IMPATIENT PPSZ — A FASTER ALGORITHM FOR CSP

Shibo Li Dominik Scheder
Shanghai Jiao Tong University Shanghai Jiao Tong University
Shanghai Shanghai
ShiboLi@sjtu.edu.cn dominik@cs.sjtu.edu.cn
ABSTRACT

PPSZ is the fastest known algorithm for (d, k)-CSP problems, for most values of d and k. It goes
through the variables in random order and sets each variable randomly to one of the d colors, excluding
those colors that can be ruled out by looking at few constraints at a time.

We propose and analyze a modification of PPSZ: whenever all but 2 colors can be ruled out for some
variable, immediately set that variable randomly to one of the remaining colors. We show that our
new “impatient PPSZ” outperforms PPSZ exponentially for all £ and all d > 3 on formulas with a
unique satisfying assignment.

Keywords Randomized algorithms - Constraint Satisfaction Problems - exponential algorithms

1 Introduction

A Constraint Satisfaction Problem, or CSP for short, consists of a finite a set of variables z1,...,x,, a domain
[d] :== {1,...,d} of potential values, and a set of constraints. A constraint is of the form (z;,,...,z;,) € S, where
S C [d]*. In analogy to CNF-SAT, we assume in this paper that |S| = d* — 1, i.e., all but one possible assignments
satisfy the constraint. We speak of a (d, k)-CSP if all constraints are over k variables. In a slight abuse of notation, we
also use (d, k)-CSP to denote the associated decision problem: is there a way to assign values in [d] to the variables
that satisfies all constraints? This is NP-complete except whend = 1 or k = 1 or k = d = 2, so researchers focus
on finding moderately exponential algorithms: algorithms of running time ¢ for ¢ < d. Examples include Beigel
and Eppstein’s randomized algorithm for (d, 2)-CSP with running time O((0.4518d)™) [1]];Schéning’ s random walk
d(k—

algorithm of running time O*((Tl))”) [2]]; Paturi, Pudldk, and Zane encoding-based randomizedalgorithm called

PPZ [3] for k-SAT (i.e., d = 2), which runs in time 0(2(1_1/k)”). Paturi, Pudlak, Saks and Zane [4] improved PPZ by
introducing a pre-processing step using small-width resolution. Both PPZ and PPSZ can be easily modified to work
for (d, k)-CSP as well, as done by Scheder [5]] for PPZ and Hertli et al. [6] for PPSZ. In both cases, several subtleties
and technical difficulties arise, which are not present for k-SAT. Furthermore, [6]] is the currently fastest algorithm for
(d, k)-CSP when k > 4.

1.1 The PPSZ Algorithm

Let us give an informal description of PPSZ, first for SAT, and then for CSP. In either case, it chooses a random ordering
m on the variables z1, . .., x,. Then it goes through the variables one by one, in the order of 7; when processing x;, it
fixed x; randomly to true or false, unless the correct value can be inferred by a set of up to D clauses (in which case
we say z; has been inferred by D-implication). For CSP, the only difference is that when processing z;, it checks (with
brute force) for which colors ¢ € [d] the statement [; # c]| can be inferred by a set of up to D constraints; if so, we say
[x; # ¢] is D-implied, and color c is obviously ruled out. It then fixes x; randomly to one of the colors not yet ruled out
(or declares failure if all colors have been ruled out).

Unique-SAT versus general-SAT. A peculiar feature of PPSZ, as analyzed in the seminal paper [4], is that it performs
better if the input instance F' has a unique satisfying assignment. Certain properties, such as the existence of critical
clause trees, break down once F' has multiple solutions. In [4], the authors proposed a clever but technical workaround,

Impatient PPSZ — a Faster algorithm for CSP

which incurred an exponential overhead for k = 3,4. In his 2011 breakthrough paper, Hertli [7] showed that this
peculiarity is in fact an artifact of the analysis, and gave a very abstract and high-level proof that PPSZ on formulas
with many solutions is indeed no worse. His proof was later simplified by Scheder and Steinberger [8]. The proofs in
[7] and [8]] work only provided that the internal machinery of the PPSZ algorithm (e.g., checking D-implication) is “not
too good”. Curiously, in [6] it turned out that, for £ = 2, 3 and certain values of d, the PPSZ machinery is indeed “too
good”, and consequently their time complexity for the general case (multiple solutions) is worse than for the unique
case (exactly one solution). For formulas with a unique solution, their analysis gives the best known running time for
all d, k except for k = 2 and d € {3,4}.

Improvements to PPSZ for k-SAT. Two recent results improve PPSZ. Hansen, Kaplan, Zamir, and Zwick [9]] define a
biased version of PPSZ and show that it achieves an improvement for all £ > 3. Scheder [10] shows that PPSZ itself
performs exponentially better than in the analysis of [4]. We would not be surprised if both improvements carry over to
(d, k)-CSP, although to our knowledge, this has not been analyzed so far. The improvement presented in this work is of
different quality: it is not a generalization of some idea for k-SAT; in fact, the main idea only makes sense for d > 3
and thus is particular to (d, k)-CSP problems.

The time complexity of PPSZ for Unique (d, k)-CSP. A main result of [6] is that PPSZ solves Unique (d, k)-CSP in
time O (QSM nto(n)) , where Sy 1, is defined by the following random experiment: let 7°°° be the infinite rooted tree in
which each node on even depth (which includes the root at depth 0) has k£ — 1 children and every node on odd depth has
d — 1 children. Let Ty, ...,Ty—1 be disjoint copies of 7°°, sample p € [0, 1] uniformly, and delete every odd-level
node with probability p, independently. Let J. be the indicator variable that is 1 if the root of T is contained in an
infinite component after this deletion step. Then

Sak =Ellogy(J1 + -+ Jg—1 +1)] . (D

1.2 Our Contribution

In this work, we focus on the case that F' has a unique satisfying assignment o*, without loss of generality a* :=
(d,d,...,d). The idea behind our improvement is as follows: suppose x, y, z are variables appearing in the order y, x, z
in . Focus on the point in time when PPSZ processes x, and assume every assignment prior to « has been correct. For
example, the variable y has already been replaced by the constant d. In other words, when PPSZ tries to infer statements
like [z # ¢| from small sets of constraints, it can use the information [y = d]. It cannot use [z = d], however. Or can it?
Maybe PPSZ can already infer [z # 1],...,[z # d — 1]; in this case, it can also infer [z = d], and it would be safe to
fix z to d. Let us propose the following rule:

Rule of One. Whenever [z =] can be inferred by D-implication, fix z to c.

This rule is “uncontroversial” in the sense that it will never make a mistake. However, the reader who is familiar with
the literature about PPSZ, in particular with its original version using small-width resolution, will notice that resolution
implicitly implements the above rule. We propose the following more aggressive rule:

Rule of Two. Whenever [z = ¢; V z = ¢»] can be inferred by D-implication, i.e., if all but 2
colors can be ruled out, pick ¢ € {c1, co} arbitrarily and fix z to c.

Obviously, this rule can introduce mistakes. On the plus side, it might be very unlikely that the range of plausible (i.e.,
not ruled out) colors for z further decreases from 2 to 1. Better to bite the bullet now, decide on a value for z, hope that it
is correct, and use that information for subsequent D-implications. For example, it might be that using the information
[z = d] lets us rule out additional colors for x, the variable currently being processed by PPSZ. Unfortunately, this rule
does more bad than good: consider the variables coming towards the very end of 7. For each of them, it is very like that
all but one color can be ruled out; thus, PPSZ would set them correctly with high probability; using our Rule of Two,
this probability would go down from (almost) 1 to (roughly) 1/2 since we decide on a value once only two values are
left. We propose a less impatient rule:

Conservative Rule of Two. Apply the Rule of Two only to variables z that are among the first
On in 7; don’t apply it to the last (1 — #)n variables.

We will show that for those early variables, it is extremely unlikely that the set of plausible colors gets narrowed down
to only one color; and that it is somewhat more likely that the Rule of Two helps us rule out one additional colors for a
variable. In particular, we prove the following theorem:

Impatient PPSZ — a Faster algorithm for CSP

Theorem 1 For every d > 3 and k > 2, there is some € > 0 and a randomized algorithm solving (d, k)-CSP in time
27 (Sa.k =€) poly(n).

1.3 Notation

LetV = {z1,...,2,} be aset of variables and [d] = {1, ..., d} be the set of possible colors. A literal is an expression
(x # ¢), where x € V, ¢ € [d]. A clause is a disjunction of literals: (v1 # ¢1 V vy # ca V...V vy # c). A (d, k)-CSPis
a conjunction of clauses of size k each. An assignment « is a function V' — [d]. It satisfies a literal (z # ¢) if a(v) # ¢;
it satisfies a clause if it satisfies at least one literal therein; it satisfies a (d, k)-CSP F if it satisfies all clauses in F. If
V' CVand«: V' — [d], we call « a partial assignment; vbl(«) denotes its domain, i.e., V'. F o] is the simplified
formula after setting all variables in V'’ according to . We will write partial assignments like this: [z — 2,y — 3, ...]
and therefore F'[*2] will denote the formula after replacing = with 2. For a clause C' and a (d, k)-CSP F, vbl(C') and
vbl(F’) denote the sets of variables in C and F, respectively. For a rooted tree T and a node v therein, the subtree of T
rooted at v is the tree containing v (as root) and all its descendants. We use the notation [statement], which evaluate
to 1 if statement holds, and to O otherwise.

1.4 PPSZ and impatient PPSZ

Definition 2 (D-implication [6]) Let F be a (d, k)-CSP formula and u be a literal of F. We say F implies u and
write F' F w if all assignment satisfying F' also satisfy u. We say F' D-implies u and write F' Ep w if there is some
G C Fwith|G| <D and G F u.

For the rest of the paper, D = D(n) will be some slowly growing function in n, so F' Fp u can be checked in time
O(|F|Ppoly(n)), which is subexponential in 7.

Definition 3 (Plausible values) Let F' be a (d, k)-CSP formula and x a variable. We say color ¢ € [d] is D-plausible
for x in F if F does not D-imply (x # c). Let Plaus(x, F, D) denote the set of all colors that are D-plausible for x.
We will drop the parameter D if it is understood from the context.

Algorithm 1 PPSZ algorithm

1: procedure PPSZ(F,)
2: « < the empty assignment

3 for x € vbl(F') in the order of 7 do

4 choose ¢ € Plaus(, F[®]) uniformly at random
5: a:=aUlz—

6 end for

7 return « if it satisfies F', else failure

8: end procedure

Note that our code specifies 7 as an explicit input parameter; it is the responsibility of the “user” to make sure
PPSZ(F,) is called with a random 7; furthermore, we implicitly assume that PPSZ declares failure if the set
Plaus(x, F[®l) in Line Elis empty. From now on, we view 7 not as a permutation of the variables but as a function
V — [0,1]; note that if 7 : V' — [0, 1] is sampled uniformly at random, it will be an injection with probability 1;
sorting V' in ascending order by their w-value will give a permutation of V. Additionally, we fix two parameters 6 (to
be determined later) and ¢ := 2 — log,(3), and mark every variable x as eligible for impatient assignment as follows:

Definition 4 (Eligible for impatient assignemnt) For each variable x, define 1, € {0, 1} as follows. (1) If w(z) > 6,
setl, :=0; (2)if n(x) < 0, set 1, := 1 with probability ¢ and to 0 with probability 1 — ¢, independently of all other
choices. If I, = 1 we say x is eligible for impatient assignment.

2 Analysis of ImpatientPPSZ

Notation for sets of variables coming before variable z: V, and V,"". To analyze PPSZ and our variant Impa-
tientPPSZ, we need to talk about the point in time where the algorithm processes a variable x, and in particular, we need
to talk about the set of variables that have already been assigned a value at this point. For PPSZ, this is easy: we define
Ve :={y € vbI(F) | m(y) < w(z)}. For ImpatientPPSZ, it’s a bit more complicated: imagine we run ImpatientPPSZ

Impatient PPSZ — a Faster algorithm for CSP

Algorithm 2 Impatient PPSZ

1: procedure IMPATIENTPPSZ(F,)
2: « := the empty assignment

3 for x € vbl(F') in ascending order of 7 do
4 while Jy € vbl(F) \ vbl(a) with I, = 1 and |Plaus(y, FI*)| < 2 do
5: choose ¢ € Plaus(y, F'[*) uniformly at random
6: a:=aUlyw—
7 end while
8 if z € vbl(«) then
9: choose ¢ € Plaus(z, F'[®l) uniformly at random
10 a:=aUlz— (|
11: end if
12: end for
13: return « if it satisfies I, else failure

14: end procedure

but feed it the “correct” values in every assignment; that is, whenever a color ¢ is chosen, make sure that ¢ = d (we
manipulate this random source to always choose the correct color); pause the algorithm in the iteration when variable x
is being processed, just after line and look at the partial assignment « built so far. We set V" := vbl(«a) \ {z}. We
remove z for purely technical reasons; if happens to be already set at that time, then line [9]and [T0] will be skipped by
the algorithm anyway.

Observation 5 If line@is executed then c is chosen uniformly at random from the set Plaus(z, PV ed)).
We define the following indicator variables:
A 1 if ¢ € Plaus(z, FIV==4 D)
e 0 else.
mp _ |1 ifc e Plaus(z, FIV=""=d D)
e 0 else.
and A, :=), Ay and AP"P := 3 AP These are random variables in our random placement 7. Note that

Apag = A_i;fg’ = 1 because color d is always plausible; also, AXP < A, . simply because V, C V™P, ie.,
ImpatientPPSZ has at least as much information as PPSZ.

Lemma 6 [l6] For a fixed permutation w, Pr[PPSZ(F,) finds o*] = T[], ﬁ For a random permutation,
Pr.[PPSZ(F, r) finds o*] > 2~ 2 Ex[logz Az (m)],

The second statement follows from the first by Jensen’s inequality. To obtain a similar formula for ImpatientPPSZ, we
need to take into account that a variable = might be assigned in line[6]or in line[I0}

Lemma 7 For a fixed permutation 7, Pr[PPSZ(F,) finds o*] > [],, m. For a random permutation,

the probability that ImpatientPPSZ succeeds is at least
PI‘[PPSZ(F, 7'{') finds Oé*] > 2—E,r [ZT logz(max(1+]1m_,A';hp(,T)))].

Proof 1 If 1, = O then x will be assigned in line and thus its value will be correct with probability 1/Az™ (),
conditioned on all prior assignments being correct. If I, = 1 then either it is assigned in line[6] and is correct with
probability 1/2; or it is still assigned regularly in line and is correct with probability 1/ Ay (7). This proves the
first inequality. The second inequality in the lemma follows from the first by Jensen’s inequality.

2.1 Independence between colors

The crucial quantity in the analysis of ImpatientPPSZ is the random variable Al — e A?}B. The next lemma states
that we can focus on analyzing the indicator variables A;TB individually; that is, if we condition on 7(x) = p, then the
d indicator variables are independent in the worst case. More formally:

Impatient PPSZ — a Faster algorithm for CSP

Lemma 8 (Independence between colors) Let w : V' — [0, 1] be uniformly random and set p := m(x). We sample
d random variables Ay € {0,1}, ¢ = 1,...,d by setting each A3 to 1 with probability Pr[Ay2 = 1| 7(x) = p],
independently. Set Ay =" Azt. Then

E [logy (max (1-+ L, A7 (x)))] < E [logy (max (1+ L, &7 ())) @

T

Proof idea. We would like to prove this along the lines of Lemma 3.5 of [6]. The additional problem here is that
although the function f : ¢ — log(t) is concave, the function g : t — log(max(2,t)) isn’t. This is why, if 7(z) < 6,
we set [, to 1 with probability ¢ and to 0 with probability 1 — ¢. The convex combination ¢ - f + (1 —¢) - g
is concaveﬂ and the proof goes through just as for Lemma 3.5 in [6]. See Lemmain the appendix for a complete proof.

The upshot is that it is sufficient to bound Pr[AX™ = 1 | w(z) = p] from above, for each variable z and color c,
individually.

2.2 Critical Clause Trees and Brief Analysis of PPSZ

In this section, we define critical clause trees and review some results from [6]. Let © € vbI(F) and ¢ € {1,...,d — 1}.
The critical clause tree T;’; . of height h has two types of nodes: a node v on an even level (which includes the root at
level 0) is a clause node, has a clause label clauselabel(u) and an assignment label 3,,; it has at most k — 1 children. A
node v on an odd level is a variable nodes and has a variable label varlabel(u); it has exactly d — 1 children. An edge
(v,w) from a variable node v to a clause node w has an edge color EC(e) € [d — 1]. The critical clause tree T}, is
constructed as in algorithm

Algorithm 3 BuildCCT(F, z, ¢, h)

1: Create a root node and set Syo := [z = (]
2: while 3 clause node u of height less than & — 1 without a clause label do
3: Find a clause C' which is not satisfied by 3,

4: Set clauselabel(u) := C

5: for each literal (y # d) € C do
6: Create a new child v of u

7: varlabel(v) :=y

8: foriec[d—1]do

9: Create a new child w of v
10 Set By = Boly = 1]

11: Set EC(v,w) =1

12: end for

13: end for

14: end while
15: remove clause nodes at height h + 1
16: return 77",

Let us assume h is always odd, so the lowest layer of Tz’}’ . consists of variable nodes. Tgf}_’C has two types of leaves:
those variable nodes at height h; we call them safe leaves; and clause nodes whose clause label does not contain any
literal of the form (y # d); we call them unsafe leaves.

Proposition 9 6|/

1. Suppose v is a clause node in Tgﬁc with clause label C and (y # 1),i € [d] is a literal in C. Then ifi = d, v
has a child whose variable label is y. If i < d, v has an ancestor node whose variable label is y.

2. No variable appears more than once as variable label on a path from root to a leaf.

Definition 10 (labeled tree) A labeled tree is a possibly infinite tree such that: (1) every node is either a variable node
or a clause node; (2) a variable node u has a label varlabel(u) € L in some label space L. O V; (3) they alternate,

!The attentive reader might notice: it’s not concave; however, if we change the definition of “log” in the definition of f and g
from the usual log to “log on N and linear between integers, then it is concave.

Impatient PPSZ — a Faster algorithm for CSP

i.e., if a variable node has children, they are all clause nodes, and vice versa; (4) its degree is bounded: there is some
A € N such that every node has at most A children. A leaf in a labeled tree is a safe leaf if it is a variable node;
Otherwise, it is an unsafe leaf.

Note that each subtree of a critical clause tree is a labeled tree. A safe path in a labeled tree is a path that starts at the
root and is either infinite or ends at a safe leaf.

Definition 11 (Cut,, and Cut) Let T be a labeled tree. The event Cut,(T) is an event in the probability space of all
placements : . — [0, 1] that happens if every safe path in T contains a node v with w(varlabel(v)) < p.

Suppose T’ is a labeled tree, and let 77, . . ., T} be the subtrees rooted at the [children of the root of T'. Note that the T;

are themselves labeled trees. If the root of T' is a clause node then Cut,(T') = /\éz1 Cut,(T;). If it is a variable node,
let y := varlabel(root(T")), and observe that Cut,(T") = [r(y) < p] if root(T’) itself is a safe leaf (i.e., if | = 0) and

Cut, (T) = [x(y) < p| vV A\, Cut,(T}) else .

Next, we connect the notion of cuts to our notion of being a plausible color. For this, set L := (d—1)(k—1) and observe
that Tf . has at most L? clause nodes at depth 2i. Choose h to be the largest integer for which 1+L+L2?+- ..+ L" < D

(recall D, our strength parameter in the definition of D-implication), and set h := 2 h + 1. Then Tzh,c has at most D
clause nodes and h is also a slowly growing function in n.

Lemma 12 ([6]) If Cut(T}') happens then A, . = 0.

Recall the infinite trees 7°° and 71, . .., Ty and the indicator variables Ji, ..., J;_1 defined above, just before @
and observe that J. = 1 iff Cut,(T}) does nor happen. Let T, be the subtree of 7 rooted at the first child of the
root. Define Q(p) := Pr[Cut,(T°°)] and R(p) := Pr[Cut,(Tx)]. The next proposition is from [6], adapted for our
purposes.

Proposition 13 ([6]) Ser L = (k—1)(d—1). Ifp > 1 — 1 then Q(p) = R(p) = 1; otherwise, Q(p) and R(p) are the

unique roots in [0, 1] of the equations QQ = (p +(1- p)Qd_l)k_1 and R = p+ (1 — p)RE, respectively. Furthermore,
Q(p) = R(p)* "

As our height parameter h grows (roughly logarithmic with our strength parameter D), the critical clause trees va will
look more and more like 7°°°, and thus the cut probability will converge to Q(p). Formally, let error(d, k, h, p) and
error(d, k, h) stand for any functions that converge to 0 as h — oc.

Proposition 14 (Lemma 3.6 in [6]) Pr[Cut, (T})] > Pr[Cut,(T.)] — error(d, k,p, h).

To summarize: conditioned on 7(z) = p, the sum A, = A, 1 + --- + A, 4 has the worst behavior if all A, . are
independent (Lemma ; furthermore, A, . < J. except with probability error(d, k,p, h), for all ¢ < d — 1, and
therefore:

Lemma 15 [6] E-[log,(A;)] < E[logy(J1 + - -+ + Ja—1 + 1)] + error(d, k, h) = Sq i, + error(d, k, h).

3 Analysis of ImpatientPPSZ

Just as [6] analyzes PPSZ by studying the random variables A, ., we have to study AE‘}E . We can always resort to the

“old” analysis via Ai;ffg < A, .. However, the whole point of this work is to show that this inequality is often strict. To
understand how and when this might happen, we discuss an example for d = 3.

Impatient PPSZ — a Faster algorithm for CSP

| yuv # 133|| yab # 233| | zew # 133 2rs # 233

S bdbdb by

This is TfC 1 the critical clause tree for « and 1 built up to height 3. The formula F' in question contains the constraints
shown as clause labels, but of course contains many more constraints. Suppose that u, v, a, b, z come before x in 7,
and e, w, r, s, y come later. In the normal PPSZ, we have already set u,v,a,c, 2z — 3 when cons1der1ng x, and thus the
clauses of F will have shrunk:

* (yuv # 133) shrinks to (y # 1);

* (yab # 133) shrinks to (y # 2);

* (zew # 133) and (zrs) # 233 don’t shrink but disappear: they are satisfied by z — 3;
* (xyz # 133) shrinks to (zy # 13).

Together, the three shrunk clauses (y # 1), (y # 2), and (xy # 13) imply (« # 1); since D > 3 this means that z = 1
can be ruled out, i.e., A, ; = 0. Next, suppose 7, viewed as a placement 7 : V — [0, 1], looks like this:

0
\0 rosuv e z Yy | e w a b 1‘

and assume for simplicity that all variables [with 7(I) < 6 in vbl(F') are eligible for impatient assignment (i.e., have
I; = 1). Note that Cut(Tg_rl) does not happen. Namely, the path from root to ¢ contains two variable labels, y and b,

and 7(y), w(b) > w(z). Analogously, the alternative assignment o*[x +— 1,y — 2,b — 2] satisfies all clauses in the
figure above, and thus the algorithm cannot infer # 1 from those clauses alone, and A, ; = 1. Observe now what
happens in ImpatientPPSZ:

* r,s,u,v — 3 before x is even considered,;

(yuwv # 133) shrinks to (y # 1), and thus Plaus(y, F1) shrinks to {2, 3};

* yis assigned a value in line 6;

* the analogous thing happens to z;

im|
e r,5,u,v € Vy,andr,s,u,v,y,2 € V',

(wyz # 133) shrinks to (z # 1) and thus Ag’?’l’ =0.

We can now try to work out a formula for the probability that = c is ruled out in this manner; however, our above
example and analysis contains two silent assumptions that cannot be taken for granted in general:

1. All variable labels in ch are distinct.
2. All clause labels of Tic are critical clauses, i.e., kK — 1 of its literals are of the form y # d.
The original PPSZ paper [4] addresses Point 1 by using the FKG inequality to show that having multiple labels can

never hurt us. But now we are talking about a more complicated event; it is not clear whether an FKG-like result applies.
Point 2 is more troublesome. Consider the alternative scenario that Ti . looks like this:

Impatient PPSZ — a Faster algorithm for CSP

ywu # 113| | yab # 233| | zew # 133)| zar # 213]

b d b

and consider the same 7 as above: r, s, u,v,x, z,y, 0, e, w, a,b. After setting r, s, u,v — 3, the shrunk clauses are
(yz # 11), (yab # 233), (zew # 133), and (zx # 21). Neither for y nor for z can we rule out any color, and therefore
our impatient mechanism will not kick in. We will have V,, = Vlmp = {r, s,u,v}. In other words, non-critical clauses
seem useless for ImpatientPPSZ. But looking at the above example tree, we see what comes to the rescue: the right-most
clause node is missing a child; it has at most £ — 2 children instead of k£ — 1. This alone will be enough to improve our
success probability by a bit. It is time for some formal definitions.

Definition 16 (Privileged variables) A variable x is privileged if there is some color ¢ € {1,...,d — 1} such that
1. T} has fewer than (k — 1)*(d — 1) variable nodes at level 3 or
2. T3} . has two variable nodes u and w with varlabel(u) = varlabel(w).

Proposition 17 There is an €piviieged > 0, depending only on d and k, such that
E [logQ (Aw)} < Sd,k — Eprivileged + error(d, k, h) s

for every privileged variable x in F.

See Proposition 23]in the appendix for a proof.
Corollary 18 E {10g2 (max(l + I, Ag“p))} < Sng — €Eprivileged T ch + error(d, k, h)

Proof 2 Since max(a,b) < a-bwhena,b> 1, we get
E [logy (max(1 + I, A™))] < E[logy(1 + L,)] + E[log, (AX™)] .

The first term equals Pr[l, = 1] = cf; the second is at most E [logy (A,)], which by Proposition |17]is at most
Sd,k — Eprivileged + €1101(d, k, h). This concludes the proof.

Lemma 19 There is a constant € > 0, depending only on d and k, such that

E [logy (max(1 + L, A™))] < Sgx — 0.1699 (oFtt + 0 (9L+2)) + error(d, k, h) .

L+1

for all non-privileged variables x. The constant factor hidden in the O(-) depends only on d and k.

By choosing 6 sufficiently small, we can make sure that the bounds in Lemma[I9]and Corollary [I8]are both at most
Sa,k — €a,k + error(d, k, h), for some €4 5, depending only on d and k. Together with Lemma | this proves Theoreml

Proof 3 (Proof of Lemma[I9) Fora color 1 < ¢ < d — 1, fix the critical clause tree T;f, . and let us introduce a bit of
notation. The root of T:ﬁc has a label

Croot:(m#cvyl#d"'vykfl#d)~

It has k — 1 children vy, . . . , v, _1, whose respective variable labels are y1, . . . ,yr—1. Let T; denote the subtree ofo,C
rooted at v;. Each y; in turn has d — 1 children; each such level-2 node v has a clause label C,,; note that C,, is a

Impatient PPSZ — a Faster algorithm for CSP

critical clause, i.e., k — 1 of its literals are of the form (z # d), since otherwise it would have fewer than k — 1 children,
and T}' . would have fewer than (k — 1)?(d — 1) nodes at level 3; in other words, x would be privileged.

We need to define an event ImpCut,, (Tf) which, analogous to Cutp(T;c), describes the event Aif}g = 0 in terms of
T;" . only. Going for a full such characterization is possible but messy, and it is not clear what the worst-case structure
of such Tf(will be; this is the reason why we, when considering our impatient assignment mechanism, will look only
up to depth 3 in Tﬁ - For each node w of Tﬁc at level 1, 2, or 3, we define event LocalImpCutp(v) as follows:

1. Ifvis at level 3 of Tﬁ . then LocallmpCut,,(v) happens if (varlabel(v)) < p.

2. Ifvisatlevel 2 of Tﬁc then LocallmpCut,,(v) happens if LocallmpCut, (w) happens for the k — 1 children w
of v (recall that clauselabel(v) is a critical clause and therefore v has exactly k — 1 children);

3. Ifvisatlevel 1, set y := varlabel(v), LocallmpCut,,(v) happens if

(a) w(y) <por
(b) I, =1 and LocallmpCut,, (v) happens for at least d — 2 of the d — 1 children of v.

Finally, we define

k-1
ImpCut, (T} ,) := /\ (Cut,(T3) V LocallmpCut,, (v;)) 3)
i=1

The next lemma is the “impatient analog” of LemmalI2}
Lemma 20 Let p = w(x). If ImpCut,, (T) happens then A — 0,

The proof is very similar to that of Lemma[I2] just taking into account the impatient assignment mechanism. We restate
and prove it as Lemma E in the appendix. Next, we prove a lower bound on Pr[ImpCutp (ng)] Forq € [0,1] and
l €N, define

abamo(q,) := ¢ + (11— q)ql*1 .)

The name abamo is the acronym of “all but at most one” and is indeed the probability that, among | independent
events of probability q each, all or all but one happen. Recall the definition of Q(p) := Pr[Cut,(T°)] just before
Proposition[I3]

Lemma 21 If p < 0 then Pr[ImpCut,,(T}'.) | w(x) = p] is at least

(p+ (0 — pabamo(p"~',d — 1) + (1 — p — e(0 — p))Q(p)*)" ™" — error(d, k,) .
Ifp > O then it is at least Q(p) — error(d, k, h).
Proof sketch. For each subtree T; of T}, either Cut,(T;) or LocallmpCut,,(v;) must happen. Now this happens
if either (1) w(y) < p, which explains the first term of the sum in the parentheses; (2) w(y) > p and 1, = 1 and

LocallmpCut,,(v;), which is the second term; or (3) w(y) > p and 1, = 0 and Cut,,(T}), which is the third term. See
Lemma 27 for a complete proof-

Let us summarize our reasoning so far. Define an ensemble Jimp, ceey Jélnlpl of random variables in {0, 1} as follows:
set p := 7t(x); then independently set each J:™" to 0 with probability W* =1 and 1 with probability 1 — W*~1, where

p+c(f — p)abamo(p* ' d — 1) + (1 —p— (0 —p)Qp)* " ifp<¥
R(p) else.

One checks that W (p) is continuous at p = 0 since R(p) = p + (1 — p)R(p)F=DE=1) = p 1 (1 — p)Q(p)?~'. Set
Jmp = JI" 4 ..+ J™ + 1. We have shown so far that

E [log, max(1 + I, A‘;“(p)] < E [log, max(1 + I, J™)] + error(d, k, h)
= Pr[J™ = 1 A L] + E [logy(J™)] + error(d, h, k) . (5)

W =Wi(p) ;:{

Impatient PPSZ — a Faster algorithm for CSP

Proposition 22 Pr[J™ = 1 A 1,] < 550011 + 0 (6542).

Proposition 23 E [log,(J™)] — Sqr < (d — 1) logy(1 — 1/d) - (L%HGLH +0 (0L+2)).

We prove the two propositions in Section in the appendix. Together with (), they imply that
E |log, max(1 + I, Al;nf)] — Sqk is at most

(LCHOLH L0 (9L+2)) (1+(d—1)logy(1 —1/d)) + error(d, k, h) .

The expression in the first parenthesis is positive for sufficiently small 0; in fact, we have to choose 0 small enough to
beat the hidden constant in the O(+), which in turn depends only on d and k. The expression in the second parenthesis,
1+ (d—1)logy(1—1/d), is negative for all d > 3. It is maximized for d = 3, where it becomes 2—2 log,(3) < —0.1699.
Thus, we can choose 0 such that the whole expression is at most Sq i, — €4, +error(d, k, h) for some €q 1, > 0 depending
only on d and k. This concludes the proof of Lemma

4 Future Work

In the analysis of PPSZ, the worst case happens if all everything looks “nice”: all variable nodesin T 1, ..., Ty q—1
have different labels; all clause labels are critical clauses.

In this scenario, our analysis for impatient assignment could go deeper than level 3; we could define a more powerful
event ImpCut and obtain much better bounds on the running time. Indeed, future work hopefully will identify the
worst-case shape of the T;ﬁ . and allow us to analyze the full power impatient assignment.

The condition |Plaus(y, F1*))| < 2 in Line in Algorithmis arbitrary. Why “< 2”? Why not “< 3”? For large d,
what would the optimal cut-off value be?

Acknowledgments

Dominik Scheder wants to thank Timon Hertli, Isabelle Hurbain, Sebastian Millius, Robin A. Moser, and May Szedlék,
his co-authors of [6]. The idea of impatient assignment came up when we were working on [6].

References

[1] Richard Beigel and David Eppstein. 3-coloring in time O (1.3289™). J. Algorithms, 54(2):168-204, 2005.

[2] Uwe Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science, pages 410-414. IEEE Computer Society, Los
Alamitos, CA, 1999.

[3] Ramamohan Paturi, Pavel Pudldk, and Francis Zane. Satisfiability coding lemma. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 566—574. IEEE, 1997.

[4] Ramamohan Paturi, Pavel Pudldk, Michael E Saks, and Francis Zane. An improved exponential-time algorithm
for k-SAT. Journal of the ACM (JACM), 52(3):337-364, 2005.

[5] Dominik Scheder. PPZ for more than two truth values-an algorithm for constraint satisfaction problems. arXiv
preprint arXiv:1010.5717, 2010.

[6] Timon Hertli, Isabelle Hurbain, Sebastian Millius, Robin A Moser, Dominik Scheder, and May Szedldk. The
PPSZ algorithm for constraint satisfaction problems on more than two colors. In International Conference on
Principles and Practice of Constraint Programming, pages 421-437. Springer, 2016.

[7] Timon Hertli. 3-SAT faster and simpler—unique-SAT bounds for PPSZ hold in general. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science—FOCS 2011, pages 277-284. IEEE Computer Soc.,
Los Alamitos, CA, 2011.

[8] Dominik Scheder and John P. Steinberger. PPSZ for General k-SAT - making Hertli’s analysis simpler and 3-SAT
faster. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga,
Latvia, volume 79 of LIPIcs, pages 9:1-9:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

10

Impatient PPSZ — a Faster algorithm for CSP

[9] Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms using biased-PPSZ.
In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 578-589. ACM, 2019.

[10] Dominik Scheder. PPSZ is better than you think. Electron. Colloquium Comput. Complex., 28:69, 2021.

A Independence between colors

Lemma 24 (Lemma 8} restated) Ler 7w : V — [0, 1] be uniformly random and set p := w(x). We sample d random
imp imp

variables AP e 10,1}, ¢ = 1,...,d by setting each A 10 1 with probability Pr[AS® = 1| 7(x) = p), independently.
Set A" :=Y Azt Then

E [log, (max (1 + L, AT™(7)))] <E [log2 (max (1 + L, fl;mp(w)))} (6)
Proof 4 We prove (@) conditioned on mw(x) = p. Let Z € {0,1}V M=} pe defined by Z,, := [r(y) > p|. Note that

each Z, is 1 with probability 1 — p, independently. Next, observe that each Az.e is a monotone increasing Boolean

Sunction f.(Z): moving some 7(y) above p can only increase AE;“E Let ZW) ... ZD be d independent copies
of Z; that is, each has the same distribution as Z but they are independent. Conditioned on w(x) = p, we have

(F1(Z), ... fa(Z)) ~ (AT%, . A and (f1(ZD), ..., fa(ZD)) ~ (AX® .. AM) where A ~ B means that

x,1 x,1
the random variables A and B have the same distribution.

Now if p > 0 and therefore I, = 0, then the function log,(max(1 4 I, -)) in (6) becomes log,(-) and we can directly
apply the Concave Correlation Lemma (Lemma A.1 of the full version of [l6]).

IfI, = 1, the trouble is that the function t — log,(max(2,t)) is not concave anymore. However, note that if m(x) < 0,
we set I, to 1 with probability ¢ and 0 with probability 1 — c. Conditioned on m(x) = p, the randomness in (@) comes

from two sources: (1) the choice of 1; (2) the randomness in Z (or ZV | ..., ZD for the right-hand side). We can
break down both sides of (0) as follows:
E [log,(max(1 + I, A™))] = [clog,(max(2, AMPY) (1 —¢) logz(Ag“P)] , 7
Z,I Z

sl

where ¢ = 2 — log,(3). Now the function t — clogy(max(2,t)) 4+ (1 — ¢) logy () is still not concave. However, note
that the arguments of log,(t) in (6) and (7) are integers; define g(t) to be the function that equals log,(t) if t is an
integer, and is linear between integers. Now g is concave and t — cg(max(2,t)) + (1 — ¢)g(t) is concave, too. In fact,
this function is linear on [1, 3] and agrees with g for t > 3. Now the lemma again follows by the Concave Correlation
Lemma (Lemma A.1 of [16]).

B PPSZ for privileged variables

Proposition 25 (Proposition restated) Suppose x € vbl(F) is a priviledged variable. Then there is an Eprivileged >
0, depending only on d and k, such that

E [logg (Ax)} < Sd,k — €Eprivileged T error(d, k, h) >

for every privileged variable x in F.

Proof 5 This proof is similar in spirit and also technical details to the proof of Lemma 19 in [10], except that the latter
is concerned with SAT (i.e., the case d = 2).

Note that a variable x can be privileged for two reasons: first, there is some color c such that the critical clause tree T:Z .
has fewer than (k — 1)L leaves at level 3; in other words, some clause node v at level 2 has fewer than k — 1 children
(note that the nodes at level 0 and 1 have the “right” numer of children; the clause label of 0 is a critical clause, and
therefore the root has always k — 1 children; an odd-level node always has d — 1 children). The second reason would be
that, for some color c, level I and 3 of the critical clause tree T;ﬁ . contain nodes u and v with varlabel(u) = varlabel(v).

It is easy to see that the first kind of privilege is stronger: let v be the level-2 node with fewer than k — 1 children.
We can add “fictitious” subtrees until v has k — 1 children, and make sure that one of the added children shares its

variable label with an already-existing level-3 node. The result of this operation, T; o exhibits a privilege of the second

11

Impatient PPSZ — a Faster algorithm for CSP

kind, and Cut,, (T .) 2 Cuty (T}, .).

Thus, let us assume that x is privileged because T)' . contains two nodes v and w with varlabel(v) = varlabel(w) = z
and the depths of v and w are in {1,3}. Analogous to the proofofProposition (Lemma 3.5 in [6]], we start with
iteratively assign fresh labels to variable nodes; as shown in [|0|], this never increases Pr[Cutp(Twh; .)]- We apply this to
all variable nodes except v and w, and obtain a new tree T. We make sure that there are no “missing children” in T,
i.e., that every clause has k — 1 children; this can be achieved by attaching fictitious subtrees, which does not increase
Pr[Cutp (T)]. Also, we will for convenience assume that T is infinite, i.e., has no safe leaves (and no unsafe leaves,
either). This does increase Pr[Cut,], but by at most error(d, k, h). In T we still have varlabel(v) = varlabel(w) = z,
but all other labels are distinct. Let T' be the tree where v and w receive fresh labels z,, z,,. We already know that
Pr[Cut,(T")] = Q(p). It remains to show that Pr[Cut,,(T")] is substantially larger than Pr[Cut, (T")]. For this, let L be
the set of variable labels appearing in T and T', and let 7 : 1L\ {z, 2y, 20, } — [0, 1]. We will analyze the difference

Pr[Cut,(T) | 7] — Pr[Cut,(T") | 7] (8)

for fixed T. Introduce the three Boolean variables a = [1(z) < p|, a, := [7(2y) < pl, and a,, = [7(zy) < p]. Note
that under T, the event Cut,(T") reduces to f(ay, a) for some monotone Boolean function and Cut,(T) reduces
to f-(a,a), for the same function f.. There are only six possible such functions: fr(a,,a.) is either 0, 1, ay, ay,,
Ay N Ay, OF Ay V Q. If it is one of the first four, then Pr[f.(a,, ay)] = Pr[f-(a,a)] and (8) is 0. It cannot be a, V ay,:
the nodes v and w are not ancestors of each other. Finally, if f;(ay, aw) = ay A aq then we call T pivotal and observe
that (@ becomes p — p°.

From here on, our plan is to lower bound the probability that T is pivotal. We give a necessary and sufficient criterion
for T to be pivotal || It is best illustrated with a figure.

grandparent of v ~ -\ T~ grandparent of w

Squares are the clause nodes and circles are the variable nodes. Note that we assume that v and w are both on level 3,
and their lowest common ancestor is the root. In the other cases, the picture and the subsequent calculation will be
slightly different. To ease notation, we adopt the notation Cuty,(u) := Cut, (T,), where T, is the subtree of T" rooted at
u (note that T' and T have the same node set, only some labels differ). In the case depicted in the figure, T is pivotal if
and only if

1. Cut,(u) happens for all aunts and uncles u;
2. Cuty(u) does not happen for all children w of v; neither for all children u of w.
3. w(grandparent of v), 7(grandparent of w) > p.
Furthermore, note that Pr[Cut,(u)] equals Q(p) if u is an uncle and R(p) if u is an aunt. Therefore,
Pr[Cut,(T)] — Pr[Cut,(T")] > (p — p*) - Pr[r is pivotal] =

(p = PP)QP)"™ - R(p)™™ - (1 - Q(p)*)” (1 - p)°
=:6(p) -

2 Actually, it is sufficient for our purposes that the criterion be sufficient, and not necessary that it be necessary.

12

Impatient PPSZ — a Faster algorithm for CSP

It is clear that 6(p) > 0 for 0 < p < 1 —1/N and §(p) = 0 for p > 1 — 1/N. Recalling the definition of
Sax = Ellog(J1 + - -+ + Ja—1 + 1)] comparing it to Ellogy(Az)] = Ellogy(Ag1 + -+ + Az a—1 + 1)], we can
couple the ensembles A := (A.r,c)?;% and J := (Jc)fctl1 such that A < J except with probability error(d, k, p, h), and
Az =0,J. =1, conditioned on w(x) = p, happens with probability at least §(p) — error(d, k, p, h). In fact, let us
ignore the term error(d, k, h) for now and simply assume that A < J (more rigorously, we would have to replace every
Tgﬁ . by the appropriate infinite version; we decide to simply ignore error(d, k, h) in the following, lest we overload the
reader with our notation). Set A := J — A,, and observe that A > 0 and Pr[A > 1| w(x) = p] > §(p).

Ellogy(J)] — Ellogy(4:)] = —E :logQ (J_JAH

sl -3)]
sl - 3)

5(p) dp = €privileged -

d 0

This is some positive number, and it depends only on d and k.

C Local reasoning for ImpatientPPSZ

Lemma 26 (Lemma[20] restated) Suppose x € vbl(F) is non-priviledged. Let p = m(x). If ImpCut,, (T!) happens
then Aig?,lg =0.

Proof 6 We will prove the contrapositive: assume that Alm‘D = 1 and show that ImpCutp(T;}’ .) does not happen.
Let F (Tf’c) denote the set of clause labels appearing in TQC. Since Ay.e = 1 by assumption, the formula
FV"=dl does not D-imply (z # c). In particular, |[F(T}'.)| < D and therefore F(T;c)[vimp'_’d] does not imply
(z # ¢). This means that there is an assignment -y that (1) sansﬁes F(T},), (2)y(z) = ¢ (3)v(y) = dforally € VAP,

As a first step, we will show that Cut,, (Tf .) does not happen. For this, we will construct a sequence of clause nodes
U, U1, - . ., wWith ug being the root andn w; 1, being a grandchild of u;, keeping the following invariant:

Invariant. For every clause node u in the sequence, 5y, (y) # d = v(y) = Bu(y).

Note that the invariant is satisfied for the root: x is the only variable with By () # d, and y(x) = ¢ = Broor(x). To
find u; 11 from g, let C; be the clause label of u;, and write C; as

Ci=p#aV--Vyu#FaVan#dV---Vz#d),

where c1, . ..,c; # d. By construction, [3,, violates C;, and therefore 5u1 (y;j) = ¢j for 1 < j < ; by the invariant,

v(y;) = cj, too. But vy satisfies C; (it satisfies every clause label in T), and therefore v(z;) = ¢ # d for some
1+ 1< j <k —1. Inparticular, u; has children. Let v be the child oful with variable label z;. If v is a leaf (a safe
leaf), terminate the process and call the path from root to v the witness path. Otherwise, and let u;11 be the child of v
with EC(v,u; 1) = c. Note that u;41 satisfies the invariant.

Since T;" . Is finite, this process terminates with a witness path. Note that y(y) # d for all variable labels y appearing

)
on that path. In particular, this means that y & Vi™, thus y & V,, thus 7(y) > w(x). In other words, Cutp(Tﬁc) does
not happen.

Without loss of generality, let v1 be the level-1-node on the witness path, and Ty be the tree rooted at vy, and
y1 = varlabel(vy). Observe that Cut,(T1) does not happen. We will now show that LocallmpCut,,(v1) does not
happen, either. Assume, for the sake of contradiction, that LocalImpCutp(Ul) happens. Does it happen because of

13

Impatient PPSZ — a Faster algorithm for CSP

Point in the definition? Certainly not: v(y1) # d since vy is on the witness path, and thus 7(y1) > p. So it happens
because of Point and L, = 1; without loss of generality, this means that LocallmpCut,, (v1) happens for the first
d — 2 children wy, ..., wq_o of vy, let C1,...,Cy_o be the respective clause labels. All those C; are critical clauses
(z is non-priviledged, remember), and have k — 1 children each. So LocallmpCut, happens for the first (k — 1)(d — 2)
of the (k — 1)(d — 1) grandchildren of vy. In other words, all their variable labels z have w(z) < p and thus z € V.
Under the assignment [V, — d|, each of C; reduces to a unit clause; this unit clause is still violated by B.,, and
is therefore either (y1 # i) or (x # c). If it was (z # c) then F(Tgc)[vad] would imply (xz # c) and therefore

Ay = AN = 0, contradicting our assumption. So it is (y1 # i). In other words, F(T;ﬁc)[Vde] contains the unit

clauses (y1 # 1),...,(y1 # d — 2); thus, when x is being processed by ImpatientPPSZ, the set of plausible values for

y has been reduced to at most two values: d — 1 and d; since I, = 1, the algorithm will assign y, a value in Line@
imp

and y; € Va™. This is again a contradiction: v(y1) # d since vy is on the witness path; y(y1) = d since y; € Vy
This concludes the proof.

D ImpCut probability
Suppose x € vbl(F) is non-priviledged and T;ﬁc is a critical clause tree for x and ¢ € [d].
Lemma 27 (Lemma 21} restated) Ifp < 0 then Pr[ImpCut,, (T) | w(x) = p] is at least

(p+ (0 — p)abamo(p"~',d — 1) + (1 — p — e(0 — p))Q(p)*)" ™" — error(d, k,) .
Ifp > O then it is at least Q(p) — error(d, k, h).

Proof 7 If p > 0 then this is obvious since already Cut,, (T}) has probability at least Q(p) — error(d, k, h), by

Proposition Thus we assume p < 0. The root of T;” o has k — 1 children vy, . .., v,_1, whose respective variable
labels are y1, . .. ,yr_1. Let T; denote the subtree ofTUZC rooted at v;.
Pr [ImpCut,, (T} /\ (Cut,,(T;) V LocallmpCut,, (v;))
H (Pr[Cut,(T;) V LocallmpCut, (v;)]) - (FKG inequality)

We can apply the FKG inequality because each event Cut,(T;) V LocallmpCut, (v;) is a monotone increasing Boolean

function in the variables [m(z) < p| and 1;,. It remains to show that, for each 1 <1i<k—1, the event Cut,(T;) V
LocallmpCut,, (v;) happens with probability at least

p+ c(0 — p)abamo(p" ', d — 1) + (1 — p — ¢(0 — p))Q(p)* " — error(d, k, h) 9)

For this, let us abbreviate T := T;, v := wv; its root, and y := varlabel(v) = y;; also, we define the events
A := LocallmpCut, (v) and B := Cut,(T). We distinguish three cases:

(i) if (1) w(y) < p then the desired event AN B happens;
(ii) if m(y) > p and 1, = 1 (which implies w(y) < 8) then we ignore B and focus on A;
(iii) if m(y) > p and I, = O, then A does not happen, so focus on B.
Formally,
Pr[AV B] > Pr((3)] + Pel(ii)] - Pr[A | (id)] + Pr[(iid)] - Pr[B | (i)
Next, let us look at each case.
1. Pr[(i)] = p; this explains the first term in (9).
2. Pr[(i1)] = ¢(0 — p). Furthermore, if if (ii) happens, then A happens if and only if for at least d — 2 of the
children wi, ..., wq—1, the event A; := LocalImpCutp(wj) happens. Each Aj happens with probability

14

Impatient PPSZ — a Faster algorithm for CSP

p := pF~1; they are independent since all (d — 1)(k — 1) grandchildren of v have distinct labels. Therefore,

d—1
PrA | (id)] = PrlAy A= A Aga] + Y Pri=A;- A [\ Aj]
=1 i#3
= p¥ 4 (d = 1)(1 = p)p?~? = abamo(p"~',d — 1) .
This explains the second term in ([9).
3. Pr[(#i)] = 1 — p — c(0 — p). If (iii) happens, then B happens if and only if Cut,(T") happens for each of

the d — 1 subtrees of T. By Proposition this happens with probability (Q(p) — error(d, k, h))d_l. This
explains the third and fourth term in ([9).

This concludes the proof.

E Bounding losses and gains. Proofs of Propositions 22| and 23]

First, we need some good-enough estimates for our probabilities R(p), Q(p), and W (p). Note that R(p) and Q(p) are
the roots of certain polynomials, and we do not have an explicit formula for them. The bounds in Proposition 28] are
somewhat crude but sufficient for our purposes.

Proposition 28 R(p) < p-+4p"; Q(p) < (p+ 4pL)k71; and W (p) < p + O(0p'?=2)*=1)) The hidden constant
in the O depends on d and k only.

Proof 8 One checks that R(p) is convex on the interval [0,1 — 1/L]. To see this, note that forp < 1 —1/L, R(p) is
the unique solution in [0, 1] of the equation

R:p+(17p)RL7

by Proposition We can solve explicitly for p and check that p(R) is concave, by elementary calculus. Since R is
convex, R(0) =0, and R(1 — 1/L) = 1, the graph of R(p) is below the line from (0,0) to (1 — 1/L, 1), and therefore
R(p) < ﬁp. This is not enough yet, but applying the equation of R to this estimate gives

I L
R=p+(1-pR"<p+(1-p) (Ll) <p+4p".
The upper bound for Q follows directly from Q(p) = R(p)*~L. It remains to prove the upper bound on W (p):
W(p) = p+ c(0 — p)abamo(p"~',d — 1) + (1 —p — ¢(0 — p))Q(p)* "
< p + fabamo(p* 1, d — 1) + Q(p)¢~!
=p+0p* VD L o(d — 1)(1 = p*HptT D L Q(p)* !
< P+ (d _ 1)9p(d—2)(k—1) + RL
<p+(d—=1)0p VD 4 (p 4 4ph)t
<p+0 (9p<d—2)<k—1>>)

Proposition 29 (Proposition 22} restated) Pr[J™ =1 AL,] < LilﬁLH + O (65+2).

Proof 9 Recall that if w(z) < 0 then 1, is 1 with probability c and 0 with probability 1 — c. If w(x) > 0 then I, = 0.
Also, J™ = 1ifand only if J|™" = --- = J;™ = 0. Therefore,

0 0
Pr[Jm™ =1 AL] =c / Pr[J™ =1 |7(x) =p|ldp = c / Wwd=DE=D gy

0 0
0 0

=c- / (p+O(p' =) ldp < c- / p*(1+0(9))dp (since (d—2)(k—1) > 1)
0 0

__ ¢ gLt L+2

=70 0 (6%+%)

This proves the proposition.

15

Impatient PPSZ — a Faster algorithm for CSP

Proposition 30 (Proposition 23 restated) E [log,(J™)] — Sy < (d—1)logy(1—1/d)- (Lj_l(‘)L“ +0 (9L+2)).

Proof 10 Recall the definition of Sq i,: sample random variables Ju, . .., Jq—1 by setting p := 7 (z) and setting each J.
to 0 with probability Q(p) and to 1 with probability 1 — Q(p), and J = J1 + - - -+ Jg—1 + 1. So the J. are independent

conditioned on 7(x) = p. Then Sq;; = E[logy(J)]. Set A := J. — J™ and A = Y. Ac. Note that all A, have the
same distribution.

Proposition 31 E[A; | n(z) =p] > c(0 — p)L (p“~' = O(")) foralll < c<d—1.

In particular, if p < 6 and 0 is sufficiently small then E[A1] > 0. Therefore, E[J.] < E| 1mp] and we can couple the
ensemble (Jy, ..., Jg_1) and (J;"", ..., J3"") on a common probability space on which J. < J:™, always, and thus
A > 0. We therefore see that I [logy(J™)] — Sq . is

E[[log, (J™) —log,(J)] = E {logz (1 - ?)}

e (1) ()]

— E[A]log, <1 - ;) .

Conditioned on w(x) = p and using Proposition this is at most

c(0—p)L(p"~" = O0(")) (d—1)log, <1 - ;) :

We integrate this over p to get rid of the condition w(x) = p and see that

imy 1
E [logy(J™)] — Sq < (d—1)log, (1 - d) (L - 19L+1 +0 (9L+2)) .

This concludes the proof of Proposition

It remains to prove Proposition 31}

Proof 11 (Proof of Proposition 31) .
E[A1 | 7(z) = p| = E[J. — J;™ | n(x) = p] =(1-Q - (1-wrh=wr!_prH!
> (k—1)(W - R)R" 2,
where the last inequality follows because W*™1 = (R + W — R)*! = R:1(1+ %)kil >
Rk—1 (1 + %};}V*R)) = RF1 4+ (kK — 1)(W — R)YR*=2. Now let us bound W — R from below. If p > 0
then W (p) = R(p) and W — R = 0. If p < 6, we expand R(p) as follows:
R=p+(1-p)Q"V=p+c0—-p)Q" " +(1—p—c(0—p)Q""
and therefore

W — R = ¢(f — p) (abamo(p"~',d — 1) — Q471)
=c(f - p)((h=1)(d=1) 4 (g — 1) (1 — pF1) pk=D(4=2) _Qd—l)
> c(6) (p* + (@~ Dp* D — (- 1)pt — (p+ O()")
> (0 - p)(d 1) (p" 0D~ 0ph)) .

Next, combining the previous two calculations, we see that
E[A [7(x) =p] 2 (k= 1)(W = R)R"? > (k= 1)(W — R)p"*

> (k= 1)e(0 = p)(d — 1) (p D — 0" pt
> c(0=p)L (p" = 0G") -

16

	Introduction
	The PPSZ Algorithm
	Our Contribution
	Notation
	PPSZ and impatient PPSZ

	Analysis of ImpatientPPSZ
	Independence between colors
	Critical Clause Trees and Brief Analysis of PPSZ

	Analysis of ImpatientPPSZ
	Future Work
	Independence between colors
	PPSZ for privileged variables
	Local reasoning for ImpatientPPSZ
	ImpCut probability
	Bounding losses and gains. Proofs of Propositions 22 and 23

