Technische Universität Chemnitz

Fakultät für Mathematik

09107 Chemnitz

Gewöhnliche Differentialgleichungen Vorlesung Prof. Lanckau – SS 1998 – 5. Übung

Numerische Methoden für Differentialgleichungen 1. Ordnung:

Es sei eine Differentialgleichung mit Anfangsbedingung

$$y'(x) = f(x, y(x)), y(x_0) = y_0$$

gegeben. Gesucht ist die Lösung in y(x) in einem Intervall $I = [a = x_0; b]$. Dazu wird das Intervall in gleiche Teile $a = x_0 < x, c... < x_u \le b, x_{i+1} - x_i = h$, geteilt und Näherungen y_i für die exakte Lösung $y(x_i)$ gesucht.

1. Euler-Verfahren

Man konstruiere für die Lösung

$$y(x_i) = y_0 + \int_{x_0}^{x_1} f(t, y(t))dt$$

Näherungswerte y, in den man das Integral

- a) durch ein Rechteck (auf 2 verschiedene Weisen)
- b) durch ein Trapez

annähert. Welcher Fehler (lokaler Abbruchfehler) $y(x_1) - y_1 = \epsilon_1$ tritt auf. Man beschreibe daraus resultierende numerische Methoden und bewerte sie bezüglich Aufwand und Genauigkeit.

- 2. Berechnen Sie die Lösung des AWP y' = 1 x + 4y(x), y(0) = 1

 - a) mit dem Euler-Vorwärts-Verfahren $y_{n+1} = y_n + hf(x_n, y_n)$ b) mit der Heunschen Formel $y_{n+1} = y_n + \frac{hy'_n + f(x_n + h, y_n + hy'_n)}{2}$

für die Schrittweite h = 0.1 im Intervall [0, 1] und vergleichen Sie mit der exakten Lösung.

- 3. Betrachten Sie das AWP $y' = \cos 5\pi x$, y(0) = 1.
 - a) Bestimmen Sie Näherungswerte für y(x) mit dem Eulerschen Verfahren für x = 0, 2, 0, 4, 0, 6 und zeichnen Sie Näherung und exakte Lösung.
 - b) Wiederholen Sie a), jedoch mit h=0,1.
 - c) Bestimmen Sie einen Wert für h, so daß der lokale Abbruchfehler kleiner als 0,05 im Intervall [0, 1] ist.
- 4. Gegeben sei das AWP y' = x + y 3, y(0) = 2. Berechnen Sie die exakte Lösung und vergleichen Sie diese mit der Lösung des AWP y' = x + y - 3, y(0) = 2,001. Welche Schlußfolgerungen ergeben sich für numerische Verfahren?

5. Runge-Kutta-Verfahren

Das Runge-Kutta-Verfahren ist definiert durch

$$y_{n+1} = y_n + \frac{h}{6}(k_{n_1} + 2k_{n_2} + 2k_{n_3} + k_{n_4})$$

wobei

$$k_{n_1} = f(x_n, y_n)$$

$$k_{n_2} = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_{n_1})$$

$$k_{n_3} = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_{n_2})$$

$$k_{n_4} = f(x_n + h, y_n + hk_{n_3})$$

a) Man löse die beiden folgenden AWP damit

a1)
$$y' = 1 - x + 4y, y(0) = 1$$
 für $x \in [0, 1], h = 0.2$

a2)
$$y' = x^2 + e^y$$
 $y(0) = 0$ für $x \in [0, 1], h = 0.2$

- b) Zusatzaufgabe: Man zeige mit MAPLE, daß der lokale Abbruchfehler von der Ordnung h^5 ist.
- 6. Gegeben ist das AWP $y' = 1 x + y, y(x_0) = y_0.$
 - a) Zeigen Sie unter Verwendung der Euler-Formel, daß $y_k = (1+h)y_{k-1} + h hx_{k-1}$ k=1,2,... gilt.
 - b) Zeigen Sie, daß unter Beachtung von $y_1 = (1+h)(y_0 x_0) + x_1$ gilt: $y_n = (1+h)^h(y_0 x_0) x_n$
 - c) Betrachten Sie einen festen Punkt $x > x_0$ und wählen Sie $h = (x x_0)/n$ für ein gegebenes n. Zeigen Sie unter Benutzung von b), daß die Näherung gegen die exakte Lösung konvergiert.