imp
1 , . . . , J imp

d−1) on a common probability space on which Jc ≤ J imp
c , always, and thus

∆ ≥ 0. We therefore see that E
[
log2(J imp)

]
− Sd,k is

E[
[
log2(J imp)− log2(J)

]
= E

[
log2

(
1− ∆

J

)]
≤ E

[
log2

(
1− ∆

d

)]
≤ E

[
log2

((
1− 1

d

)∆
)]

= E[∆] log2

(
1− 1

d

)
.

Conditioned on π(x) = p and using Proposition 31, this is at most

c(θ − p)L
(
pL−1 −O(pL)

)
(d− 1) log2

(
1− 1

d

)
.

We integrate this over p to get rid of the condition π(x) = p and see that

E
[
log2(J imp)

]
− Sd,k ≤ (d− 1) log2

(
1− 1

d

)
·
(

c

L+ 1
θL+1 +O

(
θL+2

))
.

This concludes the proof of Proposition 30.

It remains to prove Proposition 31.

Proof 11 (Proof of Proposition 31) .

E[∆1 | π(x) = p] = E[Jc − J imp
c | π(x) = p] = (1−Q)− (1−W k−1) = W k−1 −Rk−1

≥ (k − 1)(W −R)Rk−2 ,

where the last inequality follows because W k−1 = (R + W − R)k−1 = Rk−1
(
1 + W−R

R

)k−1 ≥
Rk−1

(
1 + (k−1)(W−R)

R

)
= Rk−1 + (k − 1)(W − R)Rk−2. Now let us bound W − R from below. If p ≥ θ

then W (p) = R(p) and W −R = 0. If p < θ, we expand R(p) as follows:

R = p+ (1− p)Q(d−1) = p+ c(θ − p)Qd−1 + (1− p− c(θ − p))Qd−1

and therefore

W −R = c(θ − p)
(
abamo(pk−1, d− 1)−Qd−1

)
= c(θ − p)

(
p(k−1)(d−1) + (d− 1)

(
1− pk−1

)
p(k−1)(d−2) −Qd−1

)
≥ c(θ − p)

(
pL + (d− 1)p(k−1)(d−2) − (d− 1)pL − (p+O(p2))L

)
≥ c(θ − p)(d− 1)

(
p(k−1)(d−2) −O(pL)

)
.

Next, combining the previous two calculations, we see that

E[∆1 | π(x) = p] ≥ (k − 1)(W −R)Rk−2 ≥ (k − 1)(W −R)pk−2

≥ (k − 1)c(θ − p)(d− 1)
(
p(k−1)(d−2) −O(pL)

)
pk−2

≥ c(θ − p)L
(
pL−1 −O(pL)

)
.

16

	Introduction
	The PPSZ Algorithm
	Our Contribution
	Notation
	PPSZ and impatient PPSZ

	Analysis of ImpatientPPSZ
	Independence between colors
	Critical Clause Trees and Brief Analysis of PPSZ

	Analysis of ImpatientPPSZ
	Future Work
	Independence between colors
	PPSZ for privileged variables
	Local reasoning for ImpatientPPSZ
	ImpCut probability
	Bounding losses and gains. Proofs of Propositions 22 and 23

