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1 Introduction
Radon Transforms. Tomographic methods like computed tomography, positron emis-
sion tomography, and X–ray tomography are well established and frequently used tech-
niques in material science and medicine . They all base on the inversion of the one–
dimensional Radon transform in Rd, d ∈ N,

R : Cc(Rd)→ C(Rd × Sd−1), Rf(x, ξ) =

∫
R
f(x + τξ) dτ.

The inversion of the Radon transform in Rd is a classical ill–posed problem and has
been analyzed by numerous authors (e.g. by Natterer, 1986; Gardner, 1995; Ramm and
Katsevich, 1996).

A generalization of the one–dimensional Radon transform for the Lie–group SO(3) of
all rotations in the three–dimensional Euclidean space is defined by

R : C(SO(3))→ C(S2 × S2), Rf(h, r) =

∫
G(h,r)

f(g) dg

where
G(h, r) = {g ∈ O(3) | gh = r }, h, r ∈ S2,

defines a parameterization of all geodesics in SO(3). Its inversion is a key problem in
quantitative texture analysis (QTA).

Quantitative Texture Analysis. The goal of QTA is the quantification of crystallo-
graphic preferred orientations in polycrystalline materials. In QTA two functions are
used to describe crystallographic preferred orientations in a specimen — the orien-
tation density function (ODF) f ∈ C(SO(3)) and the pole density function (PDF)
P ∈ C(S2 × S2). We assume here that the ODF and the PDF are continuous functions
to avoid the problem of undefined pointwise evaluation for functions in L1(SO(3)) and
L1(S2 × S2). This issue is discussed in more detail in Section 4.2. The ODF g → f(g)
is used to model the distribution of crystal orientations g ∈ SO(3) by volume within
the polycrystalline specimen whereas the PDF (h, r) 7→ P (h, r) is used to model the
distribution of the crystal lattice plane normal vectors h ∈ S2 that are in line with the
direction r ∈ S2 by volume. Updating the rather symbolic notation by Roe (1965) and
Bunge (1965) the relationship between the ODF f and the PDF P assigned to a specific
specimen has been expressed in terms of the one–dimensional Radon transform on SO(3)

P (h, r) = X f(h, r) =
1

2

(
Rf(h, r) +Rf(−h, r)

)
, (1.1)
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1 Introduction

by Schaeben and v.d. Boogaart (2003).
Since the PDF P (hi, rij) is experimental accessible for discrete directions hi, rij ∈ S2,

i = 1, . . . , N , j = 1, . . . , Ni by diffraction techniques an estimate of the ODF can be
obtained by solving the inverse problem

X f(hi, rij) = P (hi, rij), i = 1, . . . , N, j = 1, . . . , Ni. (1.2)

However, the exact values for P (hi, rij) are generally not known and only diffraction
counts are available. These diffraction counts differ from the exact values of P (hi, rij) by
unknown measurement errors, an in general known background radiation and unknown
normalization coefficients. The latter depend only on the specific crystal lattice plane
hi, i = 1, . . . , N but not on the direction rij, j = 1, . . . , Ni.

The objective of this thesis is to analyze whether and to which extent an ODF can
be reconstructed from those diffraction counts. Eventually we derive an algorithm for
ODF estimation that allows for arbitrary measurement designs, robust estimation of the
normalization coefficients and the estimation of ODFs with very sharp peaks, i.e. with
peaks that have a halfwidth less then five degrees. For these purposes the following road
map was processed.

Functions on S2 and SO(3). In Chapter 2 we introduce harmonic functions on the
domains S2, S2 × S2, SO(3) and O(3) with special emphasis on their relationships.
Moreover we construct Sobolev–Hilbert spaces over these domains following the approach
of Freeden (1998), characterize them in terms of the Laplace–Beltrami operator and
formulate the corresponding lemma of Sobolev.

The Radon Transform on SO(3). Chapter 3 compiles the basic properties of the
Radon transform on SO(3). Based on the Fourier representation of the Radon transform
on SO(3) we characterize it in Theorem 3.10 as an isomorphism between specific Sobolev–
Hilbert spaces on the domains SO(3) and S2 × S2 and clarify the ill posedness of the
inversion problem (1.2) according to Louis (1989). In Proposition 3.11 we extend the
characterization of the range of the Radon transform as given by Nikolayev and Schaeben
(1999) to the case of Sobolev–Hilbert spaces. In Theorem 3.16 we characterize the
adjoint operator of the Radon transform as an integral operator and derive a classical
inversion formula for the Radon transform on SO(3) (cf. Helgason, 1984, Theorem 3.13).
Moreover we prove in Theorem 3.19 that the inversion of the Radon transform is not a
local operator. Finally, we extend the Radon transform on SO(3) to the class of absolute
integrable functions L1(SO(3)) (cf. Theorem 3.20) and to quotient spaces SO(3)/Q,
where Q ⊆ SO(3) is a finite subgroup. The subgroup Q is later used to model crystal
symmetries.

A second point in Chapter 3 are radially symmetric functions on the domains S2 and
SO(3). It is well known that the Radon transform maps radially symmetric functions
on SO(3) onto radially symmetric functions on S2. This relationship can be expressed
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1 Introduction

either by an integral equation (cf. Lemma 3.7) or in terms of Chebyshev and Legendre
coefficients (cf. Lemma 3.13). In combination both of the connections provide a mean
to derive explicit formulae and recurrence formulae for radially symmetric function on
one of the domain if the corresponding explicit formulae and recurrence formulae on the
just other domain are known. This method has been applied in Section 3.4 to the Abel–
Poisson kernel, the de la Vallée Poussin kernel, the von Mises–Fisher kernel and the
locally supported kernel. This way we extend the the list of pairs of radially symmetric
functions on SO(3) and S2 given by Matthies et al. (1987), Schaeben and v.d. Boogaart
(2003) and others.

The PDF–to–ODF Inversion Problem. In Sections 4.1 and 4.2 we give a brief account
to diffraction at crystallographic lattice planes and derive a simple statistical model for
diffraction at polycrystalline specimen based on the Poisson distribution (cf. equation
(4.6)). Based on this model we formulate the PDF–to–ODF inversion problem as a
parameter estimation problem for a given random sample of diffraction counts.

In Section 4.3 we discuss the inherent ambiguity of the PDF–to–ODF inversion prob-
lem. In particular, we analyze the impact of distinct origins for its ambiguity which
are: Friedel’s law, the kernel of the Radon transform on O(3), the clustered sampling
design, superposed pole figures, unknown normalization coefficients, and measurement
errors (cf. Wenk et al., 1987) and illustrate them by examples. In particular, we show
in Proposition 3.11 that the range of ODFs that corresponds to a specific PDF is in
general unbounded with respect to the maximum norm and the L2–norm, but bounded
with respect to the L1–norm.

In Section 4.4 we are concerned with the question about the variation width of solu-
tions of the inverse problem (1.1) for a given number of complete and exact pole figures
P (hi, ◦), i = 1, . . . , N . This question was first posed by Matthies (1982) and first numer-
ical results where obtained by Schaeben (1994). Our approach is based on the concept
of the concentration of a density function in a certain subset of its domain with respect
to a weighting function (cf. Definition 4.13). In Theorem 4.14 we give lower and upper
bounds for the concentration of an ODF in terms of concentrations of corresponding pole
figures. In the subsequent paragraphs Theorem 4.14 is applied to the cases of triclinic
and orthorhombic crystal symmetry and explicit inequalities about the variance of the
ODF and about its mass that is concentrated in a neighborhood of a specific orientation
are given (cf. Proposition 4.21 and 4.22).

In Section 4.5 a statistical approach to the PDF–to–ODF inversion problem is dis-
cussed. The ODF estimator that is derived in this section differs from the non negatively
constrained, regularized least squares approach (cf. Bernier and Miller, 2006) only by
some weights that are chosen according to the variance of the measurement error of the
diffraction counts. Moreover, the presented estimator (4.32) incorporates the normal-
ization coefficients as unknown parameters, i.e. they are estimated simultaneously. We
call this estimator modified least squares ODF estimator (MLS ODF estimator).
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1 Introduction

Implementation of the MLS ODF Estimator. Chapter 5 is devoted to the numerical
implementation of the MLS ODF estimator presented in Section 4.5. In contrast to the
commonly chosen discretisations of the function space of ODFs by harmonic functions
(Bunge, 1969), indicator functions (Schaeben, 1994), or finite elements (Bernier and
Miller, 2006) we propose a discretisation by radially symmetric functions. Based on
this discretisation we adapt the modified steepest descent algorithm to the MLS ODF
estimator (4.32) and derive Algorithm 5. In Theorem 5.17 we prove that Algorithm 5 has
the numerical complexity O(N̄ +M +L3 ln2 L) per iteration where N̄ denotes the total
number of measured diffraction counts, M denotes the total number of ansatz functions
of the discretisation, and L denotes the bandwidth of the ansatz functions. Algorithm 5
makes use of the non–equispaced fast Fourier transform on the domains SO(3) and S2.
These Fourier techniques are introduced in Section 5.1 following the works of Potts and
Steidl (2003); Keiner (2005); Vollrath (2006).

In the final Sections 5.4 and 5.5 Algorithm 5 is tested for various settings of input
data and parameters. In particular we show that Algorithm 5 is well suited for the
estimation of sharp ODFs and diffraction data measured for highly irregular sampling
layouts. Case studies of Algorithm 5 applied to two real world problems, presented in
Section 5.5, complete the thesis.

Danksagung. Die Arbeit wäre nicht zustande gekommen ohne die tolle Betreuung
durch Prof. Dr. H. Schaeben. Er war nicht nur der Initiator der Arbeit, sondern hat
auch in vielen fruchtbaren Diskussionen immer neue Ideen und Richtungen aufgezeigt.
Insbesondere habe ich es Prof. Dr. H. Schaeben zu verdanken, dass die Arbeit auch
unter Geologen und Materialwissenschaftlern Interesse und Anwendung findet. Nicht zu
vergessen ist außerdem sein nimmermüder Kampf mit dem Ralf’schen Englisch und die
Tatsache, dass er mir in unglaublicher Weise den Rücken freigehalten hat, so dass ich
mich in den vergangenen Jahren ausschließlich der Promotion widmen konnte.

Entscheidend zum Gelingen der Arbeit hat das Dreigespann Prof. Dr. J. Prestin, Prof.
Dr. D. Potts und Prof. Dr. K. G. van den Boogaart beigetragen. Die Diskussionen mit
ihnen waren für mich immer eine große Bereicherung und ein großes Vergnügen. Sich
haben mich vor allem dazu angeregt, dass Problem aus vielen verschiedenen Blickwinkeln
zu betrachten. Der Lübecker und Chemnitzer Arbeitsgruppe möchte ich weiterhin für
die Bereitstellung der NFFT–Bibliothek danken, sowie für alle Diskussionen über schnelle
Algorithmen. Ohne ihr algorithmisches und softwaretechnisches Knowhow wäre die
Implementierung der in der Arbeit vorgestellten Methode nicht möglich gewesen.

Entscheidend zum theoretischen Teil dieser Arbeit haben außerdem Dr. S. Bern-
stein und Dr. J. Wirth beigetragen, denen ich für die erhellenden Diskussionen danken
möchte.

I was very glad to cooperate with Dr. D. Chateigner, Dr. J. Fundenberger, Dr. U.
Garbe, Dr. F. Heilbronner, Dr. D. Nikolaev, Dr. C. Scheffzück and Dr. K. Walter. As

4



1 Introduction

material scientists, geologists and physicists they gave me an understanding about the
practical point of texture analysis. In particular, they provided me with real world data
to test my algorithm.

Danken möchte ich auch allen Bewohnern der 3. Etage des Humboldt–Baus für all die
lustigen Zeiten zwischendurch und insbesondere allen Essengehern und Frisbeespielern,
welche mich immer wieder der Krake Computer entrissen haben.

Zu großem Dank bin ich der Deutschen Forschungsgesellschaft für die finanzielle Unter-
stützung meiner Dissertation im Rahmen des Projektes ”Hochauflösende Texturanalyse”
SCHA 465/15 und PR 331/11 verpflichtet.
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2 Functions on S2 and SO(3)
In this introductory chapter we provide some basic notations concerning
the two–dimensional sphere S2 and the rotational group in three dimensions
SO(3), and compile some basic facts about special functions on both domains.
The major special functions on the sphere S2 are the spherical harmonics
which are closely related to the Legendre polynomials on the interval [−1, 1].
Following the books by Freeden (1998) and Müller (1966) we give an outline
of their basic properties. Analogously we proceed with the Chebyshev polyno-
mials and the Wigner functions on SO(3). Here our approach is based on
representation theory as presented in the books by Helgason (1999), Gurarie
(1992) or Vilenkin and Klimyk (1991). We complete this chapter by intro-
ducing the Laplace–Beltrami operator on the domains S2 and SO(3) which
leads us to Sobolev spaces and pseudodifferential operators.

2.1 Parameterization of the Domains S2 and SO(3)
The Sphere. All through this thesis we denote by e1, e2, e3 ∈ R3 the canonical basis in
R3 and by S2 = { ξ ∈ R3 | ‖ξ‖ = 1 } the two–dimensional unit sphere. Every element
ξ = ξ1e1 + ξ2e2 + ξ3e3 ∈ S2 of the two–dimensional sphere can be described by its polar
coordinates (θ, ρ) ∈ [0, π]× [0, 2π) which are defined by the equality

ξ = sin θ cos ρ e1 + sin θ sin ρ e2 + cos θ e3.

Let ξ, ξ′ ∈ S2 be two unit vectors and (θ, ρ), (θ′, ρ′) ∈ [0, π] × [0, 2π) its polar coor-
dinates. Then the inner product ξ · ξ′ and the angle ](ξ, ξ′) between both vectors are
related to each other by

ξ · ξ′ = cos ](ξ, ξ′) = cos θ cos θ′ + sin θ sin θ′ cos(ρ− ρ′). (2.1)
Let S1, S2 ⊆ S2 be two subsets of S2. Then we define the angle between both sets as the
minimal angle between any two points of both sets

](S1, S2) = inf
ξ∈S1, ξ′∈S2

](ξ, ξ′).

The canonical surface element dξ of the two–dimensional sphere reads in polar coordi-
nates as dξ = dρ ∧ sin θ dθ and one verifies∫

S2

1 dξ =

∫ π

0

∫ 2π

0

1 dρ sin θ dθ = 4π. (2.2)

6



2 Functions on S2 and SO(3)

The Rotational Group. We denote the group of real valued, orthogonal 3×3 matrixes
by O(3) and the subgroup of all matrixes with determinant 1 by SO(3) ⊆ O(3). The
elements of SO(3) can be interpreted as proper rotations in R3. The group O(3) addi-
tionally contains the concatenations of proper rotations and the inversion −Id ∈ O(3)
which are sometimes called improper rotations.

Parameterization of the group SO(3) can be done in various ways. The most intuitive
possibility of parameterization is to specify a rotation g ∈ SO(3) by a rotational axis
η ∈ S2 and a rotational angle ω ∈ [0, π]. We will write g = Rotη(ω) in this case. Let
g ∈ SO(3). Then the rotational angle ]g of g is well defined and satisfies

]g = arccos
−1 + Trg

2
,

where Trg denotes the trace of the matrix g.
Let Rotη1(ω1) and Rotη2(ω2) be two rotations with rotational axes η1,η2 ∈ S2 and

rotational angles ω1, ω2 ∈ [0, π], respectively. Then the concatenation of both rotations
yields a rotation

Rotη3(ω2) = Rotη1(ω1)Rotη2(ω2)

with rotational axis η3 ∈ S2 and rotational angle ω3 ∈ [0, π] given by

η3 = sin
ω1

2
cos

ω2

2
η2 + sin

ω2

2
cos

ω1

2
η1 + cos

ω1

2
cos

ω2

2
η1 × η2, (2.3)

cos
ω3

2
= cos

ω1

2
cos

ω2

2
− sin

ω1

2
sin

ω2

2
η1 · η2. (2.4)

The rotational angle between two rotations g1,g2 ∈ SO(3)

](g1,g2) := ]g−1
1 g2

defines a metric on the group SO(3). Analogously to the spherical case we define the
distance of two subset S1, S2 ⊆ SO(3) as

](S1, S2) = inf
g1∈S1,g2∈S2

](g1,g2).

Application of a rotation g ∈ SO(3) to a three–dimensional unit vector ξ ∈ S2 yields a
three–dimensional unit vector gξ ∈ S2 and we have for any two rotations g1,g2 ∈ SO(3)
and for any two unit vectors ξ1, ξ2 ∈ S2 the continuity inequality

](g1ξ1,g2ξ2) ≤ ](g1,g2) + ](ξ1, ξ2). (2.5)

Using the parameterization in terms of a rotational axis η ∈ S2 and a rotational angle
ω ∈ [0, π] the vector Rotη(ω) ξ can be expressed as

Rotη(ω) ξ = cosω ξ + sinω η × ξ + (1− cosω)(η · ξ)η.

7



2 Functions on S2 and SO(3)

The canonical volume element on SO(3) given by dg = 4 dη∧sin2 ω
2

dω in terms of the
rotational axis rotational – angle parameterization g = Rotη(ω) establishes a rotational
invariant measure on SO(3) which due to∫

SO(3)

1 dg = 4

∫ π

0

∫
S2

1 dη sin2 ω

2
dω = 8π2 (2.6)

is normalized to 8π2 in contrast to the classical chosen normalization of Haar measures.
Euler angles provide an alternative parameterization of rotations. In our paper we

utilize them for an explicit formula of the Wigner functions on SO(3) (cf. Section 2.5)
and for the visualization of functions defined on SO(3). Since there are miscellaneous
conventions of Euler angles we have to stick to a specific one. In our work we will follow
the convention by Matthies et al. (1987), Varshalovich et al. (1988) or Kostelec and
Rockmore (2003) where the Euler angles (α, β, γ) with α, γ ∈ [0, 2π) and β ∈ [0, π] of a
rotation g ∈ SO(3) are defined such that the following equation is satisfied

g = Rote3(α)Rote2(β)Rote3(γ).

One verifies this convention of Euler angles is consistent with polar coordinates in S2 in
the sense that the vector Rote3(α)Rote1(β)Rote3(γ) e3 is given in polar coordinates by
(β, α).

There are a lot of other parameterizations of SO(3) like Rodriguez parameters, Cayley–
Klein parameters, quaternions and Miller indices each of which has its special advantages.
However since we will not make explicit use of them we rather refer to the works of
Morawiec (2004, Sec. 2) and Meister and Schaeben (2004).

2.2 Legendre Polynomials
The Legendre polynomials Pl : [−1, 1] → R, l ∈ N0, are the key special functions in
harmonic analysis on the two–dimensional sphere. They are characterized as classical
orthogonal polynomials on the interval [−1, 1] by the properties

1. Pl is a polynomial of degree l,

2.
∫ 1

−1
Pl(t)Pl′(t) dt = 2

2l+1
δl,l′ for l, l′ ∈ N+

and hence establish an orthogonal basis in L2([−1, 1]). Let f ∈ L2([−1, 1]). Then f has
a well defined series expansion

f =
∞∑
l=0

f̂(l)Pl

with Legendre coefficients f̂(l), l ∈ N0, determined by

f̂(l) =
2

2l + 1

∫ 1

−1

f(t)Pl(t) dt. (2.7)

8



2 Functions on S2 and SO(3)

By property 2 the Legendre polynomials are normed to Pl(1) = 1, l ∈ N0. The
three–term recurrence satisfied by the Legendre Polynomials reads

(l + 1)Pl+1(t) + lPl−1(t) = (2l + 1)tPl(t), t ∈ [−1, 1], l ∈ N0, (2.8)

with initial polynomials P−1 = P0 = 1. The derivatives of the Legendre polynomials
satisfy the recurrence formula (cf. Freeden, 1998, Sec. 3.2)

d
dt

(
Pl+1(t)− Pl−1(t)

)
= (2l + 1)Pl(t), t ∈ [−1, 1]. (2.9)

In the next section we will also need the associated Legendre Polynomials Pkl : [−1, 1]→
R, l, k ∈ N0, k ≤ l, which are defined as the derivatives of the Legendre polynomials by

Pkl (t) =

(
(l − k)!
(l + k)!

)1/2

(1− t2)k/2 d
k

dtk
Pl(t), t ∈ [−1, 1].

2.3 Spherical Harmonics
The following summary on spherical harmonics is taken from the monograph by Freeden
(1998). Let ξ ∈ S2 and let (θ, ρ) ∈ [0, π]× [0, 2π) be its polar coordinates. Then for any
l ∈ N0 and k = −l, . . . , l, the spherical harmonics of degree l are defined as

Ykl (ξ) =

√
2l + 1

4π
P |k|l (cos θ)eikρ.

The subspace Harml(S2) = span
{
Y−ll , . . . ,Y ll

}
of all spherical harmonics with a fixed

degree l ∈ N0 is called harmonic space of degree l. The harmonic spaces Harml(S2),
l ∈ N0 provide a complete system of rotational invariant, irreducible subspaces of L2(S2),
i.e.

L2(S2) = closL2

∞⊕
l=0

Harml(S2)

and for every rotation g ∈ SO(3) and every function f ∈ Harml(S2), l ∈ N0, we have
f(g ◦) ∈ Harml(S2). Moreover, the spherical harmonics satisfy the orthogonality rela-
tionship ∫

S2

Ykl (ξ)Yk
′

l′ (ξ) dξ = δll′δkk′ ,

and hence, the function system Ykl , l ∈ N0, k = −l, . . . , l forms an orthonormal basis
of L2(S2). We define the Fourier coefficients f̂(l, k) of a function f ∈ L2(S2) as the
coefficients with respect to the basis of spherical harmonics, i.e.

f̂(l, k) =

∫
S2

f(ξ)Ykl (ξ) dξ, l ∈ N0, k = −l, . . . , l.

9



2 Functions on S2 and SO(3)

For the vector of functions (Y−ll , . . . ,Y ll )T we will write just Yl. The well known addition
theorem can now be expressed as

2l + 1

4π
Pl(ξ · η) = Yl(ξ)TYl(η), η, ξ ∈ S2, l ∈ N0. (2.10)

Definition 2.1. A function f : S2 → R is called radially symmetric with center ξ0 ∈ S2

if it exists a function F : [−1, 1]→ R such that

f(ξ) = F (ξ · ξ0), ξ ∈ S2,

i.e. if f(ξ) depends only on the angle between ξ and ξ0.

Lemma 2.2. For any radially symmetric function Yl ∈ Harml(S2) with center ξ0 ∈ S2

we have
Yl(ξ) = Yl(ξ0)Pl(ξ · ξ0), ξ ∈ S2. (2.11)

Let f ∈ L2(S2) be a radially symmetric function with center ξ0 ∈ S2. Then

F (ξ · ξ0) = f(ξ), ξ ∈ S2, (2.12)

defines a square integrable function F ∈ L2(S2) and the mapping f 7→ F defines an
isomorphism between the subspace of radially symmetric functions in L2(S2) with center
ξ0 and the space L2([−1, 1]). In particular, f has a well defined expansion into Legendre
polynomials

f(ξ) =

(
∞∑
l=0

F̂ (l)Pl

)
(ξ · ξ0), ξ ∈ S2, (2.13)

where F̂ (l), l ∈ N0 are the Legendre coefficients of the F .

Proof. Since the harmonic space Harml(S2) is irreducible the subspace of radially sym-
metric functions with center ξ0 ∈ S2 in Harml(S2) is one–dimensional. Due to the
addition theorem this subspaces is spanned by the Legendre polynomial Pl(ξ0 · ◦) which
implies equation (2.11).

With F : [−1, 1]→ R as defined in equation (2.12) we have∫
S2

|f(ξ)|2 dξ =

∫
S2

|F (ξ · ξ0)|2 dξ =

∫ π

0

|F (cos θ)|2 sin θ dθ =

∫ 1

−1

|F (t)|2 dt

and hence f 7→ F is the described isomorphism.

An important consequence of Lemma 2.2 is the following spherical mean value theorem
(cf. Freeden, 1998, equation 3.6.15).

10



2 Functions on S2 and SO(3)

Theorem 2.3 (spherical mean value theorem). Let l ∈ N0 and ξ, ξ0 ∈ S2. Then every
harmonic function Yl ∈ Harml(S2) of order l ∈ N0 satisfies

1

2π

∫ 2π

0

Yl(Rotξ0(ω)ξ) dω = Pl(ξ · ξ0)Yl(ξ0). (2.14)

Proof. The integral on the left hand side of equation (2.14) defines a radially symmetric
function in Harml(S2) with center ξ0. Now the assertion follows from equation (2.11).

The Funk–Hecke formula generalizes the spherical mean value theorem to convolutions
with arbitrary absolutely integrable, radially symmetric functions. However, we will
formulate it only for square integrable functions and refer for a complete proof to Freeden
(1998, Theorem 3.6.1).

Theorem 2.4 (Funk–Hecke). Let f ∈ L2(S2) be a radially symmetric function with
center ξ0 ∈ S2 and let F : [−1, 1] → R be defined by F (ξ0 · ξ) = f(ξ). Then for any
l ∈ N0, k = −l, . . . , l we have

2l + 1

4π

∫
S2

F (ξ0 · ξ)Ykl (ξ) dξ = F̂ (l)Ykl (ξ0), (2.15)

where F̂ denotes the Legendre coefficients of F . Let η ∈ S2 be some unit vector. Then
the Funk–Hecke formula reads as

2l + 1

4π

∫
S2

F (ξ · ξ0)Pl(ξ · η) dξ = F̂ (l)Pl(η · ξ0). (2.16)

Proof. By the addition theorem we have for all l ∈ N0, k = −l, . . . , l the equality

2l + 1

4π

∫
S2

Pl(ξ · ξ0)Ykl (ξ) dξ =

∫
S2

(
l∑

k′=−l

Yk′l (ξ0)Yk
′

l (ξ)

)
Ykl (ξ) dξ = Ykl (ξ0).

Expanding F into its Legendre series and taking into account the orthogonality of the
harmonic spaces Harml(S2) we obtain equation (2.15).

Equation (2.16) follows directly from equation (2.15) by multiplication with Ykl (η)
and summation over all k = −l, . . . , l.

2.4 Chebyshev Polynomials
The Chebyshev polynomials of second kind Ul : [−1, 1] → R are of similar importance
for harmonic analysis on the rotational group SO(3) as the Legendre polynomials are
for harmonic analysis on the two–dimensional sphere. They are defined as orthogonal
polynomials on the interval [−1, 1] with respect to the weighting function t 7→

√
1− t2,

i.e. the Chebyshev polynomials of second kind are defined by the properties

11
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1. Ul : [−1, 1]→ R is a polynomial of degree l,

2.
∫ 1

−1
Ul(t)Ul′(t)

√
1− t2 dt = π

2
δl,l′ for l, l′ ∈ N+.

Consequently, any function f ∈ L2([−1, 1],
√

1− t2) has a well defined series expansion

F =
∞∑
l=0

F̂ (l)Ul

with Chebyshev coefficients F̂ (l), l ∈ N0 determined by

F̂ (l) =
2

π

∫ 1

−1

F (t)Ul(t)
√

1− t2 dt. (2.17)

Substituting t by cosω the Chebyshev polynomials have a simple representation in
terms of trigonometric functions

Ul(cosω) =
sin(l + 1)ω

sinω
. (2.18)

In particular, we have for the Chebyshev polynomials of odd degree l ∈ 2N0 + 1

Ul(0) = 0, Ul(1) = l + 1, Ul(−1) = −(l + 1),

and for the Chebyshev polynomials of even degree l ∈ 2N0

Ul(0) = (−1)
l
2 , Ul(1) = l + 1, Ul(−1) = l + 1.

Moreover, the Chebyshev polynomials satisfy the following recurrence formulae (cf.
Szegö, 1992, Sec. 4.5)

Ul+1(t) = 2tUl(t)− Ul−1(t), (2.19)
Ul+2(t) = (4t2 − 2)Ul(t)− Ul−2(t), (2.20)

(1− t2) d
dtUl(t) = −ltUl(t) + (l + 1)Ul−1(t), (2.21)

2t(1− t2) d
dtUl(t) = (l + 1− 2lt2)Ul(t) + (l + 1)Ul−2(t) (2.22)

with initial polynomials U0 = 1 and U1(t) = 2t.
The subspace of even functions in L2([−1, 1],

√
1− t2) can be identified with the space

of radially symmetric functions in L2(SO(3)).

Definition 2.5. A function f : SO(3) → R is called radially symmetric with center
g0 ∈ SO(3) if f(g) = f(g′) for all g,g′ ∈ SO(3) satisfying ](g,g0) = ](g′,g0), i.e. if
f(g) depends only on the rotational distance of g to g0. A radially symmetric function
on SO(3) with center g0 = Id is called conjugate invariant.

12
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Lemma 2.6. Let for any radially symmetric function f ∈ L2(SO(3)) with center g0 ∈
SO(3) the function F : [−1, 1]→ R be defined by

F (t) = f(g), t ∈ [−1, 1], g ∈ SO(3), with |t| = cos ](g,g0)
2

.

Then the mapping f 7→ F defines an isomorphism between the subspace of radially
symmetric functions in L2(SO(3)) with center g0 and the subspace of even functions in
L2([−1, 1],

√
1− t2). In particular f allows for the series expansion

f(g) =

(
∞∑
l=0

F̂ (2l)U2l

)(
cos ](g,g0)

2

)
, g ∈ SO(3), (2.23)

where F̂ (2l), l ∈ N0 are the even order Chebyshev coefficients of F .

Proof. Let f ∈ L2(SO(3)) and F ∈ L2([−1, 1]) be defined as above. Then we have∫
SO(3)

|f(g)|2 dg = 16π

∫ π

0

∣∣F (cos ω
2
)
∣∣2 sin2 ω

2
dω = 16π

∫ 1

−1

|F (t)|2
√

1− t2 dt.

Since F is an even function in L2([−1, 1]) all odd order Chebyshev coefficients are zero
and we obtain representation (2.23).

2.5 Wigner Functions
This section gives a short summary about harmonic analysis on the rotational group
SO(3). Although most of the results presented in this section are known in the much
more general context of Lie–groups we give an elementary outline close to the approach
in Gurarie (1992, Sec. 4.4) with special emphasis on the relationship to the spherical
harmonics. The reader interested in the general theory is referred to the books Vilenkin
and Klimyk (1991) and Helgason (1984).

The central concept in harmonic analysis are group representations.

Definition 2.7. A representation of a group G on a vector space V is a group homo-
morphism from G to GL(V ), the general linear group over V .

Let V, V1 and V2 be vector spaces over the field K. Two representations π : G →
GL(V1) and π′ : G → GL(V2) are called equivalent π ∼ π′ if there is an isomorphism
A : V1 → V2 such that π ◦A = A◦π′. A subspace U ⊆ V is called invariant with respect
to a representation π : G → GL(V ) if π(g)U ⊆ U for all g ∈ G. A representation is
called irreducible if GL(V ) does not contain any nontrivial invariant subspace. A central
problem in harmonic analysis is to find all irreducible representations of a certain group
G modulo equivalence, i.e. to find a complete system of irreducible representations of
the group G.

13



2 Functions on S2 and SO(3)

Let {vi ∈ V | i = 1, . . . , dimV } be some basis in V . Then the matrix entries of a
representation π : G→ GL(V ) are defined by

πij(g) = 〈π(g)vj,vi〉 , i, j = 1, . . . , dimV, g ∈ G

and the character of π is defined by

χπ(g) =
dimV∑
i=1

πii(g), g ∈ G.

We note that the matrix entries πij : G → K as well as the character χπ : G → K are
functions from G into the field K of the vector space V . Additionally the character χπ
of a representation π is conjugate invariant, i.e. χπ(gg′g−1) = χπ(g

′).
The question for all irreducible representations of a group G becomes significantly

easier if G is compact. In this case there exists a unique (up to multiplication by a
positive constant) left invariant Haar measure µ on G. The crucial point is to treat
the matrix elements and the characters of representations of the group G as functions
in L2(G, µ). The following Peter–Weyl theorem provides a complete characterization of
the orthogonality relations of matrix elements and characters in L2(G, µ).

Theorem 2.8 (Peter–Weyl). Let G be a compact group and let µ be a Haar measure on
G. Then it applies

1. Any irreducible representation of G is finite dimensional.

2. The matrix entries of two representations π, π′ of the group G satisfy the orthogo-
nality relation ∫

G

πij(g)π′mn(g) dµ(g) =

{
µ(g)
dimπ

δijδmn, if π ∼ π′,

0 if π 6= π′.

3. The characters of two representation π, π′ of the group G satisfy the orthogonality
relation ∫

G

χπ(g)χπ′(g) dµ(g) =

{
µ(G) if π ∼ π′,

0 if π 6= π′.

4. The matrix entries πij of all representations π of the group G form a complete,
orthogonal system in L2(G, µ). Its characters χπ form a complete system in the
subspace of conjugate invariant functions.

For a proof of the Peter–Weyl theorem 2.8 we refer the reader to Vilenkin and Klimyk
(1991, Chap. 7) or Gurarie (1992, Sec. 3.1). Our next objective is to use the Peter–
Weyl theorem to characterize a complete system of irreducible representations of SO(3).
This is a well studied problem in harmonic analysis and the reader can find complete
investigations in the above mentioned books. However, in view of its simplicity we prove
the next characterization lemma directly.
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Lemma 2.9. Let l ∈ N0 and Tl be the left regular representation of SO(3) into the space
of spherical harmonics of order l, i.e.

Tl : SO(3)→ GL(Harml(S2)),

Tl(g)f(ξ) = f(g−1ξ).
(2.24)

Then Tl, l ∈ N0, is a complete system of irreducible representations. Its characters are
given by

χl(g) = U2l(cos ]g
2

), g ∈ SO(3), l ∈ N0. (2.25)

Proof. Irreducibility of the representation Tl, l ∈ N0 follows from the fact that the
harmonic spaces Harml(S2) are minimal rotational invariant subspaces of L2(S2). Let
us fix the spherical harmonics Ykl , k = −l, . . . , l, as an orthonormal basis in Harml(S2).
Then the diagonal matrix entries T kkl , k = −l, . . . , l, of Tl satisfy for ω ∈ [0, 2π],

T kkl (Rote3(ω)) =

∫
S2

Ykl (Rote3(−ω)ξ)Ykl (ξ) dξ = e−ikω
∫

S2

Ykl (ξ)Ykl (ξ) dξ = e−ikω.

Since the characters of Tl are conjugate invariant, i.e. depend only on the rotational
angle of g we have

χl(g) = χl(Rote3(]g)) = TrTl(Rote3(]g)) =
l∑

k=−l

e−ik]g =
sin(2l+1

2
]g)

sin(1
2
]g)

= U2l(cos ]g
2

).

By Lemma 2.6 the functions g 7→ U2l(cos ]g
2

), l ∈ N0, form a complete, orthogonal
system in the space of conjugate invariant, square integrable functions on SO(3). We
conclude by the Peter–Weyl Theorem 2.8 that the regular representations Tl of SO(3)
into the harmonic spaces Harml(S2), l ∈ N0, form a complete system of irreducible
representations of the group SO(3).

Definition 2.10. Let l ∈ N0 and denote Tl : SO(3) → GL(Harml(S2)) the left regular
representations of SO(3) into the harmonic space Harml(S2). Then the matrix entries

T kk
′

l (g) =
〈
Yk′l (g−1 ◦),Ykl

〉
L2(S2)

=

∫
S2

Yk′l (g−1ξ)Ykl (ξ) dξ, g ∈ SO(3), (2.26)

k, k′ = −l, . . . , l, of Tl with respect to the basis of spherical harmonics Ykl , k = −l, . . . , l,
are called Wigner–D functions of degree l.

The Wigner–D functions are also known as generalized spherical harmonics (Bunge,
1969). By the Peter–Weyl Theorem 2.8 they form an orthogonal basis in L2(SO(3)).
Hence, every function f ∈ L2(SO(3)) has a unique series expansion in terms of Wigner–
D functions

f =
∞∑
l=0

l∑
k,k′=−l

(l + 1
2
)

1
2

2π
f̂(l, k, k′)T kk

′

l (2.27)
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2 Functions on S2 and SO(3)

with coefficients f̂(l, k, k′) given by the integral

f̂(l, k, k′) =
(l + 1

2
)

1
2

2π

∫
SO(3)

f(g)T kk
′

l (g) dg.

Note that the Wigner–D functions T kk′l are not normalized in the L2–sense but satisfy

∥∥T kk′l

∥∥2

L2(SO(3))
=

4π2

l + 1
2

.

The constants in the above definition are chosen such that the coefficients f̂(l, k, k′) of
f correspond to the coefficients with respect to an L2–basis.

For abbreviation we denote by Tl = (T kk
′

l )lk,k′=−l the matrix formed by the matrix
elements T kk′l , k, k′ = −l, . . . , l and arrange the symbols f̂(l, k, k′) of f in matrix form
f̂(l) = (f̂(l, k, k′))k,k′=−l,...,l, accordingly. Now the representation properties of Tl may
be rewritten in matrix notation.

Corollary 2.11. Let g,g′ ∈ SO(3), ξ ∈ S2 and l ∈ N0. Then the Wigner–D functions
are characterized by the following properties

T Tl (g)Yl(ξ) = Yl(g−1 ξ),

Tl(g)Tl(g
′) = Tl(gg

′), (2.28)

Tl(g)
T

= Tl(g
−1).

Furthermore, the Fourier coefficients f̂ and P̂ satisfy for any function f ∈ L2(SO(3))
and P ∈ L2(S2) the equalities

̂f(g−1◦)(l) = Tl(g)f̂(l) and ̂f(◦g−1)(l) = f̂(l)Tl(g),

and
̂P (g−1◦)(l) = Tl(g)P̂ (l),

respectively.

Analogously to the spherical case we define the harmonic spaces in L2(SO(3)).

Definition 2.12. Let l ∈ N0. Then the harmonic space Harml(SO(3)) of degree l is
defined as

Harml(SO(3)) = span
{
T kk

′

l | k, k′ = −l, . . . , l
}
.

Lemma 2.13. The harmonic spaces Harml(SO(3)), l ∈ N0, are rotational invariant and
irreducible in the sense that for any function f ∈ Harml(SO(3)) we have

Harml(SO(3)) = span {g 7→ f(g1 g g2) | g1,g2 ∈ SO(3)}.
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In particular, the harmonic spaces Harml(SO(3)) provide a decomposition of L2(SO(3))
into a direct sum of rotational invariant, irreducible subspaces, i.e.

L2(SO(3)) = closL2

∞⊕
l=0

Harml(SO(3)).

Proof. The rotational invariance and irreducibility is a direct consequence of the defining
equation (2.26) and the rotational invariance and irreducibility of the spherical harmonic
spaces Harml(S2).

We have already proven the rotational analogous to the spherical addition theorem
when calculating the characters of the representations Tl in Lemma 2.9. More precisely,
we have shown

Theorem 2.14 (Addition Theorem). Let l ∈ N0 and let Tl be the matrix representation
as defined in equation (2.26). Then the trace TrTl(g) depends on the rotational angle
]g of g only. In particular, we have for any g1,g2 ∈ SO(3) the equality

l∑
k,k′=−l

T kk
′

l (g1)T kk
′

l (g2) = TrTl(g1g
−1
2 ) = U2l

(
cos ](g1,g2)

2

)
.

Combining Addition Theorem 2.14 with Lemma 2.6 we obtain the following charac-
terization of radially symmetric, square integrable functions on SO(3).

Proposition 2.15. For any function f ∈ L2(SO(3)) and any rotation g0 ∈ SO(3) the
following conditions are equivalent.

1. The function f is radially symmetric with center g0 ∈ SO(3).

2. There is an even function F ∈ L2([−1, 1],
√

1− t2) such that

f(g) = F
(
cos ](g,g0)

2

)
, g ∈ SO(3).

3. There are coefficients F̂ (2l), l ∈ N0 such that f has the Fourier expansions

f =
∞∑
l=0

F̂ (2l)
l∑

k,k′=−l

T kk
′

l (g0)T
kk′

l .

4. There are coefficients F̂ (2l), l ∈ N0 such that f has the series expansions

f(g) =

(
∞∑
l=0

F̂ (2l)U2l

)(
cos ](g0,g)

2

)
, g ∈ SO(3). (2.29)
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Moreover, if one assertion holds true then the coefficients F̂ (2l), l ∈ N0 are the even
order Chebyshev coefficients of F and we have the following equivalent to the Funk Hecke
formula

F̂ (2l) =

∫
SO(3)

F
(
cos ](g,g0)

2

)
U2l

(
cos ](g,g0)

2

)
dg.

By equation (2.29) the subspace of radially symmetric functions of a certain harmonic
degree l ∈ N0 and with fixed center g0 ∈ SO(3) has dimension one and is spanned by
the functions g 7→ U2l(cos ](g0,g)

2
). This implies the following analogue to the spherical

mean value theorem 2.3.

Lemma 2.16. Let g0,g ∈ SO(3). Then the following equality is satisfied for any func-
tion f ∈ Harml(SO(3)), l ≥ 0,

1

4π

∫
S2

f (Rotη(](g0,g))g0) dη =
1

2l + 1
U2l

(
cos ](g0,g)

2

)
f(g0). (2.30)

In particular, we have for ](g,g0) = π

1

4π

∫
S2

f(Rotη(π)g0) dη =
(−1)l

2l + 1
f(g0). (2.31)

Proof. We mention that the integral on the left hand side of equation (2.30) defines a
radially symmetric harmonic function in g that has order l and center g0. Hence it is
the product of the Chebyshev function U2l(cos ](g0,g)

2
) with some factor λ ∈ R. Since

U2l(1) = 2l + 1 we conclude
λ =

1

2l + 1
f(g0).

Equation (2.31) follows from U2l(0) = (−1)l.

Let f, h ∈ L2(SO(3)). Then the convolution of f and h is defined by

(f ∗ h)(g) =

∫
SO(3)

f(gq−1)h(q) dq, g ∈ SO(3). (2.32)

By the Cauchy–Schwartz inequality we have f ∗ h ∈ L2(SO(3)) and the Fourier coeffi-
cients of f ∗ h satisfy

f̂ ∗ h(l) = 2π

(
l +

1

2

)− 1
2

f̂(l)ĥ(l), l ∈ N0. (2.33)

In fact, equality (2.33) holds true in any convolution algebra L2(G) of a compact group
G (cf. Gurarie, 1992, Sec. 3.1.4)

For the numerical evaluation of the Wigner–D functions the defining equation (2.26)
is not well suited. Fast algorithms mainly rely on representations of the Wigner–D
functions with respect to Euler angles (Kostelec and Rockmore, 2003; Vollrath, 2006).
The following representation is taken from Varshalovich et al. (1988, Chap. 4).
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Remark 2.17. Denote for some rotation g = Rote3(α)Rote1(β)Rote3(γ) the decompo-
sition into Euler angles (α, β, γ). Then the Wigner–D functions T kk′l factorize into the
Wigner–d functions dkk′l depending on β only and the exponential function depending
on α and γ:

T kk
′

l (α, β, γ) = e−ikαdkk
′

l (cos β)e−ik
′γ. (2.34)

The Wigner–d functions dkk′l : [−1, 1]→ R, l ∈ N0, k, k′ = −l, . . . , l are defined as

dkk
′

l (t) =
(−1)l−k

2l

√
(l + k′)!

(l − k′)!(l + k)!(l − k)!

√
(1− t)k−k′

(1 + t)k+k′
dl−k′

dtl−k′ (1− t)
l−k(1 + t)l+k.

2.6 The Laplace–Beltrami Operator and Sobolev Spaces
The Laplace–Beltrami Operator. Let (Ω, d) be a Riemannian manifold. Then the
Laplace–Beltrami operator 4Ω on (Ω, d) is defined in local coordinates by

4Ωf = div grad f =
1√
|d|

∑
ij

∂i
√
|d|dij∂jf, f ∈ C2(Ω), (2.35)

where |d| denotes the determinant of metric tensor d and dij the entries of its inverse.
One verifies that the definition of the Laplace–Beltrami operator does not depend on the
particular choice of the coordinate system (cf. Helgason, 1984, Sec. 2.4.2). Moreover,
the Laplace–Beltrami operator is invariant under symmetries Φ: (Ω, d) → (Ω, d), i.e.
4(f ◦ Φ) = (4f) ◦ Φ (cf. Helgason, 1984, Prop. 2.4 ). For the domains of our special
interest Ω = S2 and Ω = SO(3) this implies rotational invariance of the Laplace–Beltrami
operator.

Explicit calculation of the Laplace–Beltrami operator 4S2 on the sphere S2 in terms
of polar coordinates (θ, ρ) yields (cf. Jähnich, 1992, Sec. 13.9)

4S2 =
1

sin2 θ
∂2
ρ +

1

sin θ
∂θ(sin θ ∂θ). (2.36)

The rotational invariance of the Laplace–Beltrami operator 4S2 implies that the har-
monic spaces Harml(S2) are invariant with respect to 4S2 . Moreover, the spherical
harmonics are the eigenfunctions of 4S2 (cf. Freeden, 1998, Sec. 3.5).

Lemma 2.18. Let l ∈ N0 and k = −l, . . . , l. Then

4S2Ykl = −l(l + 1)Ykl . (2.37)

Next we want to achieve an analogous characterization of the Laplace–Beltrami oper-
ator on the rotational group SO(3). Therefore we first note that the the metric tensor
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d(α, β, γ) of the Riemannian manifold SO(3) using Euler angle parameterization has the
form (cf. Morawiec, 2004, Sec. 3.1)

d =

 1 0 cos β
0 1 0

cos β 0 1

 . (2.38)

Combining equation (2.38) and equation (2.35) we obtain the following Euler angle
representation of the Laplace–Beltrami operator on SO(3)

4SO(3) =
1

sin2 β
∂2
α +

1

sin2 β
∂2
γ +

1

sin β
∂β(sin β ∂β)− 2

cos β

sin2 β
∂α∂γ. (2.39)

This representation allows us to prove

Lemma 2.19. Let l ∈ N0, k = −l, . . . , l and denote Ykl (◦η) : SO(3) → R the function
g 7→ Ykl (gη). Then

4SO(3)Ykl (◦η) = −l(l + 1)Ykl (◦η). (2.40)

Moreover, we have for all l ∈ N0 and k, k′ = −l, . . . , l,

4SO(3)T
kk′

l = −l(l + 1)T kk
′

l . (2.41)

Proof. Due to the rotational invariance of the Laplace–Beltrami operator we can assume
without loss of generality that η = e3. Using Euler angles q = (α, β, γ) we have
qe3 = (β, α) in polar coordinates. Consequently ∂γYkl (◦ e3) = 0 and by equation (2.39)
and equation (2.36) we obtain

4SO(3)Ykl (β, α) =
( 1

sin2 β
∂2
α +

1

sin β
∂β(sin β ∂β)

)
Ykl (β, α)

= 4S2Ykl (β, α) = −l(l + 1)Ykl (β, α).

Application to the defining equation (2.26) of the Wigner–D functions proves the asser-
tion

4SO(3)T
kk′

l = 4SO(3)

∫
S2

Yk′l (◦−1 η)Ykl (η) dη =

∫
S2

Yk′l (η)4SO(3)Ykl (◦η) dη = −l(l+1)T kk
′

l .

Sobolev Spaces. Now we are ready to define Sobolev–Hilbert spaces on the domains
Ω = S2 and Ω = SO(3). For a more general definition the reader is referred to Freeden
(1998, Sec. 5.1) and Cheney and Light (1999, Section32).
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Definition 2.20 (Sobolev–spaces on S2 and SO(3)). Let s ∈ R. Then we define the
Sobolev–Hilbert space Hs(S2) to be the closure of the linear span of all spherical harmonics
Ykl , l ∈ N0, k = −l, . . . , l, with respect to the inner product〈

Ykl ,Yk
′

l′

〉
Hs(S2)

= (l + 1
2
)2sδl,l′δk,k′ .

By the Sobolev–Hilbert space Hs(SO(3)) on the rotational group we mean the completion
of the linear span of all Wigner–D functions T kk′l , l ∈ N0, k, k′ = −l, . . . , l with respect
to the inner product〈

(l + 1
2
)

1
2

2π
T kk

′

l ,
(l + 1

2
)

1
2

2π
Tmm

′

l′

〉
Hs(SO(3))

= (l + 1
2
)2sδl,l′δk,mδk′,m′ .

Remark 2.21. In the case that s = 0 we have H0(S2) = L2(S2) and H0(SO(3)) =
L2(SO(3)).

A major result in the theory of Sobolev spaces is the Lemma of Sobolev which relates
the order s of the Sobolev spaces Hs(Ω) to continuity properties of its functions. The
following spherical variant is proven in Freeden (1998, Lemma 5.2.3). The assertion with
respect to the Sobolev spaces on SO(3) might be proven using the same ideas.

Lemma 2.22 (Lemma of Sobolev). Let f ∈ Hs(S2) and s, k ∈ N0 with s > k+ 1. Then
f corresponds to a function of class C(k)(S2).

Let f ∈ Hs(SO(3)) and s, k ∈ N0 with s > k + 3
2
. Then f corresponds to a function

of class C(k)(SO(3)).

Sobolev spaces are intimately related to the Laplace–Beltrami operator on the specific
domain.

Lemma 2.23. Let s, t ∈ R and Ω = S2 or Ω = SO(3). Then (−4Ω + 1
4
)s/2 defines

an isometric operator between the Sobolev spaces Ht+s(Ω) and Ht(Ω). In particular, the
inner product in Hs(Ω) can be written as

〈f, g〉Hs(Ω) =
〈
(−4Ω + 1

4
)s/2f, (−4Ω + 1

4
)s/2g

〉
L2(Ω)

.

Proof. From Lemma 2.18 and Lemma 2.19 we conclude for any l ∈ N0 and k, k′ =
−l, . . . , l that

(−4S2 + 1
4
)Ykl = (l + 1

2
)2Ykl and (−4SO(3) + 1

4
)T kk

′

l = (l + 1
2
)2T kk

′

l .

By Definition 2.20 this implies the assertions.

The Laplace–Beltrami operator is the prototype of any invariant differential operator.
A more general class of invariant operators is formed by the pseudodifferential operators
which we define analogously to Freeden (cf. Freeden, 1998, def. 5.1.2).
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2 Functions on S2 and SO(3)

Definition 2.24. Let s, t ∈ R and let Â(l), l ∈ N0 be a real valued sequence satisfying

lim
l→∞

∣∣Â(l)
∣∣

(l + 1
2
)T

= const 6= 0.

Moreover, denote Πl : Hs(Ω) → Harml(Ω) the projection onto the harmonic space of
order l ∈ N0. Then the operator A : Hs(Ω)→ Hs−t(Ω) defined by

Af =
∞∑
l=0

Â(l)Πlf

is called invariant pseudodifferential operator of order t.

Sobolev Spaces over S2×S2. In this section we introduce Sobolev spaces over S2×S2.
They will become useful in Section 3 when we analyze the Radon transform on SO(3).

Following equation (2.35) the Laplace – Beltrami operator on S2 × S2 is defined as

4S2×S2P = 4S2,1P +4S2,2P, P ∈ C2(S2 × S2).

Here4S2,1 and4S2,2 denote the application of the spherical Laplace – Beltrami operator
to the first and second argument of a function on S2 × S2, respectively.

Analogously to Definition 2.20 and Lemma 2.23 we define the Sobolev space over
S2 × S2 by

Definition 2.25. Let s ∈ R. Then the Sobolev space Hs(S2 × S2) is defined as the
completion of the linear span of the spherical harmonics Ykl (◦1)Yk

′
l′ (◦2), l, l′ ∈ N0, k, k′ =

−l, . . . , l on S2 × S2 with respect to the inner product

〈P1, P2〉Hs(S2×S2) =
〈
(−4S2×S2 + 1

4
)s/2P1, (−4S2×S2 + 1

4
)s/2P2

〉
L2(S2×S2)

.

Remark 2.26. By Lemma 2.18 we have

4S2×S2Ykl (◦1)Yk
′

l′ (◦2) = −
(
l(l + 1) + l′(l′ + 1)

)
Ykl (◦1)Yk

′
l′ (◦1).

Hence, an orthonormal basis of Hs(S2 × S2) is given by the list of functions(
(l + 1

2
)s + (l′ + 1

2
)s
)−1Ykl (◦1)Yk

′
l′ (◦2), l, l′ ∈ N0, k = −l, . . . , l, k′ = −l′, . . . , l′.

Lemma 2.27 (Lemma of Sobolev). Let P ∈ Hs(S2×S2) and let s, k ∈ N0 with s > k+2.
Then P corresponds to a function of class C(k)(S2 × S2).

If the Fourier coefficients of P ∈ Hs(S2 × S2) satisfy P̂ (l, l′, k, k′) = 0 whenever l 6= l′

then the condition s > k + 3
2

is already sufficient for P to correspond to a function in
C(k)(S2 × S2).
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2 Functions on S2 and SO(3)

Proof. Let s > 2 and P ∈ Hs(S2 × S2). We show that the Fourier series

P (ξ,η) =
∞∑

l,l′=0

l∑
k=−l

l′∑
k′=−l′

P̂ (l, l′, k, k′)Ykl (ξ)Yk
′

l′ (η)

of P is uniformly convergent. Let L ∈ N. Then we have for any ξ,η ∈ S2∣∣∣∣∣
∞∑

l,l′=L

l∑
k=−l

l′∑
k′=−l′

P̂ (l, l′, k, k′)Ykl (ξ)Yk
′

l′ (η)

∣∣∣∣∣
2

≤

(
∞∑

l,l′=L

l∑
k=−l

l′∑
k′=−l′

(
(l + 1

2
)s + (l + 1

2
)s
)2 ∣∣∣P̂ (l, l′, k, k′)

∣∣∣2)(
∞∑

l,l′=L

l∑
k=−l

l′∑
k′=−l′

∣∣Ykl (ξ)∣∣2 ∣∣Yk′l′ (η)
∣∣2(

(l + 1
2
)s + (l′ + 1

2
)s
)2
)

≤‖P‖Hs(S2×S2)

∞∑
l,l′=L

(l + 1
2
)1−s(l′ + 1

2
)1−s.

Since the last sum converges to zero as L converges to infinity the Fourier series of P is
uniformly convergent.

If the Fourier coefficients of P satisfy P̂ (l, l′, k, k′) = 0 whenever l 6= l′ the last sum
simplifies to

∑∞
l=L(l + 1

2
)2−2s, which converges already for s > 3

2
.

In order to obtain the assertion of Lemma 2.27 for higher orders of differentiability
k ∈ N one has to show uniformly convergence of the Fourier series of P (k). This can be
done analogously.

We will need also the following trace theorem.

Theorem 2.28 (trace theorem). Let s ∈ R and η ∈ S2. Then the trace operator

τ◦1 7→ξ : Hs+ 1
2
(S2 × S2)→ Hs(S2), (τ◦1 7→ξP )(η) = P (ξ,η)

defines a linear, bounded operator for all P ∈ C(S2 × S2) and hence has a well defined
linear, bounded extension to the entire space Hs+ 1

2
(S2 × S2).

Proof. For any ξ ∈ S2 and any l, l′ ∈ N, k = −l, . . . , l, k′ = −l′, . . . , l′ we have

∥∥τ◦1 7→ξYkl (◦1)Yk
′

l′ (◦2)
∥∥
Hs(S2)

=
∣∣Ykl (ξ)∣∣ ‖Yk′l′ ‖Hs(S2) ≤

√
2l + 1

4π
(l′ + 1

2
)s

≤ (l + 1
2
)s+

1
2 + (l′ + 1

2
)s+

1
2 = ‖Ykl (◦1)Yk

′
l′ (◦2)‖H

s+1
2
(S2×S2)

and hence τ◦1 7→ξ is bounded.
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3 The Radon Transform on SO(3)
After the Radon transform was first defined for the domains Ω = S2 (cf.

Funk, 1913, 1916) and Ω = R2 (cf. Radon, 1917), as the linear operator
that relates each continuous function f ∈ Cc(Ω) to its integrals along all
great circles or straight lines, respectively, numerous generalizations have
been considered. A generalization in terms of homogeneous spaces was given
by Helgason (1999) whereas a generalization in terms of dual manifolds was
given by Gurarie (1992). The one–dimensional Radon transform on SO(3)
perfectly fits into both frameworks and some basic results (e.g. Lemma 3.15)
could be derived directly from the abstract framework. However, we obtain
most of the results presented in this section much easier relying on the specific
setting.

3.1 Definition and Basic Properties
Let (Ω, d) be a Riemannian manifold. A one–dimensional submanifold of Ω is called
geodesic if it is locally the shortest path between two points. On SO(3) the shortest path
connecting the identity Id ∈ SO(3) with any other rotation Rotη0(ω0) is ω 7→ Rotη0(ω),
ω ∈ [0, ω0] (cf. Morawiec, 2004, Sec. 3.1). Using the rotational symmetry of SO(3) we
conclude that any closed geodesic on SO(3) can be written in the form

G = {g0Rotη0(ω) | ω ∈ [0, 2π) },

where g0 ∈ SO(3) is some arbitrary rotation and η0 ∈ S2 is some arbitrary rotational
axis. In texture analysis it is common to call the geodesics of SO(3) fibres. The next
lemma provides a useful parameterization of all fibres on SO(3), i.e. of all geodesics of
SO(3).

Lemma 3.1. Let G ⊆ SO(3) be a geodesic of the Riemannian manifold SO(3). Then
there are two unit vectors h, r ∈ S2 such that

G = G(h, r) := {g ∈ SO(3) | gh = r }.

The unit vectors h, r ∈ S2 are uniquely defined modulo the symmetry G(h,−r) =
G(−h, r).
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3 The Radon Transform on SO(3)

Proof. Let g0 ∈ SO(3), η ∈ S2 and let G = {g0Rotη(ω) | ω ∈ [0, 2π) } be a geodesic
submanifold of SO(3). Then G = G(η,g0η). In order to show uniqueness we set
without loss of generality G = {Rote3(ω) | ω ∈ [0, 2π) }. For this geodesic it is clear
that G(e3, e3) and G(−e3,−e3) are the only possible choices for h ∈ S2 and r ∈ S2.

Fixing any unit vectors h0, r0 ∈ S2, the sets of geodesics G(h0, r), r ∈ S2 and G(h, r0),
h ∈ S2 are disjoint coverages of SO(3) (cf. Meister and Schaeben, 2004). Moreover,
given two different rotations g1,g2 ∈ SO(3) there is a unique geodesic G = G(h,g1h)
containing both rotations. Here h ∈ S2 denotes the rotational axis of g−1

1 g2. Manifolds
with this property are called geodesically complete.

Let f ∈ C(SO(3)) be a continuous function on SO(3). Then the integral of f along
the geodesic G(h, r) exists for all h, r ∈ S2 and depends continuously on h and r. Hence,
we are able to define:

Definition 3.2. The (one–dimensional) Radon transform on SO(3) is defined as the
integral operator

R : C(SO(3))→ C(S2 × S2),

(Rf)(h, r) =
1

2π

∫
G(h,r)

f(g) dg =
1

2π

∫ 2π

0

f(Rotr(ω)gh,r) dω,

where gh,r ∈ G(h, r) is an arbitrary rotation that maps h onto r.

In order to study invariance under group actions of the Radon transform we define
the following actions.

Definition 3.3. For any pair (g1,g2) ∈ SO(3)× SO(3) we define an action ? on SO(3)
and on S2 × S2 by

(g1,g2) ? g = g2gg−1
1 and (g1,g2) ? (h, r) = (g1h,g2r),

with g ∈ SO(3) and h, r ∈ S2.

Lemma 3.4. The Radon transform on SO(3) is invariant under the action ? of the group
SO(3)×SO(3), i.e. we have for any pair g1,g2 ∈ SO(3) and any function f ∈ C(SO(3))
the equality

(g1,g2) ? (Rf) = R
(
(g1,g2) ? f

)
.

Proof. Lemma 3.4 follows by substitution from∫
G(g1h,g2r)

f(g) dg =

∫
G(h,r)

f(g2gg
−1
1 ) dg.

25



3 The Radon Transform on SO(3)

As a direct consequence of Lemma 3.4 and the irreducibility of the harmonic spaces
Harml(S2) and Harml(SO(3)) the Radon transform maps a harmonic function on SO(3)
of a certain degree either to zero or to a harmonic function on S2×S2 of the same degree.
More precisely, we have the following fundamental lemma about the Radon transform
on SO(3) which was already mentioned by Bunge (1969, Section 11.5.2).

Lemma 3.5. Let l ∈ N0 and k, k′ = −l, . . . , l. The Radon transform of the Wigner-D
function T kk

′

l is
RT kk′l (h, r) =

2π

l + 1
2

Yk′l (h)Ykl (r), (h, r ∈ S2). (3.1)

Proof. For arbitrary l ∈ N0, k, k′ = −l, . . . , l we obtain by equation (2.26)

RT kk′l (h, r) =
1

2π

∫
G(h,r)

T kk
′

l (g) dg

=
1

2π

∫
G(h,r)

∫
S2

Yk′l (g−1η)Ykl (η) dη dg

=
1

2π

∫
S2

Yk′l (η)

∫
G(h,r)

Ykl (gη) dg dη. (3.2)

Since we have for any η,h, r ∈ S2 and g0 ∈ G(h, r)

{gη | g ∈ G(h, r) } = {Rotr(ω)g0η ∈ S2 | ω ∈ [0, 2π) }

the inner integral rewrites as

1

2π

∫
G(h,r)

Ykl (gη) dg =
1

2π

∫ 2π

0

Ykl (Rotr(ω)g0η) dω = Pl(r · g0η)Ykl (r).

Here we have applied the spherical mean value theorem 2.3. Together with equation
(3.2) and the Funk–Hecke theorem 2.4 we obtain

RT kk′l (h, r) =

∫
S2

Yk′l (η)Pl(h · η)Ykl (r) dη =
2π

l + 1
2

Yk′l (h)Ykl (r).

Remark 3.6. Let l ∈ N0. Using the matrix representation Tl = (T kk
′

l ) of the Wigner–D
functions Lemma 3.5 may be written as

RTl(h, r) =
2π

l + 1
2

Yl(r)Yl(h)T , h, r ∈ S2. (3.3)

Applying the trace operator to equation (3.3) we obtain for any h, r ∈ S2

(RTrTl)(h, r) =
2π

l + 1
2

l∑
k=−l

Ykl (h)Ykl (r) = Pl(h · r). (3.4)
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3 The Radon Transform on SO(3)

The next two lemmas provide representations of the Radon transform for the class of
radially symmetric and the class of fibre symmetric functions on SO(3).
Lemma 3.7. Let f ∈ C(SO(3)) be a radially symmetric function with center g0 ∈ SO(3)
and denote F : [0, 1]→ R the function defined by

f(g) = F

(
cos

](g,g0)

2

)
, g ∈ SO(3).

Then its Radon transform Rf has the integral representation

Rf(h, r) =
2

π

∫ π/2

0

F

(
cos(θ) cos

](g0h, r)

2

)
dθ, h, r ∈ S2, (3.5)

and hence depends only on the angular distance ](g0h, r). In particular, for any h, r ∈
S2 the trace functions Rf(h, ◦) and Rf(◦, r) are radially symmetric with centers g0h
and g−1

0 r, respectively.
Proof. A proof of equation (3.5) can be found in Schaeben (1997).
Definition 3.8. Let h0, r0 ∈ S2. A function f : SO(3) → R that depends only on the
angular distance ](gh0, r0), g ∈ SO(3) is called fibre symmetric with respect to the fibre
G(h0, r0).
Lemma 3.9. Let f ∈ C(SO(3)) be a fibre symmetric function and let F : [−1, 1] → R
be defined by

F (gh0 · r0) = f(g), g ∈ SO(3).

Then the Radon transform of f has the integral representation

Rf(h, r) =
1

π

∫ π

0

F (cos ](h,h0) cos ](r, r0) + sin ](h,h0) sin ](r, r0) cos θ) dθ. (3.6)

In particular, the trace functions Rf(◦, r),Rf(h, ◦) ∈ C(S2) are radially symmetric
functions with center h0 and r0, respectively.
Proof. Let h, r ∈ S2 and let g0 ∈ SO(3) be the rotation mapping h onto r such that
g0h0 is on one geodesic with r and r0. Then G(h, r) = {Rotr(ω)g0 | ω ∈ [0, 2π) } and
we have

Rf(h, r) =
1

2π

∫ 2π

0

f
(
Rotr(ω)g0

)
dω =

1

2π

∫ 2π

0

F
(
g0h0 · Rotr(ω) r0

)
dω.

Treating r as the north pole of a polar coordinate system and observing

](g0h0, r) = ](h0,g
−1
0 r) = ](h0,h)

we obtain from equation (2.1)

cos ](g0h0,Rotr(ω)r0) = cos ](h,h0) cos ](r, r0) + sin ](h,h0) sin ](r, r0) cos(ω),

which proves equation (3.6).
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3 The Radon Transform on SO(3)

3.2 The Radon Transform in Sobolev–Hilbert Spaces
In this section we are going to extend the Radon transform on SO(3) to a bounded op-
erator acting between Sobolev spaces. A more detailed analysis of the Radon transform
on SO(3) between Sobolev spaces can be found in van den Boogaart et al. (2006).

Theorem 3.10. Let s ∈ R. Then there is a well defined extension of the Radon trans-
form R : C(SO(3))→ C(S2 × S2) to an isometric operator

RHs : Hs(SO(3))→ H
s+

1
2
(S2 × S2).

Proof. For any unit basis function 1
2π

(l+ 1
2
)

1
2
−sT kk

′

l in Hs(SO(3)) we have by Lemma 3.5

1

2π
(l + 1

2
)

1
2
−sRT kk′l = 2(l + 1

2
)−

1
2
−sYk′l (◦1)Ykl (◦2).

Hence, RHs defines an Hs(SO(3))–Hs+ 1
2
(S2 × S2) isometric operator on a dense subset

of Hs(SO(3)). This implies the existence of an isometric extension.

The next proposition characterizes the range ofHs(SO(3)) under the Radon transform
(cf. Nikolayev and Schaeben, 1999).

Proposition 3.11. The range of the spherical Radon transform RHs, s ∈ R is the
subspace of all functions P ∈ Hs+ 1

2
(S2 × S2) that satisfy the ultrahyperbolic differential

equation
4S2,1P = 4S2,2P,

where 4S2,iP , i = 1, 2, denotes the application of the spherical Laplace–Beltrami operator
to P with respect to its i-th free variable.

Proof. By Lemma 3.5 we have for all l ∈ N0 and k, k′ = −l, . . . , l the equality

4S2,1RT kk
′

l =
2π

l + 1
2

(4S2Yk′l )(◦1)Ykl (◦2) =
2π

l + 1
2

Yk′l (◦1)4S2Yk′l (◦2) = 4S2,2RT kk
′

l .

Together with Theorem 3.10 this proves the assertion.

Remark 3.12. Theorem 3.10 implies in particular that there is a well defined bounded
operator

RL2 : L2(SO(3))→ L2(S2 × S2)

that extends the Radon transform. Moreover, we have by Theorem 3.24 that Rf ∈
H 1

2
(S2 × S2) for any f ∈ L2(SO(3)). Applying the trace theorem 2.28 we obtain that

the trace functions Rf(η, ◦),Rf(◦,η) ∈ L2(S2) are well defined for any η ∈ S2.

The next two lemma extend Lemma 3.7 and Lemma 3.9 by characterizing the Radon
transform of radially and fibre symmetric functions on SO(3) by its Fourier coefficients.
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3 The Radon Transform on SO(3)

Lemma 3.13. Let f ∈ L2(SO(3)) be a radially symmetric function with center g0 ∈
SO(3) and let the function F ∈ L2([−1, 1],

√
1− t2) be defined by

F (t) = f(g), t ∈ [−1, 1], g ∈ SO(3), |t| = cos ](g,g0)
2

.

Then the function P ∈ L2([−1, 1]),

P (g0h · r) = Rf(h, r), h, r ∈ S2,

has the Legendre expansion

P =
∞∑
l=0

F̂ (2l)Pl,

where F̂ (2l), l ∈ N0, are the even order Chebyshev coefficients of F .

Proof. Combining Lemma 3.7 and Remark 3.12 we conclude that Rf(◦, r) ∈ L2(S2)
defines a radially symmetric function with center g−1

0 r. By Lemma 2.2 this implies
P ∈ L2([−1, 1]) and hence P has a well defined expansion into Legendre polynomials.
The fact that the Legendre coefficients of P coincides with the even order Chebyshev
coefficients of F is due to Proposition 2.15 and the equations (3.4) and (2.25).

Lemma 3.14. Let f ∈ L2(SO(3)) be a fibre symmetric function with respect to the fibre
G(h0, r0), h0, r0 ∈ S2. Then f has the Fourier representation

f =
∞∑
l=0

2π

l + 1
2

F̂ (l)
l∑

kk′=−l

Ykl (h0)Yk
′

l (r0)T
kk′

l , (3.7)

where F̂ (l), l ∈ N0 are the Legendre coefficients of the function F ∈ L2([−1, 1]) defined
by

F (gh0 · r0) = f(g), g ∈ SO(3).

Its Radon transform Rf ∈ L2(S2 × S2) has the series expansion

Rf(h, r) =
∞∑
l=0

F̂ (l)Pl(h0 · h)Pl(r0 · r), h, r ∈ S2 (3.8)

where convergence is meant in the sense of L2(S2 × S2).

Proof. Let f ∈ L2(SO(3)) and F : [−1, 1] → R be as defined in the Lemma. Then we
have∫

SO(3)

|f(g)|2 dg =

∫
SO(3)

|F (gh0 · r0)|2 dg = 2π

∫
S2

|F (r · r0)|2 dr = 2π

∫ 1

−1

|F (t)|2 dt

and hence F ∈ L2([−1, 1]).
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3 The Radon Transform on SO(3)

Let

F =
∞∑
l=0

F̂ (l)Pl

be the Legendre expansion of F . By the spherical addition theorem we have for all
g ∈ SO(3),

2l + 1

4π
Pl(gh0 · r0) = Yl(r0)

TYl(gh0) = Yl(r0)
TTl(g−1)TYl(h0) = Yl(r0)

TTl(g)Yl(h0),

which proves equation (3.7). Applying the Radon transform to the last term we obtain
by Remark 3.6 and the spherical addition theorem(

RYl(r0)
TTl(◦)Yl(h0)

)
(h, r) =

4π

2l + 1
Yl(r0)

TYl(r)Yl(h)TYl(h0)

=
2l + 1

4π
Pl(r0 · r)Pl(h · h0),

which implies equation (3.8).

Thanks to Lemma 3.5 the operator RL2 is a multiplication operator in Fourier space
and hence its adjoint operator R∗

L2 is a multiplication operator Fourier space as well. In
the next lemma we show that the adjoint operator R∗

L2 has also a representation as an
integral operator.

Lemma 3.15. The adjoint operator to the one–dimensional Radon transform RL2 on
SO(3) is the integral operator

R∗
L2 : L2(S2 × S2)→ L2(SO(3)),

R∗
L2P (g) =

1

2π

∫
S2

P (h,gh) dh.
(3.9)

Moreover, we have for all l ∈ N0 and k, k′ = −l, . . . , l,

R∗
L2Yk

′

l (◦1)Ykl (◦2) =
1

2π
T kk

′

l . (3.10)

Proof. For every f ∈ L2(SO(3)) and P ∈ L2(S2 × S2) we calculate〈
f,R∗

L2P
〉
L2(SO(3))

=
〈
RL2f, P

〉
L2(S2×S2)

=

∫
S2

∫
S2

1

2π

∫
G(h,r)

f(g) dgP (h, r) dh dr

=

∫
SO(3)

f(g)
1

2π

∫
S2

P (h,gh) dh dg.
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3 The Radon Transform on SO(3)

Equation (3.10) is a direct consequence of〈
RL2T kk

′

l ,Yk′l (◦1)Ykl (◦2)
〉
L2(S2×S2)

=
2π

l + 1
2

=
〈
T kk

′

l ,R∗
L2Yk

′

l (◦1)Ykl (◦2)
〉
L2(SO(3))

.

In fact, integral formula (3.9) defines the dual Radon transform to the one–dimensional
Radon transform on SO(3) and one can show that in the general setting of homogeneous
spaces the dual Radon transform always coincides with the L2–adjoint Radon transform
(cf. Helgason, 1999, Proposition 2.2). Moreover, one can show that the Radon transform
as well as its dual are rotational invariant and hence their concatenation is so, too.
Since for nice manifolds the algebra of rotational invariant operators is generated by
the Laplace–Beltrami operator (cf. Vilenkin and Klimyk, 1991, Chap. 6, Thm. 2) one
concludes that R∗R is a function of the Laplace–Beltrami operator (cf. Gurarie, 1992,
Sec. 2.5). In particular, this holds true for the Radon transform on SO(3).

Theorem 3.16. The concatenation R∗
L2RL2 : H0(SO(3)) → H1(SO(3)) of the Radon

transform and the adjoint Radon transform is an invariant, pseudodifferential operator of
order −1. The inverse operator (R∗

L2RL2)−1 : H1(SO(3))→ H0(SO(3)) is an invariant,
pseudodifferential operator of order 1 and can be expressed in terms of the Laplace–
Beltrami operator on SO(3) by

(R∗
L2RL2)−1 = (−4SO(3) + 1

4
)1/2. (3.11)

In particular, we have for all f ∈ L2(SO(3)) the inversion formula

f = (−4SO(3) + 1
4
)1/2R∗

L2RL2f. (3.12)

Proof. By Lemma 3.5 and Lemma 3.15 we have for all l ∈ N0 and k, k′ = −l, . . . , l

R∗RT kk′l = (l + 1
2
)−1T kk

′

l ,

and consequently R̂∗
L2RL2(l) = (l+ 1

2
)−1. Using Definition 2.24 one verifies that R∗

L2RL2

as well as (R∗
L2RL2)−1 are pseudodifferential operators. On the other hand we know

from Lemma 2.19 that
4SO(3)T

kk′

l = −l(l + 1)T kk
′

l

for all l ∈ N0 and k, k′ = −l, . . . , l. Since (l(l + 1) + 1
4
)

1
2 = l + 1

2
we have equation

(3.11).

There exists also other inversion formulae for the one–dimensional Radon transform
on SO(3). A concise representation of the inversion formulae of the one–dimensional
Radon transform on SO(3) can be found in (Bernstein and Schaeben, 2005).
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Finally we are concerned with the question whether the inversion of the Radon trans-
form is local or not. Loosely spoken the inversion of the Radon transform is said to be
local if for the reconstruction of f(g0), g0 ∈ SO(3) it is sufficient to know Rf(h, r) for
all geodesics G(h, r) passing through an arbitrary small neighborhood of g0. Formally
this property is defined in the next Definition.

Definition 3.17. The inversion of the Radon transform R : H0(SO(3))→ H 1
2
(S2 × S2)

is local if for any open set U ⊆ SO(3) the constraint Rf(h, r) = 0 for all (h, r) ∈ S2×S2

satisfying G(h, r) ∩ U 6= ∅ implies f |U = 0.

Before we prove that the Radon transform on SO(3) is not local we first prove the
following series representation of the function t 7→

√
2− 2t in terms of Legendre poly-

nomials.

Proposition 3.18. The series
∞∑
l=0

4

(2l − 1)(2l + 3)
Pl(t) = −

√
2− 2t, t ∈ [−1, 1] (3.13)

converges uniformly on the interval [−1, 1] to the given function.

Proof. Uniform convergence of the sum follows from |Pl(t)| ≤ 1 for t ∈ [−1, 1] and
l ∈ N0.

Let a, b ∈ R such that a + b, b > −1. Then we have the following expression for the
Beta function B(b+ 1, a+ b+ 1)

B(b+ 1, a+ b+ 1) =

∫ 1

0

(1− t)a+b(1 + t)b dt = 2−(a+2b+1)

∫ 1

−1

(1− t)a+b(1 + t)b dt

= 2−(a+2b+1)

∫ 1

−1

(1− t)a(1− t2)b dt.

Combining this equality with the Rodriguez formula (cf. Freeden, 1998, Equ. 3.2.15)
we obtain

−
∫ 1

−1

√
2− 2tPl(t) dt =

1

2ll!

∫ 1

−1

( dl

dtl
√

2− 2t
)
(1− t2)l dt

=
(2l − 3)!

22l−2(l − 2)!l!

∫ 1

−1

(2− 2t)−
2l−1

2 (1− t2)l dt

=
(2l − 3)!

23l−5/2(l − 2)!l!

∫ 1

−1

(1− t)−
2l−1

2 (1− t2)l dt

=
(2l − 3)!

22l−4(l − 2)!l!
B(l + 1, 3

2
).
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3 The Radon Transform on SO(3)

Using the representation of the Beta function in terms of the Gamma function and the
duplication formula for the Gamma function we find

(2l − 3)!

22l−4(l − 2)!l!
B(l + 1, 3

2
) =

Γ(2l − 2)Γ(l + 1)Γ(3
2
)

22l−4Γ(l − 1)Γ(l + 1)Γ(l + 5/2)

=
Γ(2l − 2)Γ(3

2
)

22l−1Γ(l − 1)Γ(l − 1/2)(2l − 1)(2l + 1)(2l + 3)

=
Γ(2l − 2)Γ(3

2
)

22
√
πΓ(2l − 2)(2l − 1)(2l + 1)(2l + 3)

=
8

(2l − 1)(2l + 1)(2l + 3)

and consequently we have for all l ∈ N0,

−2l + 1

2

∫ 1

−1

√
2− 2tPl(t) dt =

4

(2l − 1)(2l + 3)
.

Since the Legendre polynomials provide an orthogonal function system in L2([−1, 1])
this implies the assertion.

Now we are ready to prove that the inversion of the Radon transform on SO(3) is not
local.

Theorem 3.19. The inversion of the one–dimensional Radon transform on SO(3) is
not local.

Proof. Let ψ ∈ C∞([−1, 1]) be an infinitely often differentiable test function such that
−1 and 1 are not contained in the closure of the support of ψ. Then

P (h, r) = ψ(h · r), h, r ∈ S2

defines the Radon transform of a radially symmetric function f = R−1P ∈ C∞(SO(3))
with center Id ∈ SO(3). Moreover, there is a neighborhood U of Id such that P (h, r) = 0
for all h, r ∈ S2 with G(h, r)∩U 6= ∅. We show that ψ can be chosen such that f(Id) 6= 0.

By Lemma 2.2 the function ψ has a well defined expansion into Legendre polynomials.
Applying Lemma 3.13 we obtain by partial integration

R−1P (Id) =
∞∑
l=0

2l + 1

2

∫ 1

−1

ψ(t)Pl(t) dt U2l(Id)

=
∞∑
l=0

2l + 1

2

∫ 1

−1

ψ′(t)
(
Pl−1(t)− Pl+1(t)

)
dt

=
∞∑
l=1

2

∫ 1

−1

ψ′(t)Pl(t) dt
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= −
∞∑
l=1

2

∫ 1

−1

ψ′′(t)
Pl+1(t)− Pl−1(t)

2l + 1
dt

= 2

∫ 1

−1

ψ′′(t)
(1

3
+

1

5
t−

∞∑
l=2

4

(2l − 1)(2l + 3)
Pl(t)

)
dt.

By Proposition 3.18 the sum in the integral converges uniformly for t ∈ [−1, 1] to

1

3
+

1

5
t−

∞∑
l=2

4

(2l − 1)(2l + 3)
Pl(t) = 1 + t+

√
2− 2t.

Substituting this formula back to the integral and applying partial integration the other
way round we obtain

f(Id) = R−1P (Id) = 2

∫ 1

−1

ψ′′(t)
(
1 + t+

√
2− 2t

)
dt

= −2

∫ 1

−1

ψ′(t)
(
1− 1√

2− 2t

)
dt

= −2

∫ 1

−1

ψ(t)(2− 2t)−
3
2 dt.

Since, (2− 2t)−
3
2 > 0 for t ∈ [−1, 1) we find a function ψ such that f(Id) 6= 0.

Theorem 3.19 may be interpreted that in order to reconstruct a function f ∈ C(SO(3))
at a single point g ∈ SO(3) the integral along all one–dimensional geodesic manifolds of
SO(3) has to be known. The question whether the inverse Radon transform is local is
central in the analysis of the Radon transform since it strongly effects the choice of an
appropriate algorithm that has to be used for its numerical treatment (cf. Ramm and
Katsevich, 1996).

3.3 Generalizations of the Radon Transform
The Radon Transform in L1(SO(3)). First are going to extend the Radon transform
to the space of absolutely integrable function on SO(3).

Theorem 3.20. The one–dimensional Radon transform R : C(SO(3)) → C(S2 × S2)
has a well defined extension to a linear, bounded operator

RL1 : L1(SO(3))→ L1(S2 × S2).

Moreover, the trace functions RL1f(h, ◦),RL1f(◦, r) ∈ L1(S2) are well defined for any
unit vectors h, r ∈ S2.
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3 The Radon Transform on SO(3)

Proof. For any f ∈ C(SO(3)) and any unit vector h ∈ S2 we have

‖Rf(h, ◦)‖L1(S2) ≤
∥∥R|f(h, ◦)|

∥∥
L1(S2)

=

∫
S2

1

2π

∫
G(h,r)

|f(g)| dg dr

=
1

2π

∫
SO(3)

|f(g)| dg =
1

2π
‖f‖L1(SO(3)) .

Consequently, the mappings f 7→ Rf(h, ◦) and f 7→ Rf(◦, r) constitute L1(SO(3))–
L1(S2) bounded operators on a dense subset of L1(SO(3)). Hence, there exists a well
defined extension to a bounded operator acting on the whole space L1(SO(3)).

By the inequality

‖Rf‖L1(S2×S2) =

∫
S2

‖Rf(h, ◦)‖L1(S2) dh ≤ 2 ‖f‖L1(SO(3))

this applies to the Radon transform f 7→ Rf as well.

Radon Transforms on O(3). Next we are going to define a Radon transform on the
orthogonal group O(3). In order to reuse most of the results obtained for the rotational
group SO(3) we introduce the following notations.

Definition 3.21. Let g ∈ O(3). Then we denote by −g = −Id g the concatenation of
g with the inversion and define the rotational part |g| and the signum sign(g) of g by

|g| :=

{
g if g ∈ SO(3),

−g if g 6∈ SO(3),
and signg :=

{
1 if g ∈ SO(3),

−1 if g 6∈ SO(3).

Using these notations we characterize an orthogonal basis in L2(O(3)).

Lemma 3.22. The system of functions

T kk
′

l ⊗ 1(g) := T kk
′

l (|g|) and T kk
′

l ⊗ 1̄ := sign(g)T kk
′

l (|g|),

l ∈ N0, k, k′ = −l, . . . , l, forms an orthogonal basis in L2(O(3)).

Remember that the geodesics in SO(3) are

G(h, r) = {g ∈ SO(3) | gh = r }, h, r ∈ S2.

Since O(3) is topologically the disjoint sum of two copies of the group SO(3) the geodesics
of O(3) are the geodesics G(h, r), h, r ∈ S2 of SO(3) plus the geodesics

−G(h, r) = {−g | g ∈ G(h, r) } ⊆ O(3)\SO(3), h, r ∈ S2

of O(3)\SO(3) = −SO(3).
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Consequently, the one–dimensional Radon transform on O(3) is defined as

R : C(O(3))→ C
(
S2 × S2 × {Id,−Id}

)
,

Rf(h, r,q) =
1

4π

∫
qG(h,r)

f(g) dg.

It is not hard to prove that all main properties of the Radon transform on SO(3) remain
true for the Radon transform on O(3) as well.

In the remainder of this section we focus on a symmetrized version of the Radon
transform on O(3) which will be our central subject during the next chapters.

Definition 3.23. We define the operator X as

X : C(O(3))→ C
(
S2 × S2

)
,

X f(h, r) =
1

2

(
Rf(h, r, Id) +Rf(h, r,−Id)

)
.

(3.14)

The next theorem is the counterpart to the characterization theorem 3.10 of the Radon
transform on SO(3) in Sobolev spaces.

Theorem 3.24. Let s ∈ R. Then the operator X extends uniquely to a linear, bounded
operator

XHs(O(3)) : Hs(O(3))→ Hs+ 1
2
(S2 × S2)

with kernel

kerXHs(O(3)) = closHs span
{
T kk

′

2l ⊗ 1, T kk
′

2l+1 ⊗ 1̄ | l ∈ N0, k, k
′ = −l, . . . , l

}
.

In particular, the restriction of the operator XHs(O(3)) to its cokernel and image is an
isometric operator.

Moreover, there is a well defined extension of the operator X to a linear, bounded
operator

XL1(O(3)) : L
1(O(3))→ L1(S2 × S2).

Proof. By Lemma 3.5 we have for any l ∈ N0 and k, k′ = −l, . . . , l

XT kk′l ⊗ 1(h, r) =
1

2

(
RT kk′l (h, r) +RT kk′l (−h, r)

)
=

π

l + 1
2

(
Yk′l (h)Ykl (r) + Yk′l (−h)Ykl (r)

)
=


2π

l+
1
2

Yk′l (h)Ykl (r) if l even,

0 if l odd
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3 The Radon Transform on SO(3)

and, analogously,

XT kk′l ⊗ 1̄(h, r) =

0 if l even,
2π

l+
1
2

Yk′l (h)Ykl (r) if l odd.

Now Theorem 3.24 follows from Theorem 3.10 and Theorem 3.20.

Let Π: Hs(O(3)) → Hs(SO(3)) the canonical mapping that projects the cokernel of
XH(O(3)) onto Hs(SO(3)). Then XHs(O(3)) = RHs(SO(3))Π and the results of Chapter 3
apply to the operator X as well.

The Radon Transform on Quotient Spaces. Let s ∈ R. Then we define for any finite
subgroup Q ⊆ O(3) the symmetrization operators

SQ : Hs(O(3))→ Hs(O(3)/Q), and SQ : Hs(S2 × S2)→ Hs(S2/Q× S2),

SQf(g) =
1

|Q|
∑
q∈Q

f(gq) SQP (h, r) =
1

|Q|
∑
q∈Q

P (qh, r).

In Lemma 3.4 we have shown that the Radon transform commutes with SQ. Hence, there
is a well defined restriction of the operator XHs(O(3)) to a bounded operator XHs(O(3)/Q)

such that the diagram

Hs(O(3))
XHs(O(3))−−−−−→ Hs+ 1

2
(S2 × S2)ySQ

ySQ

Hs(O(3)/G)
XHs(O(3)/Q)−−−−−−−→ Hs+ 1

2
(S2/Q× S2)

commutes. The same holds true if the Sobolev Hilbert spaces are replaced by the
corresponding spaces of absolutely integrable functions.
Remark 3.25. Let Q ⊆ O(3) be a finite subgroup that contains the inversion, i.e.
−Id ∈ Q. Since G(h, r) = G(−h,−r) we have for any f ∈ C(O(3)/SLaue) and any
h, r ∈ S2 the equality

X f(Qh, r) = X f(−Qh, r) = X f(Qh,−r).

In particular, the trace function X (Qh, ◦) is an even function for any h ∈ S2.

3.4 Radially Symmetric Functions on S2 and SO(3)
Let K ∈ L2(SO(3)) be a radially symmetric function on SO(3) with center g0 ∈ SO(3).
Then Lemma 2.6 defines a function K̃ ∈ L2([0, 1],

√
1− t2) such that

K̃

(
cos

](g0,g)

2

)
= K(g), g ∈ SO(3).
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On the other hand it exists by Lemma 2.2 for any radially symmetric function P ∈ L2(S2)
with center η0 ∈ S2 a function P̃ ∈ L2([−1, 1]) such that

P̃ (η · η0) = P (η), η ∈ S2.

Since the Radon transform is a bounded operator that maps radially symmetric func-
tions in L2(SO(3)) onto radially symmetric functions in L2(S2) it defines a bounded
operator

R̃ : L2
(
[0, 1],

√
1− t2

)
→ L2([−1, 1]),

R̃K̃(g0h · r) = RK(h, r), h, r ∈ S2.

In Lemma 3.7 we have shown that R̃ is in fact the integral operator

R̃K̃(t) =

∫ π

0

K̃

(
cos θ

√
1+t
2

)
dθ.

On the other hand, we have shown in Lemma 3.13 that R̃ provides a one to one relation
between the even order Chebyshev coefficients of K̃ and the Legendre coefficients of
R̃K̃, i.e. ̂̃K(2l) = ̂̃RK̃(l), l ∈ N0.

In this section we are going to make use of this two fold relationship between radially
symmetric functions in L2(SO(3)) and radially symmetric function in L2(S2) to derive
representations of some important (radially symmetric) kernel functions on SO(3) and
S2. Moreover, we give formulae for the relationship between the free parameter of the
kernel functions and their halfwidth, i.e. the angle b ∈ [0, π] where the kernel function
K̃ satisfies

K̃(cos b
2
) =

1

2
K̃(1).

Predecessors of the following compilation of kernel functions can be found in Matthies
et al. (1987), Freeden (1998), Schaeben and v.d. Boogaart (2003) and many others.

The Abel–Poisson Kernel. Our compilation starts with the Abel–Poisson kernel which
is for any κ ∈ (0, 1) characterized by the Legendre coefficients

̂̃K(2l) = ̂̃RK̃(l) = (2l + 1)κ2l, l ∈ N0.

For R̃K̃ we have the well known representation (cf. Freeden, 1998, Sec. 6.5)

R̃K̃(t) =
1− κ4

(1− 2κ2t+ κ4)3/2
, t ∈ [−1, 1].
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Figure 3.1: The Abel–Poisson kernel for κ = 0.79.

The corresponding kernel function K on SO(3) was investigated in Matthies et al. (1987,
Sec. 17) where it is called Lorentz function. In particular, there it is shown

K̃(t) =
1− κ2

(1 + 2κt+ κ2)2
+

1− κ2

(1− 2κt+ κ2)2
, t ∈ [0, 1]

and the following relation between the parameter κ ∈ (0, 1) and the halfwidth b of the
kernel is given

b = 4 arccos
√
c, (3.15)

where

c =
(2τ 2 − τ + 1)−

√
5τ 4 − 8τ 3 + 2τ 2 + 1

1 + τ
and τ =

(1 + κ2)2

4κ2
.

A visual illustration of the Abel–Poisson kernel together with its Radon transform,
and its even order Chebyshev coefficients can be found in Figure 3.1.

The de la Vallée Poussin Kernel. The second radially symmetric function we mention
here is the de la Vallée Poussin kernel. On SO(3) it is defined by

K̃(t) =
B(3

2
, 1

2
)

B(3
2
, κ+ 1

2
)
t2κ, t ∈ [0, 1]

where B denotes the Beta function. The parameter κ > 0 is related to the halfwidth
b ∈ (0, π) of the kernel by

κ ln cos
b

2
= − ln

√
2.

The main features of the de la Vallée Poussin kernel are its non–negativity and its non–
negative finite Fourier series (cf. Schaeben, 1997). More precisely, we have ̂̃K(2l) = 0
for l ≥ κ. Using integration formula (3.5) Schaeben (1997) proves the following explicit
formula for the Radon transformed de la Vallée Poussin Kernel on S2.
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Lemma 3.26. Let κ > 0 and let K̃ : [0, 1]→ R be the de la Vallée Poussin kernel. Then
its Radon transformed kernel R̃K̃ is given by the formula

R̃K̃(t) =
1 + κ

2κ
(1 + t)κ, t ∈ [−1, 1] (3.16)

An explicit formula for the Chebyshev coefficients of the de la Vallée Poussin kernel can
be found once again in Schaeben (1997). However, the following three term recurrence
is more applicable for numerical issues.

Lemma 3.27. Let κ > 0. Then the even order Chebyshev coefficients Cl(κ) = ̂̃K(2l) of
the de la Vallée Poussin kernel satisfy the three term recurrence formula

l + κ+ 2

2l + 3
Cl+1(κ) + Cl(κ) +

l − κ− 1

2l − 1
Cl−1(κ) = 0, l ∈ N\{0}.

The first two Chebyshev coefficients are given by C0(κ) = 1 and C1(κ) = 3κ
κ+2

.

Proof. Let l ∈ N0. By Lemma equation (2.7) the Legendre coefficients of R̃K̃ and hence
the even order Chebyshev coefficients of K̃ satisfy

Cl(κ) =
2l + 1

2

∫ 1

−1

1 + κ

2κ
(1 + t)κPl(t) dt.

Now we can proceed as in Freeden (1998, Lemma 5.8.1) for the locally supported kernel
on the sphere. The three term recurrence formula (2.8) of the Legendre polynomials
implies

l + 1

2l + 3
Cl+1(κ) + Cl(κ) +

l

2l − 1
Cl−1(κ) = Cl(κ+ 1).

By partial integration and the derivation rule (2.9) we find

Cl(κ+ 1) =
2l + 1

2

∫ 1

−1

1 + κ

2κ
(1 + t)κ+1 d

dt
Pl+1(t)− Pl−1(t)

2l + 1
dt

= −(1 + κ)2

2κ+1

∫ 1

−1

(1 + t)κ(Pl+1(t)− Pl−1(t)) dt

= (1 + κ)
( 1

2l − 1
Cl−1(κ)−

1

2l + 3
Cl+1(κ)

)
.

In combination both recurrence formulae prove the recurrence formula of the Lemma.

Remark 3.28. It is more convenient to write the de la Vallée Poussin kernel as a
function of the angle, i.e. for g0 ∈ SO(3) and κ > 0 we have

K(g) =
B(3

2
, 1

2
)

B(3
2
, κ+ 1

2
)
cos2κ ](g0,g)

2
and RK(h, r) = (1 + κ) cos2κ ](g0h, r)

2
.

The graph of the de la Vallée Poussin kernel, its Radon transform, and its Legendre
coefficients are plotted in Figure 3.2.
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Figure 3.2: The de la Vallée Poussin kernel for κ = 13.

The von Mises–Fisher Kernel. For any κ > 1
2
ln 2 the von Mises–Fisher kernel (cf.

Schaeben and v.d. Boogaart, 2003) or Gaussian kernel (cf. Matthies et al., 1987, Sec.
16.1) on SO(3) is defined as

K̃
(
cos

ω

2

)
=

1

I0(κ)− I1(κ)
eκ cosω, ω ∈ [0, π], (3.17)

where In, n ∈ N0 denote the modified Bessel functions of first kind

In(κ) =
1

π

∫ π

0

eκ cosω cosnω dω, κ ∈ R+.

One verifies that K̃(t) is positive and monotonically increasing for all t ∈ [0, 1] (cf.
Matthies et al., 1987, Sec. 16.1). Furthermore, we have for the halfwidth b ∈ [0, π] of
the von Mises–Fischer kernel the simple formula

cos b = 1− ln 2

κ
.

Explicit formulae for the Chebyshev coefficients of the von Mises–Fischer kernel as
well as for its Radon transform are given in the next lemma.

Lemma 3.29. The even order Chebyshev coefficients of the von Mises–Fischer kernel
K̃ with parameter κ > 1

2
ln 2 satisfy

̂̃K(2l) =
Il(κ)− Il+1(κ)

I0(κ)− I1(κ)
, l ∈ N0.

The Radon transformed kernel of K̃ has the representation

R̃K̃(cosω) =
I0(κ2 (1 + cosω))

I0(κ)− I1(κ)
e

κ
2
(cosω−1), ω ∈ [0, π].
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Figure 3.3: The von Mises–Fisher kernel for κ = 7.5.

Proof. By equation (2.17) the even order Chebyshev coefficients ̂̃K(2l),l ∈ N0 of K̃ are
given by

(
I0(κ)− I1(κ)

) ̂̃K(2l) =
(
I0(κ)− I1(κ)

) 2

π

∫ π

0

K̃(cos ω
2
)U2l(cos ω

2
) sin2 ω

2
dω

=
2

π

∫ π

0

eκ cosω sin 2l+1
2

sin ω
2

dω

=
1

π

∫ π

0

eκ cosω
(
cos lω − cos(l + 1)ω

)
dω = Il(κ)− Il+1(κ).

In order to calculate the Radon transform of the von Mises–Fischer kernel we apply
Lemma 3.7 and obtain(

I0(κ)− I1(κ)
)
R̃K̃(cosω) =

1

π

∫ π

0

K̃(cos θ cos ω
2
) dθ

=
1

π

∫ π

0

eκ cos 2 arccos
(
cos θ cos ω

2

)
dθ

=
1

π

∫ π

0

eκ
(
−1+(1+cos 2θ) cos2 ω

2

)
dθ

= eκ(cos2 ω
2
−1) 1

π

∫ π

0

eκ cos2 ω
2

cos 2θ dθ

= I0(κ2 (1 + cosω))e
κ
2
(cosω−1).

Figure 3.3 includes a graphical illustration of the von Mises–Fischer kernel, its Radon
transformed kernel, and its Legendre coefficients.

The Locally Supported Kernel. By the locally supported kernel on SO(3) we mean
a radially symmetric function that is polynomial within a certain neighborhood of its
center and that is equal to zero outside of this neighborhood. Denote p ∈ N+ the
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polynomial degree and b ∈ (0, 1) the width at which the kernel vanishes. Then we define
the locally supported kernel on SO(3) by

K̃(t) =

{
(t− b)p t ∈ [b, 1],

0 t < [0, b).
(3.18)

For a small polynomial degree p the Radon transform of the locally supported kernel on
SO(3) can be calculated explicitly. However, for numerical work recurrence formulae for
the Chebyshev coefficients of the locally supported kernel seem to be more appropriate.
The remainder of the section is devoted to this objective. As a first step we prove a
recurrence formula for the zero order Chebyshev coefficients.

Lemma 3.30. Let b ∈ (0, 1) and p ∈ N. Then the integrals

Ip =

∫ 1

b

(t− b)p
√

1− t2 dt and Jp =

∫ 1

b

(t− b)p arcsin t dt

satisfy the recurrence formulae

(p+ 2)Ip =
π

2
(1− b)p − p(bIp−1 + Jp−1), (3.19)

(p+ 1)Jp =
π

2
(1− b)p − p(Ip−1 + bJp−1). (3.20)

Initial values are given by I−1 =
√

1− b2 and J−1 = arcsin b.

Proof. Partial integration yields

Ip =

∫ 1

b

(t− b)p
√

1− t2 dt

=
π

4
(1− b)p −

∫ 1

b

p

2
(t− b)p−1

(
t
√

1− t2 + arcsin t
)

dt

=
π

4
(1− b)p − p

2

∫ 1

b

(t− b)p−1 arcsin t dt

− p

2

∫ 1

b

(t− b)p
√

1− t2 dt+
pb

2

∫ 1

b

(t− b)p−1
√

1− t2 dt

=
π

4
(1− b)p − p

2
Jp−1 −

p

2
Ip −

pb

2
Ip−1.

This proves formula (3.19). For formula (3.20) we again apply partial integration and
obtain

Jp =

∫ 1

b

(t− b)p arcsin t dt

=
π

2
(1− b)p −

∫ 1

b

p(t− b)p−1
(√

1− t2 + t arcsin t
)

dt
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=
π

2
(1− b)pp

∫ 1

b

(t− b)p−1
√

1− t2 dt

− p
∫ 1

b

(t− b)p arcsin t dt+ pb

∫ 1

b

(t− b)p− arcsin t dt

=
π

2
(1− b)p − pIp−1 − pJp + pbJp−1.

Lemma 3.31. Let b ∈ (0, 1) and p ∈ N. Then the Chebyshev coefficients

̂̃K(l) = Il,p =

∫ 2 arccos(b)

0

(cos ω
2
− b)2Ul(cos ω

2
) dω =

∫ 1

b

(t− b)p
√

1− t2Ul(t) dt, l ∈ N0

of the locally supported kernel satisfy for all l ∈ N\{0} the recurrence formulae

Il+1,p = 2Il,p+1 + 2bIl,p − Il−1,p

and
(l + p+ 3)Il,p+1 + b(l + 2p+ 3)Il,p + (b2 − 1)pIl,p−1 − (l + 1)Il−1,p = 0.

For p = 0 and l ∈ N0 we have

Il,0 =
sin(l arccos b)

l
− sin((l + 2) arccos b)

l + 2
.

Proof. Let b ∈ (0, 1), p ∈ N and l ∈ N0. Then we have for the Chebyshev coefficients of
the first and the second momentum of the locally supported kernel the expressions∫ 1

b

(t− b)ptUl(t)
√

1− t2 dt = Il,p+1 + bIl,p (3.21)

and ∫ 1

b

(t− b)pt2Ul(t)
√

1− t2 dt = Il,p+2 + 2bIl,p+1 + b2Il,p. (3.22)

Together with the three term recurrence formula (2.19) we derive the equality

Il+1,p =

∫ 1

b

(t− b)pUl+1(t) dt

=

∫ 1

b

(t− b)p
(
2tUl(t)− Ul−1(t)

)
dt

= 2Il,p+1 + 2bIl,p − Il−1,p. (3.23)
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Figure 3.4: The locally supported kernel for κ = 0.85.

Applying subsequently equation (3.21), derivations rule (2.21), partial integration, and
equations (3.21) and (3.22) we obtain

−lIl,p+1 − lbIl,p + (l + 1)Il−1,p =

∫ 1

b

(t− b)p
(
−ltUl(t) + (l + 1)Ul−1(t)

)√
1− t2 dt

=

∫ 1

b

(t− b)p(1− t2)
(

d
dtUl(t)

)√
1− t2 dt

=

∫ 1

b

(t− b)p3tUl(t)
√

1− t2 dt

−
∫ 1

b

p(t− b)p−1(1− t2)Ul(t)
√

1− t2 dt

=3Il,p+1 + 3bIl,p − pIl,p−1 + pIl,p+1 + 2bpIl,p + b2pIl,p−1

=(p+ 3)Il,p+1 + b(2p+ 3)Il,p + (b2 − 1)pIl,p−1

and consequently

(l + p+ 3)Il,p+1 + b(l + 2p+ 3)Il,p + (b2 − 1)pIl,p−1 − (l + 1)Il−1,p = 0. (3.24)

Multiplying equation (3.23) by (l+p+3) and equation (3.24) by −2 and summing them
results in the recurrence formula

(l + p+ 3)Il+1,p + 2bpIl,p + (p− l + 1)Il−1,p − 2p(1− b2)Il,p−1 = 0.

A plot of the locally supported kernel of polynomial degree three together with its
Radon transform and its Legendre coefficients can be found in Figure 3.4.
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4 The PDF–to–ODF Inversion
Problem
In this chapter we are concerned with the central problem of quantitative
texture analysis — the estimation of an orientation density function (ODF)
of a specimen from diffraction measurements. Starting with a brief sum-
mary of crystallographic terminology and diffraction at crystals we derive a
statistical model for diffraction in polycrystalline materials. Based on the
statistical model we formulate the problem of ODF estimation by means of
diffraction measurements as a parameter estimation problem and analyze its
inherent indeterminateness and ill–posedness. The canonical question about
the reliability of ODF estimation is addressed in Section 4.3 and in Section
4.4. Eventually we take advantage of the statistical model and derive a least
squares ODF estimator from on diffraction data.

4.1 Crystallographic Background
In this section only the most basic notations of crystallography are introduced. For a
more comprehensive introduction into crystallography including diffraction the reader is
referred to Schwarzenbach (2001) or Hammond (1997).

Crystal Geometry. The characterizing property of all crystals is the three–dimensional
periodic alignment of their atoms, in other words their atoms form a regular lattice. The
common way to describe the regularity of an atom lattice is to extend it periodically to
the three–dimensional Euclidean space R3 and to consider its symmetries. Symmetries
are isometric mappings of the three–dimensional space that leave the extended atom
lattice invariant. The set of all symmetries of the extended atom lattice forms a group,
the so called space group Sspace ⊆ O(3)⊗T(3) of the crystal. Here O(3) denotes the group
of all orthogonal transformations in R3 and T(3) denotes the group of all translations in
R3. The orthogonal part Spoint = Sspace/T(3) ⊆ O(3) of the space group is called point
group of the crystal.

Every crystal allows for a conventional assignment of an orthonormal coordinate sys-
tem which is well defined modulo the crystal symmetries described by the space group
Sspace. Such a coordinate system is called crystal coordinate system. A direction specified
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4 The PDF–to–ODF Inversion Problem

by coordinates relative to a crystal coordinate system is called crystal direction. Follow-
ing the general convention we denote crystal directions by the letter h ∈ S2. Two crystal
directions h1,h2 ∈ S2 are called crystallographically equivalent if it exists a symmetry
q ∈ Spoint of the crystal such that h1 = qh2. We denote by

Spointh = {qh | q ∈ Spoint } ∈ S2/Spoint

the class of all crystal directions crystallographically equivalent to a given crystal di-
rection h ∈ S2 and by S2/Spoint the set of all classes of crystallographically equivalent
directions.

Let us consider a specimen and a specimen coordinate system fixed to it according to
some convention. A direction specified by its coordinate vector relative to the specimen
coordinate system is called specimen direction and is usually denoted by the letter r ∈ S2.

Crystal directions and specimen directions are connected via the coordinate transfor-
mation from the crystal coordinate system to the specimen coordinate system. This
coordinate transformation can be represented by an orthogonal 3 × 3–matrix which is
commonly denoted by the letter g ∈ O(3). With this notation a crystal direction h ∈ S2

and a specimen direction r ∈ S2 represent the same physical direction if and only if

r = gh.

Moreover, the matrix g ∈ O(3) can be interpreted as a (possibly improper) rotation with
respect to the specimen coordinate system that brings the specimen coordinate system
in coincidence with the crystal coordinate system. Hence, the matrix g ∈ O(3) describes
the orientation of the crystal relative to the specimen.

Let g1,g2 ∈ O(3) be two coordinate transformations. Then g1 and g2 describe two
crystallographically equivalent orientations if and only if it exists a symmetry q ∈ Spoint
such that g1 = g2q. The class

gSpoint = {gq | q ∈ Spoint } ∈ O(3)/Spoint

of all coordinate transformations that are crystallographically equivalent to a given co-
ordinate transformation g ∈ O(3) is called crystal orientation and the factor group
O(3)/Spoint of all crystal orientations is called orientation space. Let gSpoint ∈ O(3)/Spoint
be a crystal orientation, Spointh ∈ S2 a class of crystallographically equivalent crystal
directions and r ∈ S2 a specimen direction. Then r represents a direction identical to
one of the directions represented by the class Spointh if and only if

Spointh = (gSpoint)
−1r.

Textures. Let us consider a mono–phase, polycrystalline specimen, i.e. a compound of
identical crystals all possessing the same point group Spoint ⊆ O(3). Next we assume that
each crystal has a well defined crystal orientation gSpoint ∈ O(3)/Spoint relative to the
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4 The PDF–to–ODF Inversion Problem

specimen thus neglecting e.g. internal crystal defects. Then the distribution of crystal
orientations by volume within the specimen is called texture and can be modelled by a
probability measure on the orientation space O(3)/Spoint. Its quantitative investigation
is called quantitative texture analysis (QTA). The central idea of QTA is to describe this
probability measure on O(3)/Spoint by a probability density function. Such a probability
density function is called orientation density function of the specimen. More abstractly
we define
Definition 4.1. Let Spoint ⊆ O(3) be a point group and let

f : O(3)/Spoint → R+

be a non–negative, integrable function on O(3)/Spoint normalized to
1

16π2

∫
O(3)

f(gSpoint) dg = 1.

Then f is called orientation density function (ODF).
Beside the distribution of crystal orientations within a specimen one can also ask for

the distribution of crystal directions that are in line with a certain specimen direction
modulo crystal symmetry. To be more precisely let us fix a specimen direction r ∈ S2.
Then any distribution of crystal orientations gSpoint ∈ O(3)/Spoint constitutes by virtue
of the mapping gSpoint 7→ (gSpoint)

−1r a distribution on the classes of crystallographically
equivalent crystal directions S2/Spoint.
Lemma 4.2 (fundamental equation of texture analysis). Let Spoint ⊆ O(3) be some point
group and let f ∈ L1(O(3)/Spoint) be the ODF of a probability measure µ on O(3)/Spoint.
Then the mapping

Πr : O(3)/Spoint → S2/Spoint, gSpoint 7→ (gSpoint)
−1r

is measurable for any r ∈ S2 and the induced measure µ ◦ Π−1
r on S2/Spoint has the

probability density function

X f(◦, r) ∈ L1(S2/Spoint). (4.1)

Here the operator X is defined as in Definition 3.23 and Theorem 3.24.
Proof. First of all we notice that by Remark 3.20 the trace function X f(◦, r) ∈ L1(S2/Spoint)
is well defined for any r ∈ S2. Since we have for any function φ ∈ C(S2/Spoint) and any
unit vector r ∈ S2 the equality

1

16π2

∫
O(3)

φ (Πr(gSpoint)) f(g) dg =
1

4π

∫
S2

1

4π

∫
{g∈O(3) |gh=r }

φ(ΠrgSpoint)f(gSpoint) dg dh

=
1

4π

∫
S2

φ(Spointh)X f(Spointh, r) dh

we conclude that X f(◦, r) is the density function of µ ◦ Π−1
r .
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For the practical problem of QTA Lemma 4.2 can be read as follows. If the distribution
of crystal orientations within a specimen is modelled by an ODF f ∈ L1(O(3)/Spoint),
then the distribution of crystal directions that are in line with a fixed specimen direc-
tion r ∈ S2 modulo crystal symmetry is modelled by the probability density function
X f(◦, r) ∈ L1(S2/Spoint).

Definition 4.3. Let f ∈ L1(O(3)/Spoint) be an ODF. Then the function X f ∈ L1(S2/Spoint×
S2) is called pole density function (PDF) corresponding to f . For any h, r ∈ S2 the trace
functions X f(Spointh, ◦) ∈ L1(S2) and X f(◦, r) ∈ L1(S2/Spoint) are called pole figure and
inverse pole figure, respectively.

The PDF defined by an ODF f ∈ L1(O(3)/Spoint) is commonly denoted by the let-
ter P = X f . The relationship (4.1) between an ODF and its PDF is known as the
fundamental equation of texture analysis and is due to Bunge (1965), Roe (1965) and
others.

Setting φ = 1 in the proof of Lemma 4.2 we obtain the following normalization prop-
erties of the PDF.

Remark 4.4. Let Spoint ⊆ O(3) be an arbitrary point group, f ∈ L1(O(3)/Spoint) an
ODF and let P = X f ∈ L1(S2/Spoint × S2) be the corresponding PDF. Then we have
for all unit vectors h, r ∈ S2 the normalizations

1

4π

∫
S2

P (Spointh, r) dr = 1,
1

4π

∫
S2

P (Spointh, r) dh = 1

and
1

16π2

∫
S2

∫
S2

P (Spointh, r) dr dh = 1.

Remark 4.5. Although the ODF and the PDF are defined on the factor spaces O(3)/Spoint
and S2/Spoint × S2, respectively, we will treat them sometimes as functions defined on
O(3) and S2 × S2 possessing for any g ∈ O(3), h, r ∈ S2 and q ∈ Spoint the symmetry
properties f(g) = f(gq) and P (h, r) = P (qh, r), respectively.

While the ODF of an specimen is not directly accessible, the PDF P (h, r) of a specimen
can be determined for specific crystal and specimen direction h, r ∈ S2 by diffraction
techniques. This issue is discussed in the next section.

4.2 The Diffraction Experiment
Diffraction at Single Crystals. Let us start with diffraction at a single crystal. We
assume that the bisecting line between the initial and the diffracted beam is represented
by the crystal direction h ∈ S2 and denote by λ ∈ R+ the wavelength of the beam. The
angle θ ∈ (0, π

2
) between the initial beam and the plane perpendicular to the crystal
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Figure 4.1: Diffraction at a single crystal.

direction h is called Bragg angle. See Figure 4.1 for an illustration of this setting. The
question for which specific combinations of a wavelength λ ∈ R+, a crystal direction
h ∈ S2, and a Bragg angle θ ∈ (0, π

2
) diffraction occurs is answered by Bragg’s law (cf.

Schwarzenbach, 2001, Section 3.4.2). However, in our work we simply define the set
H(λ, θ) as the set of all crystal directions h ∈ S2 for which diffraction intensities with
respect to the Bragg angle θ ant the wavelength λ are experimentally detectable.

Let (λ, θ) be a combination of a wavelength and a Bragg angle such that the set
H(λ, θ) is not empty. Then we define the function

ρλ,θ : H(λ, θ)→ R+

as the relative diffraction intensities ρλ,θ(h) of the crystal directions h ∈ H(λ, θ) nor-
malized to ∑

h∈H(λ,θ)

ρ(h) = 1.

Remark 4.6. A direct consequence of the crystal symmetry described by the point
group Spoint ⊆ O(3) is that

SpointH(λ, θ) = H(λ, θ)

for any combination of a wavelength λ and a Bragg angle θ. Moreover, we have

ρλ,θ(h
′) = ρλ,θ(h)

for all crystallographic equivalent directions Spointh = Spointh
′.

It should be noted that the set H(λ, θ) is not empty only for roughly about 20 specific
combinations of the parameters λ and θ and that the function ρλ,θ is not constant only
in the rare cases that the set H(λ, θ) contains more then one class of crystallographic
equivalent directions. The relative diffraction intensities ρλ,θ(h) are due to the crystal
structure and can be calculated theoretically.
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Diffraction at Polycrystalline Specimen. We are now going to generalize Bragg’s
law for monophase, polycrystalline specimen. Let us consider a beam with wavelength
λ ∈ R+, Bragg angle θ ∈ (0, π

2
), and let the intersecting line between the initial and the

diffracted beam be represented by the specimen direction r ∈ S2. Then the intensity of
the diffracted beam depends on the volume fraction of crystals with crystal orientation
gSpoint ∈ O(3)/Spoint such that

gh = r.

for some crystal direction h ∈ H(λ, θ), i.e. of those crystals such that the specimen
direction r coincides with one of the crystal directions in H(λ, θ) subject to the crystal
orientation.

Let the distribution of crystal orientations in the specimen be modelled by an ODF
ftrue ∈ C(O(3)/Spoint). Then the diffraction intensities can be quantitatively modelled
by superpositions of the corresponding PDF Ptrue = X ftrue ∈ C(S2/Spoint× S2). Denote
I(λ, θ, r) the intensity of the diffracted beam with respect to the parameters (λ, θ, r).
Then we have the model

I(λ, θ, r) = α(λ, θ)
∑

h∈H(λ,θ)

ρλ,θ(h)Ptrue(h, r) (4.2)

with relative diffraction intensities ρλ,θ(h) ∈ R+ and normalization coefficients α(λ, θ) ∈
R+. The normalization coefficients α(λ, θ) are in general not experimentally accessible
and will considered as unknown parameters.
Remark 4.7. In model (4.2) we have assumed f ∈ C(O(3)/Spoint) since the pointwise
evaluation X f(h, r), h, r ∈ S2 of the corresponding PDF is not defined in the canonical
space of ODFs L1(O(3)/Spoint).

In practice the measurement of diffraction intensities is affected by background ra-
diation and measurement errors. We denote the background intensity for the specific
parameters λ, θ ∈ R and r ∈ S2 by Ib(λ, θ, r) ∈ R+ and assume that it is known. Since
the diffraction intensities are measured by particle counting we model them as random
samples I(λ, θ, r) ∈ R of the Poisson distribution

I(λ, θ, r) = Poiss
(
I(λ, θ, r) + Ib(λ, θ, r)

)
(4.3)

with mean value equal to the sum of the intensity of the diffracted beam and the back-
ground radiation. We refer to the random sample I(λ, θ, r) as the diffraction counts and
write

I(λ, θ, r) ∼ I(λ, θ, r).
It should be noted that equation (4.3) does not represent a complete model for exper-

imental diffraction counts. First of all Bragg’s law itself is only a rough simplification of
much more sophisticated models explaining diffraction (cf. Cowley, 1995). Second, the
diffraction counts commonly used for texture determination are obtained by processing a
spectrum of diffraction counts for varying Bragg angle θ or wavelength λ (cf. Hammond,
1997).
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Figure 4.2: The diffraction experiment.

Texture Determination. Figure 4.2 shows the general setting of a diffraction exper-
iment. It consists of a beam source, a detector, and the specimen in line with them.
The beam source emits a coherent, monochromatic beam of a certain wavelength. Any
detector position constitutes a certain Bragg angle θ ∈ (0, π

2
) and a certain specimen

direction r ∈ S2 defined as the bisecting line between initial and diffracted beam.
In a usual diffraction experiment for the purpose of texture determination a list of

wavelengths λi ∈ R+ and Bragg angles θi ∈ (0, π
2
), i = 1, . . . , N , is chosen such that the

corresponding sets of crystal directionsHi = H(λi, θi) that cause diffraction is not empty.
Moreover, a list of specimen directions rij ∈ S2, j = 1, . . . , Ni, is chosen for each pair
(λi, θi). Relative to these specimen directions and parameters (λi, θi, rij), i = 1, . . . , N ,
j = 1, . . . , Ni diffraction counts Iij = I(λi, θi, rij) ∈ R+ and background intensities
Ibij = Ib(λi, θi, rij) ∈ R+, are measured. The number N of chosen combinations (λi, θi),
i = 1, . . . , N , of wavelengths and Bragg angles usually varies between three and twenty
whereas the number Ni of measured diffraction counts Iij for a fixed combination (λi, θi)
may vary between 250 and 1,000,000.

In order to adapt equation (4.3) such that it serves as a model for a complete diffrac-
tion experiment we introduce the following vector notations. First we abbreviate the
unknown normalization coefficients by the vector αtrue ∈ RN

+ , [αtrue]i = α(λi, θi) and the
relative diffraction intensities by the functions ρi = ρλi,θi

, i = 1, . . . , N . Furthermore,
we will frequently use the vector notations

I = (I11, . . . , I1N1︸ ︷︷ ︸
IT
1

, I21, . . . , I2N2︸ ︷︷ ︸
IT
2

, . . . , IN1, . . . , INNN︸ ︷︷ ︸
IT
N

)T ∈ RN̄ , (4.4)

where Ii = (Ii1, . . . , IiNi
)T ∈ RNi

+ are the diffraction counts corresponding to the i–th
pole figure and N̄ =

∑N
i=1Ni denotes the total number of measured diffraction data.

Finally, we define for any ODF f ∈ C(O(3)/Spoint) the notation

X f(Hi, rij) =
∑
h∈Hi

ρi(h) X f(h, rij). (4.5)
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Symbol Description
N ∈ N number of pole figures
Ni ∈ N, i = 1, . . . , N number of specimen directions
Spoint ⊆ O(3) point group of the specimen
Hi = H(λi, θi) ⊆ S2/Spoint, i = 1, . . . , N superposed crystal directions
ρi : Hi → R+ relative reflection intensities
rij ∈ S2, i = 1 . . . , N, j = 1, . . . , Ni specimen directions
Iij ∈ R+, i = 1, . . . , N, j = 1, . . . , Ni diffraction counts
Ibij ∈ R+, i = 1, . . . , N, j = 1, . . . , Ni background intensities

Table 4.1: List of parameters of a diffraction experiment.

Assuming that the distribution of crystal orientations in the specimen is modelled by
an ODF ftrue ∈ C(O(3)/Spoint) we obtain by the fundamental equation of texture analysis
(4.1) and the equations (4.2) and (4.3) the following statistical relationship between the
measured diffraction counts I ∈ RN̄

+ and the model ODF ftrue ∈ C(O(3)/Spoint)

Iij ∼ Poiss
(
Ibij + [αtrue]i X ftrue(Hi, rij)

)
, i = 1, . . . , N, j = 1, . . . , N. (4.6)

A complete overview about all parameters of a diffraction experiment is given in Table
4.1. From the point of view of Equation (4.6) the measured diffraction counts I ∈ RN̄

occur as an one–element random sample of a family of a parameterized Poisson distri-
butions. Then the objective of quantitative texture analysis is to retrieve information
about the unknown parameters ftrue and αtrue from the random sample I. The problem
of estimation of the true ODF ftrue is known as the PDF–to–ODF inversion problem.
The analysis of this problem will be our main challenge during the remainder of this
thesis.

4.3 The Ill–Posedness of the PDF–to–ODF Inversion
Problem

Although the problem of ODF estimation dates back to the works of Bunge (1965) and
Roe (1965) its inherent indeterminateness was first explained by Matthies (1979) only 15
years later. The indeterminateness of the PDF–to–ODF inversion problem has several
reasons. In this section we attempt to give an almost complete list of these reasons (cf.
Matthies et al. (1987, Sec. 12), Wenk et al. (1987)).

The Ambiguity Due to Friedel’s Law. Friedel’s law states that antipodal crystal
directions h ∈ S2 and −h ∈ S2 are indistinguishable by diffraction experiments, i.e. we
have Hi = −Hi, i = 1, . . . , N . In turn, Friedel’s law implies that it is impossible to
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distinguish between a crystal orientation gSpoint ∈ O(3)/Spoint and the corresponding
inverse crystal orientation −gSpoint of a single crystal by diffraction experiments. Hence,
gSpoint and −gSpoint should be treated as orientations symmetrically equivalent with
respect to diffraction properties. Symmetry with respect to diffraction is described by
the so called Laue group SLaue ⊆ O(3) of the crystal. It is related to the point group
Spoint of the crystal by the equation

SLaue = Spoint ⊗ {Id,−Id}.

In this thesis we deal with diffraction data only. Hence, the appropriate symmetry we
have to work with is the symmetry with respect to diffraction SLaue ⊆ O(3).

Remark 4.8. In Lemma 3.25 we have shown that the PDF of any ODF f ∈ L1(O(3)/SLaue)
possessing the symmetry f(g) = f(−g) satisfies

X f(h, r) = X f(h,−r), h, r ∈ S2.

In other words all pole figures X f(h, ◦) of f are even functions and hence, it is sufficient
to sample them only at specimen directions located on the upper hemisphere S2

+.

The Ambiguity of the Operator X . Let SLaue ⊆ O(3) be some Laue group. From
Section 2.5 we know that any ODF ftrue ∈ L2(O(3)/SLaue) has a Fourier expansion of
the form

ftrue(g) =
∞∑
l=0

l∑
k,k′=−l

(l + 1
2
)

1
2

2π
f̂true(l, k, k

′)T kk
′

l (|g|), g ∈ O(3),

where |g| = g if g ∈ SO(3) and |g| = −g if g ∈ O(3)\SO(3). By the fundamental
equation of texture analysis (4.1) and Theorem 3.24 we have for the corresponding PDF
Ptrue = X ftrue

X ftrue(h, r) =
∑
l∈2N0

l∑
k,k′=−l

1

(l + 1
2
)

1
2

f̂true(l, k, k
′)Yk′l (h)Ykl (r), h, r ∈ S2.

We mention that the true PDF Ptrue does not contain any information about the odd
order Fourier coefficients of the true ODF ftrue. Consequently any ODF

f(g) =
∞∑
l=0

l∑
k,k′=−l

(l + 1
2
)

1
2

2π
f̂(l, k, k′)T kk

′

l (|g|), g ∈ O(3)

with f̂(l, k, k′) = f̂true(l, k, k
′) for l = 0, 2, . . . and k, k′ = −l, . . . , l defines the same PDF

as the true ODF ftrue, i.e. X f = X ftrue and hence causes the same diffraction behavior.
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This ambiguity of the PDF–to–ODF inversion problem is called ghost effect and was
first explained by Matthies (1979).

In the following we provide the reader with two examples illustrating the ghost effect.
In both examples we consider triclinic crystal symmetry, i.e SLaue = Stric = {Id,−Id}.
In the case of triclinic crystal symmetry the ODF f : O(3)/Stric → R+ can be treated as
a function defined on SO(3). The first example deals with unimodal ODFs and shows
that there are pairs of ODFs such that the corresponding PDFs are both the uniform
distribution on S2/Stric×S2 and such that the first ODF has an arbitrarily sharp peak at
some rotation g0 ∈ SO(3) and the second ODF is almost zero in a whole neighborhood
of g0, i.e. does not have any peak at this orientation.

Example 4.9. Let κ ∈ (0, 1). Then

fκ(g) =
∞∑
l=0

κlU2l

(
cos

]g

2

)
=

1 + κ

1− 2κ cos ]g
2

+ κ2
, g ∈ SO(3),

defines a triclinic, unimodal and radially symmetric ODF with center g0 = Id. The
parameter κ determines the sharpness of the ODF and we have fκ(Id) → ∞ as κ → 1.
One verifies that

fκ,even(g) =
∑
l∈2N0

κlU2l

(
cos

]g

2

)
=

1 + 2κ2 cos ]g
2

+ κ2

1− 2κ2 cos ]g + κ4
, g ∈ SO(3),

and

fκ,even − fκ,odd =
∞∑
l=0

(−κ)lU2l

(
cos

]g

2

)
=

1− κ
1 + 2κ cos ]g

2
+ κ2

, g ∈ SO(3),

are non–negative and hence represent valid ODFs that define identical PDFs

X fκ,even = X (fκ,even − fκ,odd) = X fκ.

At the center g0 = Id we obtain

(fκ,even − fκ,odd)(Id) =
∞∑
l=0

(−κ)l(2l + 1) =
1− κ

(1 + κ)2
.

Since limκ→1
1−κ

(1+κ)2
= 0 we conclude that fκ,even − fκ,odd has no peak at g0 = Id for

κ→ 1.
Plots of the three ODF’s fκ, fκ,even and fκ,even − fκ,odd are given in Figure 4.3 for

κ = 0.5 and κ = 0.9.

The second example deals with radially symmetric ODFs such that the corresponding
PDFs are all the uniform distribution on S2/Stric × S2. A similar example was already
given by Matthies et al. (1987, Sec. 13.5).
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Figure 4.3: Each plot contains the graphs of three radially symmetric ODFs with identical
PDFs plotted as functions of the rotational angle from the center. The functions fκ (blue),
fκ,even (green), and fκ,even − fκ,odd (red) defined in Example 4.9 are plotted in the two
left most diagrams for κ = 0.5 (left) and κ = 0.9 (middle). The functions fκ defined in
Example 4.10 are plotted in the right diagram for κ = 0.5 (blue), κ = 0.7 (green) and
κ = 0.9 (red).

Example 4.10. Let κ > 0 and denote Kodd
κ (ω), ω ∈ [0, π] the odd part of the Abel–

Poisson kernel (cf. Section 3.4)

Kodd
κ (ω) =

∑
l∈2N0+1

(2l + 1)κ2lU2l(cos ω
2
)

=
κ2
(
3 + 7κ4 − 5κ8 − κ12 + 2(3 + κ4 − 5κ8) cosω + 2κ4(1− 3κ4) cos 2ω + cos 3ω

)
(1− 2κ4 cos 2ω + κ8)2

.

We define a triclinic, radially symmetric ODF with center in g0 = Id that defines a
uniformly distributed PDF by setting

fκ(g) = 1 +
(

min
ω∈[0,π]

Kodd
κ (ω)

)−1

Kodd
κ (]g) = 1 +

(κ4 − 1)2

κ2(3 + κ4)
Kodd
κ (]g), g ∈ SO(3).

The discrepancy between the ODFs fκ and the uniformly distributed ODF funif = 1 is

‖funif − fκ‖L2(O(3)) =
(κ4 − 1)2

κ2(3 + κ4)

∑
l∈1+2N0

(2l + 1)2κ2l =
9κ2 + 22κ10 + κ18

(1 + κ4)3(3− 2κ4 − κ8)

in the L2–norm and

‖funif − fκ‖L∞ =
(κ4 − 1)2

κ2(3 + κ4)

∑
l∈1+2N0

(2l + 1)2κl =
9 + 22κ4 + κ8

3− 2κ4 − κ8

in the maximum norm. Both quantities tend to infinity for κ → 1. The ODF fκ is
plotted in Figure 4.3 for κ = 0.5, κ = 0.7 and κ = 0.9.

The following proposition is a direct consequence of Example 4.10.
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Figure 4.4: Scheme of a PDF sampling grid.

Proposition 4.11. Let SLaue ⊆ O(3) be some Laue group and let f ∈ L2(O(3)/SLaue)
be some ODF with f ≥ ε > 0. Then the range

Ωf = { f̃ ∈ L2(O(3)/SLaue) | X f̃ = X f and f̃ ≥ 0 }

of all ODF defining the same PDF as f is unbounded with respect to the L2–norm and
with respect to the L∞–norm.

Proposition 4.11 indicates that it is in general not a good idea to look for the max-
imum value of an estimated ODF, since it varies arbitrarily within the range of ODFs
corresponding to a given PDF. It should be noted that Proposition 4.11 does not ap-
ply to finite dimensional subspaces of L2(O(3)/SLaue), e.g. if only ODFs with a certain
bandwidth or resolution are considered. However, the range of Ωf restricted to those
finite dimensional subspaces remains still remarkable in practice (cf. Schaeben, 1994).

The Ambiguity Due to the Clustered Data Layout. As it was already pointed out
in Section 4.2 the true PDF Ptrue ∈ C(S2/SLaue×S2) is sampled in an irregular, strongly
clustered way, i.e. the sampling grid (SLauehi, rij) ∈ S2/SLaue × S2, i = 1, . . . , N ,
j = 1, . . . , Ni of the PDF contains only a few different crystal directions hi but many
specimen directions rij. A schematic illustration of a typical sampling grid used in
diffraction experiments is plotted Figure 4.4.

Let ftrue ∈ C(O(3)/SLaue) be the true ODF of a specimen and let f̂true be its Fourier
coefficients. Then in view of Equation (4.1) and Theorem 3.24 the true PDF has the
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Fourier representation

Ptrue(h, r) =
∑
l∈2N

l∑
k,k′=−l

1

(l + 1
2
)

1
2

f̂true(l, k, k
′)Yk′l (h)Ykl (r).

Consequently every single pole figure P (hi, ◦), i = 1, . . . , N with respect to a fixed
crystal direction hi ∈ S2 has a Fourier representation of the form

P (hi, r) =
∞∑
l=0

l∑
k=−l

P̂hi
(l, k)Ykl (r), i = 1, . . . , N (4.7)

where the Fourier coefficients P̂hi
(l, k) are related to the Fourier coefficients f̂true(l, k, k

′)
of the ODF by

P̂hi
(l, k) =

l∑
k′=−l

1

(l + 1
2
)

1
2

f̂true(l, k, k
′)Yk′l (hi), (i = 1, . . . , N, l ∈ N0, k = −l, . . . , l).

(4.8)
Equation (4.7) describes for each pole figure a system of linear equations, each of which
can be seen as an inverse Fourier transform with sample points

(
rij, P (hi, rij)

)
, j =

1, . . . , Ni. Depending on the smoothness of the true PDF and the number of sample
points Ni we have a minimum bandwidth Lmin that is required to approximate the given
sampling of the pole figures.

On the other hand equation (4.8) describes for any l ∈ N0 and k = −l, . . . , l a system
of linear equations with a fixed number N of equations but an increasing number of free
variables. The systems of linear equations (4.8) define a maximum bandwidth Lmax up
to which all systems have a unique solution. Obviously, the bandwidth Lmax depends
on the number of sampled crystal directions hi ∈ S2/SLaue, i = 1, . . . , N and the Laue
group SLaue. If, as it is the case in practice, the number of sample nodes per pole
figure is much larger then the number of pole figures, then the minimum number Lmin
of Fourier coefficients that is required to approximate the pole figures is smaller then
the maximum number Lmax of Fourier coefficients that can be calculated from a fixed
number of measured pole figures. In other words, if we are going to estimate the true
ODF at the desired bandwidth Lmin the subspace of possible solutions does not only
contain harmonic functions of odd degree but also harmonic functions with even degree
between Lmax and Lmin.

A more detailed analysis of this source of ambiguity can be found in Bunge (1969, Sec.
1.4.1). An impressive illustration of this issue represents the pair of sample ODFs by
Boogaart (cf. Bernstein et al., 2005) which are totally different but define six identical
pole figures. Remember that six is a common total number of pole figures to be measured.

As an additional difficulty we have the fact that many experimental settings result
in incomplete pole figure coverages, i.e. the specimen directions do not lie uniformly
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dense in the hemisphere S2
+. Since the inversion of the Radon transform is not local (cf.

Theorem 3.19) a consistent estimator of the value of the true ODF at a single orientation
requires information about the PDF on its complete domain S2/SLaue × S2.

The Ambiguity Due to Superposed Pole Figures. In the case of superposed pole
figures equation (4.7) and equation (4.8) change to

P (Hi, r) =
∞∑
l=0

l∑
k=−l

P̂Hi
(l, k)Ykl (r), i = 1, . . . , N

and

P̂Hi
(l, k) =

l∑
k′=−l

1

(l + 1
2
)

1
2

f̂true(l, k, k
′)
∑
h∈Hi

ρi(h)Yk′l (h),

where i = 1, . . . , N, l ∈ N0, k = −l, . . . , l. Hence, there are less constraints on the
Fourier coefficients of ftrue in comparison to the case that the crystal directions in Hi

have been measured independently. In general this results in a smaller bandwidth Lmax
up to which the Fourier coefficients of the true ODF can be estimated.

The Ambiguity Due to the Unknown Normalization Coefficients. An additional
source of ambiguity are the unknown normalization coefficients αtrue ∈ RN of the mea-
sured diffraction counts. In the case of complete pole figures, i.e. the sampling grids
ri = (ri1, . . . , riNi

) provide complete coverages of the hemisphere S2
+, the normalization

coefficients can be directly estimated from the diffraction counts (cf. Proposition 4.31).
However, in practice the measured specimen directions usually do not provide a com-

plete coverage the hemisphere but contain sparse areas. In those cases estimation of the
normalization coefficients is only promising if the ratio of mass of the density function
X ftrue(Hi, ◦) is known that is concentrated in the region covered by the sampling grid
ri. Hence, the ambiguity of the unknown normalization coefficients can be seen as the
lack of knowledge about this ratio.

The following example gives an illustration of this issue. We consider an ODF that is
the superposition of two unimodal not overlapping peaks. We want to retrieve this ODF
from two given pole figures of this ODF, which are incomplete in such a way that each
peak of the ODF is visible only at one pole figure. Then the lack of information about
the normalization coefficients of the pole figures corresponds to the lack of information
about the ratio of the two ODF components.

An additional difficulty connected with the unknown normalization coefficients is the
fact that the corresponding estimation problem is in general not convex (cf. Section 4.5)
in contrast to the case of known normalization coefficients where quadratic estimation
functionals exist.
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The Ambiguity Due to the Ill–Posedness of the Radon Transform. The inversion of
the planar Radon transform is a classical example of an ill–posed problem. In Section 3.2
we have characterized the one–dimensional Radon transform on O(3) as an isomorphism
between the Sobolev spaces H0(O(3)) and H 1

2
(S2×S2). Hence, the inversion of the one–

dimensional Radon transform on O(3) is an ill–posed problem of order 1
2

(cf. Louis, 1989,
Sec. 3.2). Since the measured diffraction counts are in general effected by measurement
errors one has to apply regularization techniques to avoid amplification of errors (cf.
Bernier and Miller, 2006; van den Boogaart et al., 2006).

4.4 The Reproducibility of the ODF
We are concerned with the following simplified problem. Let SLaue ⊆ O(3) be a Laue
group and let Pi ∈ L2(S2), i = 1, . . . , N , be a list of pole figures with respect to the
crystal directions hi ∈ S2. We are interested in the range of ODFs f ∈ L2(O(3)/SLaue)
that satisfy

X f(hi, ◦) = Pi, i = 1, . . . , N. (4.9)
In other words, here we focus on the ambiguity of the ODF estimation problem neglecting
the ambiguity due to incomplete or superposed pole figures and unknown normalization
coefficients. This problem was first formulated by Matthies (cf. Matthies, 1982, Sec. 31)
and is central in QTA (Schaeben, 1994). Remember that for f ∈ L2(O(3)/SLaue) the
partial pointwise evaluation X f(h, ◦) ∈ L2(S2) is well defined (cf. Remark 3.12) for any
crystal direction h ∈ S2.

In Proposition 4.11 we have shown that the range of such ODFs is in general un-
bounded with respect to the maximum norm and with respect to the L2–norm. How-
ever, there exist ODFs f ∈ C(O(3)/SLaue) such that there is an one to one relation to
the corresponding PDF. A class of such ODFs is described by the next proposition. For
simplicity we restrict ourself to the triclinic case, i.e. to SLaue = Stric = {Id,−Id}. Then
the orientation space simplifies to O(3)/Stric = SO(3).

Proposition 4.12. Let ftrue ∈ C(SO(3)) be a triclinic ODF localized within a ball of
diameter π

2
around a certain orientation g0 ∈ SO(3), i.e. ftrue(g) = 0 for all g ∈ SO(3)

with ](g−1
0 g) ≥ π

2
. Then ftrue is uniquely determined by the corresponding pole density

function Ptrue = X ftrue.

Proof. First of all we notice that the condition ftrue(g) = 0 for all g ∈ SO(3) with
](g−1

0 g) ≥ π
2

is equivalent to the condition P (h, r) = 0 for all h, r ∈ S2 with ](g0h, r) =
π
2
. This is due to the identity of the sets{

g ∈ SO(3)
∣∣∣ ](g,g0) ≥

π

2

}
=
{

g ∈ G(h, r)
∣∣∣ h, r ∈ S2,](g0h, r) =

π

2

}
and the non–negativity of ftrue. Consequently, the assumptions of the proposition can
be derived from the pole density function Ptrue directly.
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Let h, r ∈ S2 such that ](g0h, r) = π
2
. By inequality (2.5) any rotation g ∈ SO(3) with

gg0h = r satisfies ](g0,g) ≥ π
2
. Hence, the condition ftrue(g) = 0 for all rotations g ∈

SO(3) with ](g0,g) ≥ π
2

implies ftrue(g) = 0 for all rotations g ∈ G(h, r). Consequently
Rf(h, r) = 0 and we conclude that the Radon transform of the true ODF ftrue is uniquely
determined by the true PDF Ptrue thanks to

Rftrue(g0h, r) =

{
Ptrue(g0h, r) if ](g0h, r) ≤ π

2
,

0 otherwise,

for any h, r ∈ S. By Theorem 3.10 the Radon transform is injective and hence the ODF
ftrue is uniquely determined by the PDF Ptrue.

Our purpose in this section is to relax the assumptions of Proposition 4.12 such that
it applies to arbitrary ODFs and to single pole figures Pi = P (hi, ◦), i = 1, . . . , N .

General Framework.

Definition 4.13. Let ψ : [0, π]→ R+ be some non–negative, square integrable function
and let S ⊆ S2 be an arbitrary subset. We define the concentration of a non–negative,
square integrable function P : S2 → R+ with respect to the set S and the weighting
function ψ as

σψ(P, S) =
1

4π

∫
S2

ψ(](S, r))P (r) dr.

Here, ](r, S) denoted the angular distance between the vector r and the set S.
Analogously we define the concentration of any non–negative, square integrable func-

tion f : O(3) → R+ in some subset Q ⊆ O(3) with respect to the weighting function ψ
by

σψ(f,Q) =
1

16π2

∫
O(3)

ψ(](Q,g))f(g) dg.

Let P : S2 → R+ and f : O(3)→ R+ be probability density functions. Then there are
two important special cases for the choice of the function ψ which allow for a statistical
interpretation of the concentrations σψ(P, S) and σψ(f,Q). If ψ(t) = 1[0,ε] is the indicator
function then σψ(P, S) and σψ(f,Q) represent the mass located within the distance ε > 0
to the sets S and Q, respectively. If ψ(t) = t2 and S and Q are single elements which
correspond to the mean values of P and f then σψ(P, S) and σψ(f,Q) are the variances
of P and f , respectively. It is emphasized that Definition 4.13 allows for the presence
of crystal symmetries, i.e. for ODFs defined on factor spaces O(3)/SLaue. In this case
the set Q has to be chosen such that Q = QSLaue. Since any Laue group contains the
inversion −Id ∈ O(3) we have Q = −Q in all cases of interest.

Now we are ready to formulate the main theorem of this section relating the concen-
trations of an ODF and its pole figures.
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Theorem 4.14. Let Q ⊆ O(3) with −Id ∈ Q and let ψ : [0, π] → R+ be some non–
negative, square integrable function. Then we define for any list h = (h1, . . . ,hN) of
crystal directions hi ∈ S2 and for any coefficients λ ∈ RN

+ with
∑N

i=1 λi = 1 the function

ΨQ,h,λ : O(3)→ R+, ΨQ,h,λ(g) =
N∑
i=1

λiψ(](ghi, Qhi)). (4.10)

Let ψ1, ψ2 : [0, π]→ R+ be two non–negative, square integrable functions satisfying the
inequality

ψ1(](g, Q)) ≤ ΨQ,h,λ(g) ≤ ψ2(](g, Q)), g ∈ O(3). (4.11)

Then we have for any square integrable ODF f : O(3)→ R+ the inequality

σψ1(f,Q) ≤
N∑
i=1

λiσψ(X f(hi, ◦), Qhi) ≤ σψ2(f,Q). (4.12)

Proof. Since
⋃

r∈S2 G(hi, r) = SO(3) defines a disjoint coverage of SO(3) for any hi ∈ S2,
i = 1, . . . , N , we have

σψ(X f(hi, ◦), Qhi) =
1

4π

∫
S2

ψ(](r, Qhi))
1

4π

∫
G(hi,r)∪−G(−hi,r)

f(g) dg dr

=
1

16π2

∫
O(3)

ψ(](ghi, Qhi))f(g) dg.

Consequently, we can state for any function ψ1 satisfying ψ1(](g, Q)) ≤ ΨQ,h,λ(g) that

N∑
i=1

λiσψ(X f(hi, ◦), Qhi) =
N∑
i=1

λi
1

16π2

∫
O(3)

ψ(](ghi, Qhi))f(g) dg

=
1

16π2

∫
O(3)

N∑
i=1

λiψ(](ghi, Qhi))f(g) dg ≥ σψ1(f,Q).

In the last inequality we have made use of the non–negativity of the functions f and ψ.
This proves the inequality (4.12) for ψ1. The proof for ψ2 is analogous.

The crucial point of Theorem 4.14 is that it provides a relationship between the
concentration σψ1(f,Q) of an ODF f and the concentrations σψ(X f(hi, ◦), Qhi), i =
1, . . . , N of some of its pole figures while making use of the non–negativity of the ODF.
However, the application of Theorem 4.14 to practical problems is not straight forward
but involves an interplay between presumptions about the true ODF and the desired
results in mind. In general we have the following recipe.

1. Choose a region of concentration Q.
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2. Choose a weighting function ψ appropriate to the sharpness of the ODF.

3. Choose weighting coefficients λi, i = 1, . . . , N with
∑N

i=1 λi = 1.

4. Determine ΨQ,h,λ, Ψinf
Q,h,λ and Ψsup

Q,h,λ.

5. Choose ψ1, ψ2 according to condition (4.11).

6. Apply Theorem 4.14.

Since the weighting coefficients λi, i = 1, . . . , N can be chosen arbitrarily it makes
sense to look for those weighting coefficients which lead to a maximum sharp inequality
(4.12). The sharpness of inequality (4.12) depends on the difference between the func-
tions ψ1 and ψ2 which have to be chosen according to condition (4.11). Moreover, the
criteria of maximum sharpness of inequality (4.12) can be used as a rule for choice of
the pole figure P (hi, ◦) to be measured for texture determination.

In the following we restrict ourself to the case λi = 1/N , i = 1, . . . , N and write ΨQ,h

instead of ΨQ,h,λ.

Triclinic Crystal Symmetry. Let us start with the simple case of a triclinic crystal
symmetry and concentration in a single crystal orientation g0Stric = {Id,−Id} = Q.
Fixing ψ(t) = t2 and crystal directions h = (h1, . . . ,hN), hi ∈ S2 we can plot ΨQ,h as
follows. For any angle ω ∈ [0, π] we plot the range of ΨQ,h(g), where ](g, Q) = ω. This
has been done in Figure 4.5 for a single crystal direction h = (e1), for the three crystal
directions h = (e1, e2, e3), and for the seven crystal directions

h =
((

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
,
(

1
1
1

)
,
(

1
1
−1

)
,
(

1
−1
1

)
,
(
−1
1
1

)
,
(

1
−1
−1

))
.

Additionally the function

Ψ̃Q(g) =
1

4π

∫
S2

ψ(](gh, Qh)) dh, (4.13)

is plotted which can be interpreted as the limit of ΨQ,h when the total number of crystal
directions N increases to infinity.

We define for abbreviation the functions Ψinf
Q,h : [0, π]→ R+ and Ψsup

Q,h : [0, π]→ R+ as

Ψinf
Q,h(ω) := inf{ΨQ,h(g) | g ∈ O(3),](g, Q) = ω },

Ψsup
Q,h(ω) := sup{ΨQ,h(g) | g ∈ O(3),](g, Q) = ω }

(4.14)

and give some interpretations of graphs plotted in Figure 4.5.
1. The observation that Ψinf

Q,h(π) = 0 in the case of the three crystal directions hi = ei,
i = 1, . . . , 3 relates to the fact that there are crystal orientations gStric ∈ O(3)/Stric,
e.g. g = Rotei

(π), with gStrichi = Strichi, i = 1, . . . , 3. In other words an ODF
concentrated in Rotei

(π)Stric, i = 1, . . . , 3, causes identical pole figures P (e1, ◦),
P (e2, ◦), P (e3, ◦) as an ODF concentrated in IdStric.
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Figure 4.5: The graphs of the function ΨQ,h for Q = {Id,−Id} and for one, three and
seven crystal directions h, and the function Ψ̃Q.

2. The observation Φinf(ω) ≥ a > 0 for ω > ω0 > 0 and some a, ω0 ∈ R+ in the case
of the seven crystal directions hi as chosen above, implies that the pole figures
P (hi, ◦), i = 1, . . . , 7 are sufficient to distinguish between an ODF sufficiently well
concentrated in g0 = Id ∈ SO(3) and any other ODF.

3. Figure 4.5 indicates that the range of ΨQ,h(g) with ](g, Q) = ω shrinks when
the number of crystal directions increases and that ΨQ,h eventually converges to
the function Ψ̃Q as plotted in right most graph. This behavior is more formally
described by the next proposition.

Proposition 4.15. Let ψ : [0, π] → R+ be some non–negative, square integrable func-
tion, let h = (h1, . . . ,hN), hi ∈ S2 be a list of N ∈ N crystal directions and let
Q = {−g0,g0} for some rotation g0 ∈ SO(3). Furthermore, denote ΨQ,h, Ψ̃Q,Ψ

inf
Q,h

and Ψsup
Q,h the functions as defined in the equations (4.10), (4.13) and (4.14). Then

g 7→ Ψ̃Q(g) is a function depending only on the angle ](g, Q) and we have

Ψinf
Q,h(](g, Q)) ≤ Ψ̃Q(g) ≤ Ψsup

Q,h(](g, Q)), (g ∈ O(3)). (4.15)

Proof. Without loss of generality, we may assume Q = {−Id, Id}. Then we have for all
g,q ∈ O(3)

Ψ̃Q(q−1gq) =
1

4π

∫
h̃∈S2

ψ(](gqh̃, Qqh̃)) dh̃ = Ψ̃Q(g)

and hence Ψ̃Q depends only on the angle ](g, Q).
Furthermore, we observe that the function

ψ̃(ω) =
1

4π

∫
S2

ψ(](Rotη(ω)h̃, Qh̃)) dη

does not depend on the particular choice of h̃ ∈ S2. Consequently, we have for any list
h = (h1, . . . ,hN), hi ∈ S2 of N ∈ N of crystal directions and any coefficients λ ∈ RN

+ ,∑N
i=1 λi = 1 the equality

1

4π

∫
S2

ΨQ,h(Rotη(ω)) dη =
1

4π

∫
S2

N∑
i=1

λiψ(](Rotη(ω)hi, Qhi)) dη = ψ̃(ω).
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On the other hand we have for any q ∈ SO(3) with ]q = ω,

Ψ̃Q(q) =
1

4π

∫
S2

Ψ̃Q(Rotη(ω)) dη =
1

4π

∫
S2

1

4π

∫
S2

ψ(](Rotη(ω)hi, Qhi)) dh dη = ψ̃(ω)

and hence
1

4π

∫
S2

ΨQ,h(Rotη(ω)) dη = Ψ̃Q(q), q ∈ SO(3),]q = ω

Together with the non–negativity of ΨQ,h this proves equation (4.15).

Remark 4.16. Proposition 4.15 states that for a fixed function ψ : [0, π]→ R+ there is
an upper and a lower bound for the functions ψ1 and ψ2 as specified in Theorem 4.14.
In particular, we have for any square integrable ODF f : O(3)/Stric → R the equality

σΨ̃Q
(f,Q) =

1

4π

∫
S2

σψ(X f(h, ◦), Q) dh.

General Crystal Symmetries. Proposition 4.15 does not apply to arbitrary Laue groups
and arbitrary choices of Q. Nevertheless, setting ψ(t) = t2 the function Ψ̃Q gives an im-
pression about the preservation of localization also for non–triclinic crystal symmetries.
The functions Ψ̃Q is plotted in Figure 4.6 for all Laue groups Q = SLaue.

Remark 4.17. One recognizes a qualitative difference between the functions Ψ̃inf
Q of

those Laue group that do not contain two perpendicular symmetry axes (top row) and
those containing perpendicular symmetry axes (bottom row). For the Laue groups
displayed in the top row the function Ψ̃inf

Q seems to be decreasing beginning with a
certain angle whereas for the Laue group displayed at bottom row the function Ψ̃inf

Q

seems to be monotonously increasing. In view of Theorem 4.14 one would therefore
expect a better preservation of localization in the case of Laue groups containing two
perpendicular symmetry axes.

In the following we demonstrate the application of Theorem 4.14 with two practical
examples. In particular we give estimates for weak and sharp orthorhombic textures
based on three pole figures. The purpose of these estimates is to show that in contrast
to Example 4.9 and Example 4.10 the general type of ODFs can be determined by
diffraction experiments, i.e. weak pole figures correspond to weak ODFs and sharp pole
figures correspond to sharp ODFs.

The orthorhombic crystal symmetry is described by the Laue group

Sorth = 〈−Id,Rote1(π),Rote2(π)〉 .

Here the notationG = 〈g1, . . . ,gN〉 defines the group generated by the elements g1, . . . ,gN .
Furthermore, we denote for any unit vector η ∈ S2 the set of antipodal vectors {η,−η}
by ±η. In the case of orthorhombic crystal symmetry the maximum rotational angle of
a crystal orientation gSorth ∈ O(3)/Sorth is 2

3
π as it is shown in the next lemma.
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Figure 4.6: The function Ψ̃Q,h for all Laue groups.

Lemma 4.18. Let g ∈ O(3). Then there is a rotation Rotη(ω) ∈ gSorth with

ω ≤ 2 arccot
(
cos max

i=1,...,3
](η,±ei)

)
. (4.16)

In particular ](g, Sorth) ≤ 2
3
π.

Proof. For any ω ∈ [0, π] and η ∈ S2 we have by equation (2.4)

cos
]
(
Rotη(ω),Rotei

(π
2
)
)

2
= sin ω

2
cos ](η, ei), i = 1, . . . , 3.

Let ω > 2 arccot
(
cos ](η, e1)

)
. Then cos ](η, e1) > cot ω

2
and hence

](Rotη(ω),Rote1(
π
2
)) < 2 arccos(sin ω

2
cot ω

2
) = ω.

In other words, for every rotation Rotη(ω) ∈ gSorth that does not satisfy the condition
(4.16) there is a crystallographically equivalent rotation with smaller rotational angle.
Since the symmetry group Sorth is finite there is at least one rotation Rotη(ω) ∈ gSorth
that satisfies the condition (4.16). For η = 1√

3
(1, 1, 1)T we obtain 2 arccotη · ei = 2

3
π,

i = 1, . . . , 3.

Lemma 4.19. Let ψ(t) = t2. Then the concentration σψ(funif, Sorth) of the uniform
distribution funif = 1 on O(3)/Sorth is given by the integral

σψ(funif, Sorth) =
24

π2

∫ π

0

sin2 ω

2

∫ π
4

0

∫ arccot cos ρ

0

sin θmin
{
ω, 2 arccos(sin ω

2
cos θ)

}2 dω dθ dρ.
(4.17)
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Proof. Using spherical trigonometry one verifies that

∆ =
{
η = (θ, ρ) ∈ S2

∣∣∣ ρ ∈ [0, π
4
], θ ∈ [0, arccot cos ρ]

}
defines the spherical triangle that contains all points η = (θ, ρ) ∈ S2 with ρ ∈ [0, π

4
] such

that ](η, e3) = mini=1,...,3 ](η,±ei). Moreover, the triangle ∆ allows for a decomposi-
tion of the sphere into 48 symmetric copies.

Let ω ∈ [0, π] and η ∈ S2. Then

]
(
Rotη(ω),Rotei

(π
2
)
)

= 2 arccos
(
sin ω

2
cos ](η, ei)

)
and consequently

]
(
Rotη(ω), Sorth

)
= min

i=1,...,3

{
ω, 2 arccos

(
sin ω

2
cos ](η,±ei)

)}
.

Hence, ]
(
Rotη(ω), Sorth

)
depends only on the angular distances ](η,±ei), i = 1, . . . , 3

and the rotational angle ω. By symmetry arguments we obtain

1

8π2

∫
SO(3)

](g, Sorth)
2 dg

=
1

2π2

∫ π

0

sin2 ω
2

∫
S2

](Rotη(ω), Sorth)
2 dη dω

=
24

π2

∫ π

0

sin2 ω
2

∫
∆

min
{
ω, 2 arccos

(
sin ω

2
cos ](η, e3)

)}2

dη dω

=
24

π2

∫ π

0

sin2 ω
2

∫ π
4

0

∫ arccot cos ρ

0

sin θmin
{
ω, 2 arccos

(
sin ω

2
cos θ

)}2

dθ dρ dω.

Remark 4.20. The integral (4.17) can be evaluated numerically. Using the computer
algebra system Mathematica we obtained for the concentration σψ(funif, Sorth) of the
uniformly distributed ODF funif = 1 on O(3)/Sorth with respect to the function ψ(t) = t2

the estimate
1.85 < σψ(funif, Sorth) < 1.86.

The following proposition states that if the pole figures Pei
, i = 1, . . . , 3 of an or-

thorhombic texture are almost uniformly distributed the corresponding ODF is so, too.

Proposition 4.21. Denote funif = 1 the ODF uniformly distributed on O(3)/Sorth and
Punif = 1 the corresponding PDF uniformly distributed on S2/Sorth × S2. Furthermore,
let ψ(t) = t2, ε > 0 and let Pei

∈ L2(S2), i = 1, . . . , 3 be three pole figures such that∣∣∣σψ(Pei
,±η)− σψ(Punif,±η)

∣∣∣ ≤ ε

67



4 The PDF–to–ODF Inversion Problem

for any η ∈ S2. Then any ODF f ∈ L2(O(3)/Sorth) with X f(ei, ◦) = Pei
, i = 1, . . . , 3

satisfies the inequality

σψ(f,qSorth) ≥
3

2
(π − 2− ε) ≥ 0.9σψ(funif, Sorth)−

3

2
ε (4.18)

for any q ∈ O(3).

Proof. First of all we show that t 7→ arccos2 t defines a convex mapping on [−1, 1]. Its
derivatives are given by

d
dt arccos2 t = −2 arccos t√

1− t2
and d2

dt2 arccos2 t =
2
√

1− t2 − 2t arccos t

(1− t2) 3
2

.

Observing √
1− t2 − t arccos t = 0 for t = 1

and
d
dt (
√

1− t2 − t arccos t) = − arccos t ≤ 0 for t ∈ [−1, 1]

we conclude
d2

dt2 arccos2 t ≥ 0, t ∈ [−1, 1]

and hence the function t 7→ arccos2 t is convex.
Let ω ∈ [0, π] and η ∈ S2. Then by equation (2.1) we have

](Rotη(ω)ei, ei)
2 = arccos2

(
(η · ei)2 +

(
1− (η · ei)2

)
cosω

)
.

In view of the first part of this proof ](Rotη(ω)ei, ei)
2 is a convex function with respect

to (η · ei)2 and hence 1
3

∑3
i=1 ](Rotη(ω)ei, ei)

2 is a convex function with respect to
(η · ei)2, i = 1, . . . , 3.

For any η ∈ S2 we have (η · e1)
2 + (η · e2)

2 + (η · e3)
2 = 1 and hence the domain{(

(η · e1)
2, (η · e2)

2, (η · e3)
2
)T ∈ R3

+

∣∣∣ η ∈ S2
}

is convex. Since a convex function on a convex domain has its maximum value at one
of the edges of the domain we obtain

1

3

3∑
i=1

](Rotη(ω)ei, ei)
2 ≤ 1

3

3∑
i=1

](Rote1(ω)ei, ei)
2 =

2

3
ω2.

Let g0,g ∈ O(3) and q ∈ gSorth such that ](g, Sorth) = ]q. Then

1

3

3∑
i=1

](gei,g0Sorthei)
2 =

1

3

3∑
i=1

](qei,±g0ei)
2 ≤ 2

3
](q,g0)

2 =
2

3
](g,g0Sorth)

2.
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Setting h = (e1, e2, e3), ψ(t) = t2 and ψ2(t) = 2
3
t2 the condition

Ψg0Sorth,h(g) ≤ ψ2(](g,g0Sorth))

of Theorem 4.14 is satisfied for any g ∈ O(3) and we obtain

1

3

3∑
i=1

σψ(Pei
,g0Sorthei) ≤ σψ2(f,g0Sorth) =

2

3
σψ(f,g0Sorth).

On the other hand we have assumed

|σψ(Pei
, Sorthη)− σψ(Punif, Sorthη)| ≤ ε

for any η ∈ S2. Since σψ(Punif,±η) = π − 2 independently of the choice of η ∈ S2 we
obtain for any g0 ∈ O(3)

σψ(f,g0Sorth) ≥
3

2
(π − 2− ε) ≥ 0.9σψ(funif,g0Sorth)−

2

3
ε.

The last estimate is due to Remark 4.20.

The second example deals with three complete pole figures Pei
, i = 1, . . . , 3 each of

which is concentrated in some ball B(±g0ei, ε) where g0Sorth ∈ O(3)/Sorth is an arbitrary
crystal orientation and ε ∈ (0, π) is the radius. We show that under these assumptions
any ODF f ∈ L2(O(3)/Sorth) with X f(ei, ◦) = Pei

is concentrated in a slightly larger
ball with center g0Sorth.

Proposition 4.22. Let ε ∈ (0, π
3
)], α ∈ [0, 2

3
], g0 ∈ O(3) and let Pei

∈ L2(S2), i =
1, . . . , 3 be three pole figures such that

1

4π

∫
B(g0ei,ε)

Pei
(r) dr ≥ 1− α.

Then any ODF f ∈ L2(O(3)/Sorth) with X f(ei, ◦) = Pei
, i = 1, . . . , 3 satisfies the

inequality
1

16π2

∫
B(g0Sorth,ε′)

f(g) dg ≥ 1− 3
2
α (4.19)

where ε′ is defined by cos ε′ = 2 cos ε− 1.

Proof. Let ω ∈ (0, π) and let η ∈ S2 such that ](η, ei) ≤ π
2
, i = 1, . . . , 3. Then we have

by equation (2.1) for the angular distance between Rotη(ω)ei and ei the equality

cos ](Rotη(ω)ei, ei) = cos2 ](η, ei) + sin2 ](η, ei) cosω.

In particular, the angular distance ](Rotη(ω)ei, ei) is a monotonously increasing func-
tion of ](η, ei) ∈ [0, π

2
].
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For any vector η ∈ S2 with ](η, ei) ≤ π
2
, i = 1, . . . , 3 the angular distance to at least

two of the vectors ei, i = 1, . . . , 3 satisfies ](η, ei) ≥ π
4
. Let e1 and e2 be these vectors.

Using the monotony of ](Rotη(ω)ei, ei) as a function of ](η, ei) we conclude that

](Rotη(ω)ei, ei) ≥ arccos(1
2

+ 1
2
cosω), i = 1, 2.

Let ε ∈ (0, π
3
] and set ε′ = arccos(2 cos ε− 1). Then we have for for all ω ∈ [ε′, 2

3
π] the

inequality
π − ε ≥ 2

3
π ≥ ](Rotη(ω)ei, ei) ≥ ε, i = 1, 2

and consequently
](Rotη(ω)ei, Sorthei) ≥ ε, i = 1, 2. (4.20)

The above argumentation generalizes to arbitrary rotational axes η ∈ S2 by replacing
ei by −ei for some i = 1, . . . , 3 in the initial constrains on η. Eventually, we obtain that
for any rotation q ∈ SO(3) with rotational angle ](q) ∈ [ε′, 2

3
π] the inequality

](qei, Sorthei) ≥ ε

is satisfied for at least two of the vectors ei, i = 1, . . . , 3.
Let gSorth ∈ O(3)/Sorth such that ](g, Sorth) ≥ ε′. By Lemma 4.18 we can assume

without lost of generality that ]g ∈ [ε′, 2
3
π]. Together with equation (4.20) this implies

that
](gei, Sorthei) ≥ ε

for at least two of the vectors ei, i = 1, . . . , 3.
Setting ψ(t) = 1[ε,π], ψ1(t) = 2

3
1[ε′, 2

3
π] and h = (e1, e2, e3) we obtain for any g ∈ O(3)

ψ1(](g, Sorth)) ≤
1

3

3∑
i=1

ψ(](gei, Sorthei)) = ΨSorth,h(g)

and hence the condition of Theorem 4.14 is satisfied. We conclude that any ODF f ∈
L2(O(3)/Sorth) with X f(ei, ◦) = Pei

, i = 1, . . . , 3 satisfies

σψ1(f, Sorth) ≤
1

3

3∑
i=1

σψ(Pei
, Sorthei) ≤ α.

For g0 = Id the assertion of Proposition 4.22 follows from

1

16π2

∫
B(Sorth,ω)

f(g) dg = 1− 3

2
σψ1(f, Sorth) ≥ 1− 3

2
α.

The general case is due to symmetry reasons.
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Figure 4.7: The function ΨSorth,h for h =
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Figure 4.8: Mass located
withih the halfwidth of the
ODF fκ in dependency of
κ.

Plots of the functions ΨSorth,h for h = (e1, e2, e3) and ψ(t) = t2 and for ψ(t) = 1[ε, 2
3
π]

are given in Figure 4.7.
It remains the question how Proposition 4.21 and Proposition 4.22 agree with the

family of ODFs fκ constructed in Example 4.9 and 4.10. The point is that in both
examples the mass located under the peak of fκ tends to zero as the peak becomes more
sharp. Let fκ be the family of sample ODFs as defined in Example 4.10. Using formula
(3.15) for the halfwidth of the Abel–Poisson kernel depending on the parameter κ we
calculated the mass of fκ located within a ball with center g0 = Id and a radius specified
by the halfwidth of the Abel–Poisson kernel. The numerical result is plotted in Figure
4.8.

4.5 ODF Estimation
Throughout all of this section we denote by SLaue ⊆ O(3), Ib ∈ RN̄

+ , Hi ⊆ S2/SLaue,
ρi : Hi → R and rij ∈ S2, i = 1, . . . , N , j = 1, . . . , Ni the known parameters of a
diffraction experiment as described in Section 4.2 and by I ∈ RN̄ the measured diffraction
counts. According to Section 4.2 we interpret the diffraction counts I ∈ RN̄ as an one–
element random sample of the family of Poisson distributions

Iij = Poiss
(
Ibij + [αtrue]i X ftrue(Hi, rij)

)
, i = 1, . . . , N, j = 1, . . . , Ni, (4.21)

where the true ODF ftrue ∈ C(O(3)/SLaue) and the true normalization coefficientsαtrue ∈
RN

+ are the unknown model parameters.
In this section we are going to introduce and compare estimators of the true ODF

ftrue ∈ C(O(3)/SLaue) from given diffraction counts I ∈ RN̄ . However, before we do so
we shortly discuss the relevance of ODF estimation in texture analysis in general.

General Discussion. As a first point we remember that even for complete and exact
data there is in general no uniquely defined ODF associated with the data. In particular,
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the range of ODFs that correspond to a given PDF is in general unbounded with respect
to the maximum norm and with respect to the L2–norm (cf. Proposition 4.11). The
consequence of this observation is that it makes in general no sense to ask for pointwise
estimates of the true ODF.

A second point is that in practice one is typically not interested in a pointwise estimate
of the true ODF ftrue, but in integrals of the form∫

O(3)

ftrue(g)ψ(g) dg,

where ψ : O(3)→ R is a some integrable function, e.g.

• ψ = T kk
′

l , l = 1, . . . , 4 for the lower order Fourier coefficients of the true ODF,

• ψ = 1Q for the ratio of mass of the true ODF concentrated in a certain subset
Q ⊆ O(3),

• ψ = ftrue for the texture index ‖ftrue‖L2(O(3)),

• ψ = ln(ftrue) for the entropy of the true ODF ftrue,

• ψ = δG(h,r), h, r ∈ S2 for the corresponding PDF X ftrue.

For all these characteristics one can think of direct estimators that do not rely on a
pointwise estimate of the true ODF. However, the drawback of those estimators is that
they do not incorporate the prior information of the non–negativity of ODFs, which has
been proven to have a great impact on the correctness of the estimated ODF (cf. Section
4.4). We conclude that incorporation of the non–negativity constraint leads not only to
more accurate estimators for the true ODF but also for the integrals mentioned above.

From this point of view pointwise ODF estimation can be seen as a method to combine
the data obtained by a diffraction experiment with the a priori information about the
non–negativity of ODFs. In a second step the estimate of the ODF can be used to
determine estimates of various integrals of the ODF.

The Bayesian Maximum a Posteriori Estimator. Bayesian estimation is a framework
that allows to combine prior information on unknown parameters with random samples
in oder to obtain an a posteriori probability distribution of the unknown parameters. For
a comprehensive introduction to Bayesian estimation see Kaipio and Somersalo (2004,
Section 3.1).

Let us denote in a general setting the probability space of possible observations by
(O,ω) and the probability space of model parameters by (M,µ). Furthermore, let both
probability measures ω, µ be representable by probability density functions pO : M → R+

and pM : M → R+, respectively and let us assume that there is a joint probability
density function pO,M : O×M → R+. Then the conditional probability density function
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pO|M(o | m) of an observations o ∈ O given model parameters m ∈ M is defined by the
Bayesian law as

pO|M(o | m) =
pO,M(o,m)

pM(m)
. (4.22)

Analogously, the conditional probability density function pM |O(m | o) of a model param-
eter m ∈M given the observation o ∈ O is defined as

pM |O(m | o) =
pM,O(m, o)

pO(o)
. (4.23)

Based on these notations the Bayesian maximum a posteriori estimator is defined as

Definition 4.23. Let o ∈ O be some observation. Then any solution of the maximiza-
tion problem

mBE = argmax
m∈M

pM |O(m | o) (4.24)

is called Bayesian maximum a posteriori estimator of the model parameters m given
the observations o.

The Bayesian maximum a posteriori estimator can be interpreted as the model pa-
rameters that are most likely given the observations o compared to any other model
parameters. The next theorem describes the Bayesian maximum a posteriori estimator
applied to the ODF estimation problem.

Proposition 4.24. Let λ ∈ R+, s > 3
2

and let the prior information on the true ODF
be given by the restriction of the Gaussian distribution

pM : Hs(O(3)/SLaue)→ R+

pM(f) = exp(−λ ‖f‖2Hs(O(3)/SLaue)
)

(4.25)

to the subset of ODFs in Hs(O(3)/SLaue). Then any solution (fBE,αBE) of the mini-
mization problem

(fBE,αBe) = argmin
f∈Hs(O(3)/SLaue),α∈RN

+

JBE(f,α)

subject to f ≥ 0 and
∫

O(3)

f(gSLaue) dg = 16π2
(4.26)

where

JBE(f,α) =
N∑
i=1

Ni∑
j=1

Iij ln
(
αiX f(Hi, rij) + Ibij

)
−αiX f(Hi, rij) + λ ‖f‖2Hs(O(3)/SLaue)

is a Bayesian maximum a posteriori estimator of the true ODF ftrue and the true nor-
malization coefficients αtrue given the diffraction counts I ∈ RN̄

+ with respect to the model
(4.6).
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Proof. Let f ∈ Hs(O(3)/SLaue), s > 3
2

be an ODF and let α ∈ RN be some normalization
coefficients. Then we can assume by Lemma 2.22 that f ∈ C(O(3)/SLaue). According
to equation (4.21) the distributions Iij, i = 1, . . . , N , j = 1, . . . , Ni of the diffractions
counts have the probability density functions

ϕij(Iji) =
(αiX f(Hi, rij) + Ibij)

Iij

Iij!
e−αiXf(Hi,rij)+Ib

ij .

Since the measurements of the diffraction counts are statistically independent we obtain
the following probability density function for the vector I of diffraction counts given the
ODF f and the normalization coefficients α,

pO|M(I | f,α) =
N∏
i=1

Ni∏
j=1

(αiX f(Hi, rij) + Ibij)
Iij

Iij!
exp−

(
αiX f(Hi, rij) + Ibij

)
.

Using the Bayesian law we obtain

pM |O(f,α | I) =
pO|M(I | f,α)pM(f,α)

pO(I)
= C exp JBE(f,α)

where C = pO(I) is some constant independent of the model parameters f,α. Conse-
quently any solution of minimization problem (4.26) is a solution of the maximization
problem (4.24) and vice versa.

Remark 4.25. The prior information specified in Proposition 4.24 may be interpreted
as assumed smoothness of the true ODF, i.e. if there are two ODFs both fitting the
given observations with the same error we expect the smoother ODF to be the “right”
one. The parameter λ ∈ R+ of the Gaussian distribution pM specifies the discrepancy
between the probability of smooth and non–smooth ODFs.

The minimization problem (4.26) is in general hard to solve. However, if we fix a
certain ODF f ∈ L2(O(3)/SLaue) the Bayesian maximum a posteriori estimator of the
corresponding normalization coefficients α ∈ RN

+ can be easily determined.

Proposition 4.26. Let s > 3
2

and let the functional JBE be as defined in equation (4.26).
Then the minimization problem

αBE(f) = argmax
α∈RN

JBE(f,α)

has for any ODF f ∈ Hs(O(3)/SLaue) a unique solution given by

[αBE]i(f) =

∑Ni

j=1
IijXf(Hi,rij)

Xf(Hi,rij)+Ib
ij∑Ni

j=1X f(Hi, rij)
. (4.27)

In particular, we have αBE(f) ≥ 0.
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Proof. Calculating the derivative of the logarithm of JBE(f, ◦)

d
dαi

ln JBE(f,α) =
d

dαi

(
Ni∑
j=1

Iij ln
(
αiX f(Hi, rij) + Ibij

)
−X f(Hi, rij)

)

=
1

αi

Ni∑
j=1

IijX f(Hi, rij)

X f(Hi, rij) + Ibij
−

Ni∑
j=1

X f(Hi, rij)

we see that it has exactly one zero point given by equation (4.27).

The Weighted Least Squares Estimator.

Definition 4.27. Let λ ≥ 0, s > 3
2

and let Wi ∈ RNi×Ni , i = 1, . . . , N some positive
definite weighting matrices. Then we call any solution of the minimization problem

(fLS,αLS) = argmin
f∈Hs(O(3)/SLaue),α∈RN

+

JLS(f,α)

subject to f ≥ 0 and
∫

O(3)

f(gSLaue) dg = 16π2,
(4.28)

where

JLS(f,α) =
1

N̄

N∑
i=1

‖αiX f(Hi, ri) + Ibi − Ii‖2W + λ ‖f‖2Hs(O(3)/SLaue)
,

regularized, weighted least squares estimator of the true ODF ftrue given the diffraction
counts I ∈ RN̄ .

Remark 4.28. Denote Ci ∈ RNi×Ni the covariance matrices of the random vectors Ii,
i = 1, . . . , N of diffraction counts and let Wi = diag(Ii)

−1 be the inverse of its one point
estimator. Then the least squares estimator (4.28) can be interpreted as the Bayesian
maximum a posteriori estimator where the Poisson distribution was approximated by
a Gaussian distribution with same mean and a variance given by the estimate W (cf.
Feller, 1971, pp. 190 and 245). In particular, there is a correspondence between the
regularization term in equation (4.28) and the prior information used in the Bayesian
maximum a posteriori estimator (cf. Vogel, 2002, Sec. 4.2).

As in the Bayesian case the minimization problem (4.28) has an unique solution for
any fixed ODF.

Proposition 4.29. Let s > 3
2
, Wi = diag(Ii)−1 and let f ∈ Hs(O(3)/SLaue) be some

arbitrary ODF. Then the minimization problem

αLS(f) = argmin
α∈RN

JLS(f,α)
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4 The PDF–to–ODF Inversion Problem

has an unique solution given by

[αLS]i(f) =

∑Ni

j=1X f(Hi, rij)I
−1
ij (Iij − Ibij)∑Ni

j=1X f(Hi, rij)2I−1
ij

, i = 1, . . . , N. (4.29)

Unfortunately, the Bayesian maximum a posteriori estimator αBE(f) as well as the
least squares estimator αLS(f) of the normalization coefficients are very sensitive with
respect to the fixed ODF f .

Example 4.30. Assume that only two diffraction counts I11 = 500 and I12 = 1800 have
been measured with respect to a certain set of crystal directions H1 and with respect
to the specimen directions r11, r12 ∈ S2. Assume furthermore that the corresponding
background intensities are Ib11 = Ib11 = 300 and that the true normalization coefficient is
αtrue = 1000.

Let f be an arbitrary ODF such that X f(H1, r11) = 1.9 and X f(H1, r12) = 0.1.
Then the Bayesian maximum a posteriori estimator of the normalization coefficient is
αBE(f) = 1.9, whereas the least squares estimator of the normalization coefficient is
αLS(f) = 117. We see that both estimators strongly underestimates the true normal-
ization coefficient.

Altering Example 4.30 such that the diffraction counts are even more unbalanced
and such that the presumed ODF f fits them even worse one obtains estimates of the
normalization coefficients that are close to zero. Observing furthermore that for αi(f)
close to zero the functionals JBE and JLS do not depend on the fitting of the ODF f to
the vector of diffraction counts Ii of the i–th pole figure we conclude that solving the
minimization problems (4.26) and (4.32) leads to unstable algorithms.

Stable Estimation of the Normalization Coefficients. In order to develop a numeri-
cally efficient and robust method for ODF estimation we propose the following estimator
of the normalization coefficients α given an estimated ODF f

[αQR]i(f) =

∑Ni

j=1 ωij(Iij − Ibij)∑Ni

j=1 ωijX f(Hi, rij)
, i = 1, . . . , N, (4.30)

where ωij ∈ R+, i = 1, . . . , N , j = 1, . . . , Ni, are some positive quadrature weights to be
chosen according to the specimen directions rij ∈ S2. We refer to αQR as the quadra-
ture rule estimator of the unknown normalization coefficients α. We mention that the
quadrature rule estimator of the normalization coefficients coincides with the Bayesian
maximum a posteriori estimator of the normalization coefficients if the background in-
tensities Ib are zero and the quadrature weights ωij, i = 1, . . . , N , j = 1, . . . , Ni are set
to one.

In the case of specimen directions rij, , i = 1, . . . , N , j = 1, . . . , Ni, that provide a
complete coverage of the hemisphere S2

+ estimation of the normalization coefficients is
possible without relying on an estimated ODF.
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Proposition 4.31. Let i ∈ 1, . . . , N and let ri = (ri1, . . . , riNi
) be a set of specimen di-

rections in the hemisphere S2
+ such that there exist quadrature weights ωij ∈ R+ that allow

for an exact quadrature formula for all even functions up to a certain bandwidth L ∈ N.
Let furthermore SLaue ⊆ O(3) be an arbitrary Laue group. Then the quadrature rule es-
timator [αQR]i(f) does not depend on the specific choice of an ODF f ∈ C(O(3)/SLaue)
with bandwidth L.

Proof. In Lemma 3.25 we have shown that X f(h, ◦) ∈ C(S2) defines a even function
for any ODF f ∈ C(O(3)/SLaue) and any crystal direction r ∈ S2. Consequently, the
denominator of the quadrature rule estimator [αQR]i(f) satisfies

Ni∑
j=1

ωijX f(Hi, rij) =
∑
h∈Hi

ρi(h)

∫
S2

X f(h, r) dr = 4π.

However, complete grids of specimen direction are only rarely used in practical diffrac-
tion experiment. For this reason and for the sake of simplicity we restrict ourself from
now on to the case ωij = 1, i = 1, . . . , N , j = 1, . . . , Ni. For this setting we show that the
quadrature rule estimator αQR(f) converges in the mean value to the true normalization
coefficients as f converges to the true ODF.

Proposition 4.32. Let αtrue ∈ RN
+ be some normalization coefficients, let f ∈ C(O(3)/SLaue)

be some arbitrary ODF satisfying ‖X f(Hi, ri)‖1 > 0, i = 1, . . . , N and denote

Iij = Poiss
(
[αtrue]iX ftrue(Hi, rij) + Ibij

)
, i = 1, . . . , N, j = 1, . . . , Ni,

the random variables describing the distribution of the diffraction counts.
Then there is for any ε > 0 a δ > 0 such that for any f ∈ Hs(O(3)/SLaue) with

‖ftrue − f‖∞ ≤ δ

we have
‖EαQR(f)−αtrue‖∞ ≤ ε.

Moreover, the relative mean square errors E
(
1− [αQR]i(f)

[αtrue]i

)2

, i = 1, . . . , N of the quadra-
ture rule estimator αQR(f) become arbitrary small as the true normalization coefficients
converge to infinity and f converges to ftrue.

Proof. In view of ‖X ftrue(Hi, ri)‖1 > 0, i = 1, . . . , N and the continuity of the func-
tional f 7→ X f(Hi, rij) there is for every ε > 0 a δ > 0 such that for any ODF
f ∈ C(O(3)/SLaue) with ‖ftrue − f‖∞ ≤ δ we have∣∣∣∣∣

Ni∑
j=1

X f(Hi, rij)−
Ni∑
j=1

X ftrue(Hi, rij)

∣∣∣∣∣ ≤ ε ‖X f(Hi, ri)‖1 , i = 1, . . . , N.
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For those ODFs f we obtain

∣∣EαQR(f)−αtrue
∣∣ =

∣∣∣∣∣αtrue

∑Ni

j=1X ftrue(Hi, rij)∑Ni

j=1X f(Hi, rij)
−αtrue

∣∣∣∣∣ ≤ αtrueε

i = 1, . . . , N . This proves the first assertion of Proposition 4.32.
Let ε > 0 and let f ∈ C(O(3)/SLaue) be an arbitrary ODF such that∣∣∣∣∣

Ni∑
j=1

X f(Hi, rij)−
Ni∑
j=1

X ftrue(Hi, rij)

∣∣∣∣∣ ≤ ε. (4.31)

In order to prove the convergence of the relative mean square error we calculate

E
(

1− [αQR]i(f)

[αtrue]i

)2

= [αtrue]
−2
i E

(∑Ni

j=1 Ii − Ibi − [αtrue]iX f(Hi, rij)∑Ni

j=1X f(Hi, rij)

)2

=
E
(∑Ni

j=1 Poiss
(
[αtrue]iX ftrue(Hi, rij) + Ibij

)
− [αtrue]iX f(Hi, rij) + Ibij

)2

[αtrue]2i

(∑Ni

j=1X f(Hi, rij)
)2

=
ε2[αtrue]

2
i + [αtrue]i

∑Ni

j=1X f(Hi, rij) + Ibij

[αtrue]2i

(∑Ni

j=1X f(Hi, rij)
)2 .

Substituting back ε from equation (4.31) we obtain

lim
[αtrue]i→∞

E
(

1− [αQR]i(f)

[αtrue]i

)2

=
‖X f(Hi, ri)−X ftrue(Hi, rij)‖21

‖X f(Hi, ri)‖1
, i = 1, . . . , N.

The right hand term converges to zero as f converges to ftrue in Hs(O(3)/SLaue).

Based on the quadrature rule estimator of the normalization coefficients we end up
with the following ODF estimator.

Definition 4.33. Let s > 3
2
, λ > 0 and let fMLS be a solution of the minimization

problem

fMLS = argmin
f∈Hs(O(3)/SLaue)

JMLS(f) subject to f ≥ 0,

∫
O(3)

f(gSLaue) dg = 16π2

where JMLS(f) =
N∑
i=1

∥∥∥ ‖Ii − Ibi‖1
‖X f(Hi, ri)‖1

X f(Hi, ri) + Ibi − Ii

∥∥∥2

diag(Ii)−1
+ λ ‖f‖2Hs(O(3)/SLaue)

.

(4.32)
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Then we refer to fMLS as the modified least squares ODF estimator (MLS ODF estima-
tor).

The modified least squares ODF estimator is similar to other ODF estimators men-
tioned so far in the literature. In fact, the only difference to the regularized least squares
approach (cf. Bernier and Miller, 2006) are the weighting matrix diag(Ii)

−1 which more
precisely model our prior knowledge about the distribution of the measurement errors.
The impact of these weights on the accuracy of estimation is demonstrated with an
example in Section 5.4. A second difference is the direct incorporation of the unknown
normalization coefficients α into the minimization functional.
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5 Implementation of the MLS ODF
Estimator
In this chapter we describe a fast algorithm for the calculation of the MLS
ODF estimator as introduced in Section 4.5. The algorithm we present relies
on fast Fourier algorithms on the two-dimensional sphere S2 and on the rota-
tional group SO(3). These Fourier algorithms are introduced in Section 5.1.
In the subsequent sections we discretize the MLS ODF estimator and apply
the modified steepest descent algorithm to solve the minimization problem as-
sociated to the discretized MLS ODF estimator. We complete this chapter
with some numerical tests and a discussion of two practical applications of
the presented algorithm.

5.1 Fast Fourier Transforms on S2 and SO(3)
The Fourier Transform on S2. Let P ∈ L2(S2) be a band limited function on S2 with
bandwidth L ∈ N0. Then P has a well defined Fourier expansion of the form

P =
L∑
l=0

l∑
k=−l

P̂ (l, k)Ykl ,

with Fourier coefficients P̂ (l, k), l = 0, . . . , L, k = −l, . . . , l (cf. Section 2.3). For the
Fourier coefficients we use the vector notation P̂ ∈ C(2L+1)2 with P̂lk = P̂ (l, k) for
l = 0, . . . , L and k = −l, . . . , l. Conform to Potts and Kunis (2002 – 2006) we call
the evaluation of the function P at a list of arbitrary nodes given its vector of Fourier
coefficients (direct) discrete spherical Fourier transform. More precisely, we define.

Definition 5.1 (discrete spherical Fourier transform). Let r = (r1, . . . , rN) be a vector
of N ∈ N0 arbitrary nodes rj ∈ S2 and let P̂ ∈ C(2L+1)2 be a vector of Fourier coefficients
with bandwidth L ∈ N0. Then the linear operator

Fr,L : C(2L+1)2 → CN , [Fr,LP̂]j =
L∑
l=0

l∑
k=−l

P̂lkYkl (rj), j = 1, . . . , N
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is called discrete spherical Fourier transform. Its adjoint operator

FHr,L : CN → C(2L+1)2 , [FHr,Lc]lk =
N∑
j=1

cjYkl (rj), l = 1, . . . , L, k = −l, . . . , l

is called adjoint discrete spherical Fourier transform.

A naive implementation of the (adjoint) discrete spherical Fourier transform for N ∈
N0 arbitrary nodes with bandwidth L ∈ N0 requires O(NL2) numerical operations.
However, there exist much faster algorithms. The algorithm described by Kunis and
Potts (2003) and (Keiner and Potts, 2006) calculates both transforms with numerical
complexity O(L2 ln2 L + N). We refer to this algorithm as the non–equispaced fast
spherical Fourier transform (NFSFT). An implementation of this algorithm is availably
as a part of the NFFT–library (Potts and Kunis, 2002 – 2006).

The Fourier Transform on SO(3). Let f ∈ L2(SO(3)) be a band limited function on
SO(3) with bandwidth L ∈ N0. Then f has a well defined Fourier expansion of the form
(cf. Section 2.5)

f =
L∑
l=0

l∑
k,k′=−l

(l + 1
2
)

1
2

2π
f̂(l, k, k′)T kk

′

l

with Fourier coefficients f̂(l, k, k), l = 0, . . . , L, k, k′ = −l, . . . , l. The vector of Fourier
coefficients has the dimension

dim
L⊕
l=0

Harml(SO(3)) =
1

3
(L+ 1)(2L+ 1)(2L+ 3) (5.1)

and we abbreviate it by f̂lkk′ = f̂(l, k, k′) for l = 0, . . . , L and k, k′ = −l, . . . , l. Now we
define the discrete Fourier transform on SO(3) analogously to the spherical counterpart.

Definition 5.2 (discrete Fourier transform on SO(3)). Let g = (g1, . . . ,gM) be a vector
of M ∈ N arbitrary nodes gi ∈ SO(3) and let f̂ ∈ C 1

3
(L+1)(2L+1)(2L+3) be a vector of

Fourier coefficients with bandwidth L ∈ N0. Then the linear operator

Fg,L : C
1
3
(L+1)(2L+1)(2L+3) → CM ,

[Fg,Lf̂ ]m =
L∑
l=0

l∑
k,k′=−l

(l + 1
2
)

1
2

2π
f̂lkk′T

kk′

l (gm), m = 1, . . . , N

is called discrete Fourier transform on SO(3). Its adjoint operator

FHg,L : Cm → C
1
3
(L+1)(2L+1)(2L+3), [FHg,Lc]lkk′ =

M∑
m=1

(l + 1
2
)

1
2

2π
cmT kk

′
l (gm),

l = 1, . . . , L, k, k′ = −l, . . . , l, is called adjoint discrete Fourier transform on SO(3).
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By equation (5.1) we notice that a naive implementation of the (adjoint) discrete
Fourier transform at M ∈ N0 arbitrary nodes with bandwidth L ∈ N0 has the numerical
complexity O(ML3). An O(L4) algorithm for the case of regular aligned nodes in SO(3)
was proposed by Kostelec and Rockmore (2003). This algorithm was generalized by
Vollrath (2006) to an O(M + L3 log2 L) algorithm that works for arbitrary nodes.

Applications to Radially Symmetric Functions. The fast discrete Fourier transform
is the cornerstone of almost all fast algorithms dealing with functions given as the super-
position of radially symmetric functions (cf. Potts and Steidl, 2003; Keiner, 2005). This
is due to the fact that the adjoined Fourier transform as defined in Definition 5.2 maps
the coefficient vector of a function given as the superposition of radially symmetric, band
limited functions to the vector of Fourier coefficients of this function. More precisely we
have

Proposition 5.3. Let

ψ(g) =
L∑
l=0

ψ̂(2l)U2l

(
cos

]g

2

)
be a radially symmetric function in L2(SO(3)) with bandwidth L ∈ N0 and even order
Chebyshev coefficients ψ̂(2l), l = 0, . . . , L. Let furthermore, g = (g1, . . . ,gM), gm ∈
SO(3) be a list of M ∈ N0 arbitrary rotations. Then for any coefficient vector c ∈ RM

the vector f̂ of Fourier coefficients of the function

f(q) =
M∑
m=1

cmψ(qg−1
m ).

is given by

f̂lkk′ = w �FHg,Lc, wlkk′ =
4π2

l + 1
2

ψ̂(2l), (5.2)

where w is a 1
3
(L + 1)(2L + 1)(2L + 3)–dimensional vector and � denotes the compo-

nentwise multiplication. In particular, the Fourier coefficients of f can be calculated
with numerical complexity O(M +L3 log2 L) using the fast adjoint Fourier transform on
SO(3).

Proof. By the addition theorem 2.14 on SO(3) we obtain

f(q) =
M∑
m=1

cm

L∑
l=0

ψ̂(2l)
l∑

k,k′=−l

T kk
′

l (gm)T kk
′

l (q)

=
L∑
l=0

l∑
k,k′=−l

(l + 1
2
)

1
2

2π

ψ̂(2l)
M∑
m=1

2π

(l + 1
2
)

1
2

cmT kk
′

l (gm)

T kk
′

l (q).
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By equation (2.27) we have for all l 3 N0, k, k′ = −l, . . .,

f̂(l, k, k′) =
2π

(l + 1
2
)

1
2

ψ̂(2l)
M∑
m=1

cmT kk
′

l (gm) =
4π2

l + 1
2

ψ̂(2l)
[
FHg,Lc

]
lkk′

.

This proves equation (5.2).

Once there is a fast algorithm for the calculation of the Fourier coefficients of a function
given as the superposition of radially symmetric, band limited functions we immediately
obtain fast algorithms for its pointwise evaluation, for the pointwise evaluation of its con-
volution with an arbitrary radially symmetric function or the calculation of its Sobolev
norm.

Corollary 5.4. Let f ∈ L2(SO(3)) be as defined in Proposition 5.3. Then we have for
any vector q = (q1, . . . ,qN) of rotations qi ∈ SO(3)

f(q) = Fq,L

(
w �FHg,Lc

)
, wlkk′ =

4π2

l + 1
2

ψ̂(2l). (5.3)

Let furthermore, φ ∈ L2(SO(3)) be a radially symmetric function with bandwidth
L ∈ N and even order Chebyshev coefficients ψ̂(2l) ∈ R, l = 0, . . . , L. Then we have for
any vector q = (q1, . . . ,qN) of rotations qi ∈ SO(3)

f ∗ φ(q) = Fq,L

(
w �FHg,Lc

)
, wlkk′ =

4π2

l + 1
2

ψ̂(2l)φ̂(2l). (5.4)

In particular the non–equispaced fast Fourier transform for SO(3) allows for the point-
wise evaluation of f or of its convolution with φ in N arbitrary rotations with numerical
complexity O(M +N + L3 log2 L).

Moreover, the Sobolev norm ‖f‖Hs(SO(3)), s > 1, of f satisfies the equality

‖f‖Hs(SO(3)) = ‖w �FHg,Lc‖2 , wlkk′ = 4π2(l + 1
2
)s−1 (5.5)

and the numerical complexity to calculate ‖f‖Hs(SO(3)) is O(M + L3 log2 L).

Proof. Equation (5.3) follows from Proposition 5.3 and the definition of the discrete
Fourier transform for SO(3). Equation (5.4) is a consequence of equation (2.32), and
equation (5.5) is a consequence of the definition of the Sobolev norm 2.20.

5.2 Discretisation of the MLS ODF Estimator
Throughout all of this section let SLaue ⊆ O(3), Ii, I

b
i ∈ RNi

+ , Hi ⊆ S2, ρi : Hi → R
and ri = (ri1, . . . , riNi

), rij ∈ S2, i = 1, . . . , N be the known parameters of a diffraction
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experiment as described in Section 4.2. We introduce the following notations. Let
x,y ∈ Rd be some arbitrary vectors and let a ∈ R be some number. Then we define the
pointwise exponentiation of x with exponent a by

xa := (xa1, . . . ,x
a
d)
T

and the weighted norm of y with weighs x by

‖y‖x := ‖y � x
1
2‖2 ,

where y � x denotes the coordiantewise multiplication.
We are concerned with the modified least squares ODF estimator 4.33 as introduced

in Section 4.5

f̃ = argmin
f∈Hs(O(3)/SLaue)

J(f) subject to f ≥ 0 and
∫

O(3)

f(g) dg = 16π2

where J(f) =
N∑
i=1

∥∥∥ ‖Ii − Ibi‖1
‖X f(Hi, ri)‖1

X f(Hi, ri) + Ibi − Ii

∥∥∥2

I−1
i

+ λ ‖f‖Hs(O(3)/SLaue)
.

(5.6)

Remember that λ, s ≥ 0 are free parameters to be chosen accordingly to the assumed
smoothness of the ODF and that X f(Hi, ri) denotes the vector of the theoretical diffrac-
tion intensities of the i-th pole figure as defined in equation (4.5).

Our purpose in this section is to formulate a finite dimensional minimization problem
the solution of which approximates the solution of minimization problem (5.6), i.e. we
want to discretize minimization problem (5.6). We will do so in two steps. First we
construct a finite dimensional subspace of Hs(O(3)/SLaue) and second we restrict the
functional J to this subspace.

Discretisation of the ODF Space. A finite dimensional subspace of Hs(O(3)/SLaue),
s > 3

2
that is well suited for a numerical solution of minimization problem (5.6) needs

to satisfy the following requirements. First it should be rich enough to approximate a
sufficiently large class of ODFs. Second the subspace should allow for fast calculation
of the functional J for its elements, and third it should be easy to verify the non–
negativity property of the ODFs. The second requirement is met best by a discretisation
in the frequency domain, i.e. by approximation with Wigner–D functions (cf. Roe, 1965;
Bunge, 1969), whereas the third requirement is met best by a discretisation in the
spatial domain, i.e. by a finite element approach (cf. Bernier and Miller, 2006) or by
approximation by indicator functions (cf. Schaeben, 1994). As a compromise between
both objectives we propose a discretisation by radially symmetric functions. We prove
that a discretisation by radially symmetric functions allows for fast computation of the
functional J using Fourier techniques as well as for easy handling of the non–negativity
constraint.
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Definition 5.5. Let SLaue ⊆ O(3) be some Laue group and let ψ : SO(3)→ R+ be some
non–negative, radially symmetric function with finite bandwidth L ∈ N. Then we define
its symmetrised counterpart as

ψSLaue(q) =
1

|SLaue|
∑

q′∈SLaue

ψ(qq′). (5.7)

Moreover, we define for any list g = (g1, . . . ,gM) of M ∈ N0 rotations gm ∈ SO(3) the
M–dimensional cone V (ψ,g) ⊆ Hs(O(3)/SLaue) as

V (ψ,g) =

{
f =

M∑
m=1

cmψSLaue(◦g−1
m )

∣∣∣∣∣ c ≥ 0

}
. (5.8)

Let ψ : SO(3)→ R+ be a radially symmetric function. Then it is reasonable to choose
the grid g = (g1, . . . ,gM) in SO(3) such that the orientations gmSLaue, m = 1, . . . ,M
are almost uniformly distributed in O(3)/SLaue and the minimum distance between two
orientations is about the halfwidth of ψ. The issue of an optimal choice of the grid g
and the ansatz function ψ is addressed in Section 5.4.

Obviously, all function f ∈ V (ψ,g) are non–negative. Moreover, we immediately
obtain by Lemma 3.7

Proposition 5.6. Let ψ : SO(3)→ R be some radially symmetric function of bandwidth
L ∈ N0. Then the application of the operator X as defined in equation (4.5) on the
ansatz functions ψSLaue(◦q−1), q ∈ SO(3) is given by

(
XψSLaue(◦q−1)

)
(Hi, rij) =

L∑
l=0

ψ̂(2l)
∑
h∈Hi

ρi(h)Pl(qhi · rij). (5.9)

Here ψ̂(2l), l = 0, . . . , L denotes the even order Chebyshev coefficients of ψ (cf. Sec-
tion 2.5 and Section 3.4).

Proof. By Lemma 3.7 we have

XψSLaue(◦q−1)(Hi, rij) =
1

|Spoint|
∑

p∈SLaue

Xψ(◦(qp)−1)(Hi, rij)

=
L∑
l=0

ψ̂(2l)
1

|Spoint|
∑

p∈SLaue

∑
h∈Hi

ρi(h)Pl(qph · rij).

Since by Remark 4.6 the symmetry properties Hi = SLaueHi and ρi(h) = ρi(ph) holds
true for all h ∈ Hi and p ∈ SLaue the middle sum can be omitted.
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Restriction of the Functional J to V (ψ,g). Next we are going to restrict the func-
tional J to the finite dimensional space V (ψ,g).

Proposition 5.7. Let s > 3
2

and let V (ψ,g) be a discretisation of Hs(O(3)/SLaue) as
defined in equation 5.8. Then the minimization problem (5.6) restricted to V (ψ,g) is
equivalent to the minimization problem

cest = argmin
c∈RM

J(c), subject to c ≥ 0, c 6= 0

with J(c) =
M∑
i=1

∥∥∥∥ Ψic

cTai
+ Ibi − Ii

∥∥∥∥2

I−1
i

+

∥∥∥∥FHg,LccTa0

∥∥∥∥2

w2
λ,s

.
(5.10)

The matrices Ψi ∈ RM,Ni and the vectors a0, ai ∈ RM , i = 1, . . . , N are defined as

Ψij,m =
(
XψSLaue(◦g−1

m )
)
(Hi, rij), a0 = 1M , ai =

ΨT
i 1Ni

‖Iij − Ibij‖1
(5.11)

and the weights wλ,s ∈ R 1
3
(L+1)(2L+1)(2L+3),

[wλ,s]lkk′ =
√
λ4π2(l + 1

2
)s−1. (5.12)

are chosen accordingly to the Sobolev space Hs(O(3)/SLaue).

Proof. By Corollary 5.4 and Proposition 5.6 we have for any c ∈ RM
+ with ‖c‖1 = 1

J(c) = J

(
M∑
m=1

cmψSLaue(◦g−1
m )

)
.

Hence, the restriction of minimization problem (5.6) to V (ψ,g) is equivalent to the re-
striction of minimization problem (5.13) to { c ∈ RM

+ | ‖c‖1 = 1 }. Since the discretized
functional J is scaling invariant, i.e. J(c) = J(µc) for all µ > 0, the constraint ‖c‖1 = 1
can be replaced by the constrained c 6= 0.

Proposition 5.8. Let a discretisation V (ψ,g) of Hs(O(3)/SLaue), s > 3
2

be chosen such
that for any c 6= 0 we have Ψic 6= 0. Then the functional J is differentiable on the
domain RM

+ \{0} and the minimization problem (5.10) has a (in general not unique)
solution.

Proof. Continuity and differentiability of J follows from the assertion that Ψic 6= 0 and
hence aTi c > 0 for all c 6= 0 and i = 1, . . . , N . In order to prove existence of a solution
we apply Weierstrass theorem on the functional J restricted to the compact domain
{ c ∈ RM

+ | ‖c‖1 = 1 } and make use of the scaling invariance of J .
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In general the functional J in minimization problem 5.10 is a rational function of sec-
ond order and therefore convexity of J and uniqueness of a solution cannot be guaran-
teed. The next example shows that non–convexity may occur also within the constraints
of minimization problem 5.10.

Example 5.9. Let us consider four diffraction counts I1 = I2 = (5, 1)T with respect
to two crystal directions h1,h2 ∈ S2 and with respect to four specimen directions
r12, r22, r21, r22 ∈ S2. Let furthermore, ψ1, ψ2 be two ODFs such that the corresponding
diffraction intensities are

Xψ1

(
h1,

(
r12

r22

))
= Xψ2

(
h2,

(
r21

r22

))
=

(
2
1

)
and

Xψ1

(
h2,

(
r21

r22

))
= Xψ2

(
h1,

(
r11

r12

))
=

(
2
4

)
.

Restricting the functional J to all convex combinations fτ = τψ1 + (1− τ)ψ2 of ψ1 and
ψ2 the functional J becomes a rational function in τ . More precisely, we calculate

J(τ) =
2∑
i=1

2∑
j=1

I−1
ij

(
αi(τ)

(
τXψ1(hi, rij) + (1− τ)Xψ2(hi, rij)

)
− Iij

)2

,

where we have set

α1(τ) :=
‖I1‖1

τ ‖Xψ1(h1, r1)‖1 + (1− τ) ‖Xψ2(h1, r1)‖1
=

2

2− τ

and α2(τ) =
‖I2‖1

τ ‖Xψ1(h2, r2)‖1 + (1− τ) ‖Xψ2(h2, r2)‖1
=

2

1 + τ
.

accordingly to equation (4.30). One verifies that the functional J(τ) is not convex on
the interval [0, 1]. The graph of τ 7→ J(τ) is plotted in Figure 5.1. and shows evidence
of this conjecture.

Finally we give a fast algorithm for the calculation of the matrix vector products Ψic
and ΨT

i d which are involved in the representation of the functional J in Proposition 5.7.

Lemma 5.10. Let Ψi ∈ RNi,M be defined as in Proposition 5.7 and denote ψ̂ ∈ RL+1,
ψ̂l = ψ̂(2l), l = 1, . . . , L, the vector of the even order Chebyshev coefficients of the ansatz
function ψ up to the bandwidth L. Moreover, we consecutively number the elements of
the list Hi by hin, n = 1, . . . , |Hi| and introduce the notation ρin = ρi(hin). Then
for any vectors c ∈ RM and d ∈ RNi the matrix vector products Ψic and ΨT

i d are
calculated by Algorithm 1 and Algorithm 5.2, respectively, with numerical complexity
O(M +Ni + L3 log2 L).
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Figure 5.1: The functional J(τ) as defined in Example 5.9.

Algorithm 5.1: Fast matrix vector multiplication Ψic

input : c ∈ RM

ψ̂ ∈ RL

rij ∈ S2,j = 1, . . . , Ni

gmhn ∈ S2, m = 1, . . . ,M , n = 1, . . . , |Hi|
ρ ∈ R|Hi|

output: d = Ψic ∈ RNi

for l← 0, . . . , L do for k ← −l, . . . , l do Flk = 0
for n← 1, . . . , |Hi| do F← F + ρinFHghin,L

c

for l← 0, . . . , L do for k ← −l, . . . , l do Flk ← ψ̂lFlk

d← FHri,L
F

Proof. By Lemma 5.6 and the addition theorem we have for i = 1, . . . , N , j = 1, . . . , Ni,

[Ψic]j =
M∑
m=1

cmΨij,m

=
M∑
m=1

cm
∑
h∈Hi

ρ(h)
L∑
l=0

ψ̂(2l)Pl(gmh · rij)

=
M∑
m=1

cm

|Hi|∑
n=1

ρin

L∑
l=0

ψ̂l

l∑
k=−l

Ykl (gmhin)Ykl (rij)

=
L∑
l=0

l∑
k=−l

Ykl (rij)ψ̂l
|Hi|∑
n=1

ρin

M∑
m=1

cmYkl (gmhin).

Evaluation of the most inner sum for all even l = 0, . . . , L and all k = −l, . . . , l corre-
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Algorithm 5.2: Fast matrix vector multiplication ΨT
i d

input : d ∈ RNi

ψ̂ ∈ RL

rij ∈ S2,j = 1, . . . , Ni

gmhn ∈ S2, m = 1, . . . ,M , n = 1, . . . , |Hi|
ρ ∈ R|Hi|

output: c = ΨH
i d ∈ RM

F ← FHri,L
d

for l← 0, . . . , L do for k ← −l, . . . , l do Flk ← ψ̂lFlk

c← 0M
for n← 1, . . . , |Hi| do c← c + ρinFghin,LF

sponds to the adjoint discrete spherical Fourier transform, i.e.

flk(hin) =
M∑
m=1

cmYkl (gmhin) =
[
FHghin,L

c
]
lk
, i = 1, . . . , N, n = 1, . . . , |Hi| .

Let the Fourier vector F ∈ C(2L+1)2 be given by

Flk =

|Hi|∑
n=1

ψ̂lρinflk(hin), l = 0, . . . , L, k = −l, . . . , l.

Then the evaluation of the most outer sum for all j = 1, . . . , Ni is the discrete spherical
Fourier transform applied to the vector F, i.e.

[Ψic]j =
L∑
l=0

l∑
k=−l

FlkYkl (rij) = [Fri,LF]j .

5.3 The MLS ODF Estimation Algorithm
In this section we describe a numerical algorithm to solve minimization problem (5.10).
Therefore we first recall the modified steepest descent algorithm for the solution of non–
negatively constraint minimization problems.

The Modified Steepest Descent Algorithm. There are several algorithms for non–
linear, non–negatively constrained minimization e.g. projected steepest descent, modi-
fied steepest descent, gradient projection residual norm conjugated gradients (GPRNCG),
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etc. (cf. Vogel, 2002). In this work we restrict ourself to the modified steepest descent
algorithm (cf. Kim (2002, Section 4.2.1), Bardsley and Nagy (2005)) since it is appro-
priate to large scale problems and combines simplicity and fast convergence. Moreover,
it is especially well suited for problems where the unknown vector is sparse (cf. Bardsley
and Nagy, 2005).

Let J be some arbitrary differentiable function on RM . We are looking for solutions
of the non–negatively constrained minimization problem

cest = argmin
c∈RM

+

J(c). (5.13)

The modified steepest descent algorithm is an iterative method based on the fix point
iteration

c(n+1) = c(n) + τ (n)c̃(n) (5.14)
where c̃(n) ∈ RM is some descent direction and τ > 0 is the step size. In contrast to the
ordinary steepest descent algorithm the descent direction c̃(n) is fixed as the negative
gradient of J(c(n)) componentwise multiplied with the current estimate c(n), i.e.

c̃(n) = −c(n) � grad J(c(n)). (5.15)

This descent direction is motivated by the facts that c(n) � grad J(c(n)) = 0 is the
Kuhn-Tucker condition for the minimization problem (5.13).

The step length τ (n) is calculated by a line search. In order to ensure the non–
negativity of c(n+1) at each iteration n ∈ N the step size has to be restricted to [0, τ

(n)
max]

with

τ (n)
max = max

{
τ > 0

∣∣ c(n) + τ c̃(n) ≥ 0
}

= min

{
− [c(n)]m

[c̃(n)]m

∣∣∣∣ m = 1, . . . ,M, [c̃(n)]m < 0

}
.

(5.16)

Algorithm 5.3 outlines the modified steepest descent algorithm.

Adaption to Functional J . Now we want to apply the modified steepest descent al-
gorithm to minimization problem (5.10). Therefore we fix for the remainder of this
section a certain Laue group SLaue ⊆ O(3) and an arbitrary discretisation V (ψ,g) of
Hs(O(3)/SLaue), s > 3

2
as defined in Definition 5.5. Furthermore, we assume the diffrac-

tion counts and the background intensities to be Ii, I
b
i ∈ RNi

+ and rely on the matrices
Ψi ∈ RNi×M and the vectors a0, ai ∈ RM , i = 1, . . . , N as defined in Proposition 5.7.

We will use the following abbreviations.

Definition 5.11. Let n ∈ N and c(n), c̃(n) ∈ RM . Then we define for i = 0, . . . , N the
coefficients α(n)

i , α̃
(n)
i ∈ R as

α
(n)
i =

1

aTi c
(n)

and α̃
(n)
i =

1

aTi c̃
(n)
. (5.17)
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Algorithm 5.3: Modified steepest descent algorithm
input : c0 ∈ RM

+ /* initial guess */
output: c ∈ RM

+ /* minimizer */

k ← 0
while no convergence do

u(n) ← grad J(c(n)) /* calculate gradient */
c̃(n) ← −c(n) � u(n) /* calculate descent direction */
τopt ← argmin J(c(n) + τ c̃(n)) /* line search */

τbndry ← min
{
− [c(n)]m

[c̃(n)]m

∣∣ m = 1, . . . ,M, [c̃(n)]m < 0
}

τ (n) ← min{τopt, τbndry}
c(n+1) ← c(n) + τ (n)c̃(n) /* update c */
k ← k + 1

end
c← c(n)

Moreover, we define the residuals u
(n)
i , ũ

(n)
i ∈ RNi , i = 1, . . . , N as

u
(n)
i = I−

1
2 �

(
α

(n)
i Ψic

(n) + Ibi − Ii

)
, and ũ

(n)
i = I−

1
2 �

(
α̃

(n)
i Ψic̃

(n)
i + Ibi − Ii

)
and set for completeness the vectors u

(n)
0 , ũ

(n)
0 ∈ C 1

3
(L+1)(2L+1)(2L+3) to

u
(n)
0 = α

(n)
0 wλ,s �FHg,Lc(n) and ũ

(n)
0 = α̃

(n)
0 wλ,s �FHg,Lc̃(n). (5.18)

Here we make use of the Fourier weights wλ,s ∈ R 1
3
(L+1)(2L+1)(2L+3) as defined in Propo-

sition 5.7.

With these abbreviations we have

Proposition 5.12. Let n ∈ N and c(n) ∈ RM . Then the functional J as defined in
Proposition 5.7 simplifies to

J(c(n)) =
N∑
i=0

∥∥∥u(n)
i

∥∥∥2

2
. (5.19)

Let furthermore c̃(n) ∈ RM and c(n+1) = c(n) + τ (n)c̃(n) for some τ (n) ∈ R. Then we
have for all i = 0, . . . , N the recurrence formulae

α
(n+1)
i =

α
(n)
i α̃

(n)
i

τ (n)α
(n)
i + α̃

(n)
i

and u
(n+1)
i =

α̃
(n)
i u

(n)
i + τ (n)α

(n)
i ũ

(n)
i

τ (n)α
(n)
i + α̃

(n)
i

. (5.20)
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Proof. By Definition 5.11 we obtain for any i = 0, . . . , N the relationship

α
(n+1)
i =

1

aTi (c(n) + τ (n)c̃(n))
=

1
1

α
(n)
i

+ τ (n)

α̃
(n)
i

=
α

(n)
i α̃

(n)
i

τ (n)α
(n)
i + α̃

(n)
i

.

and for any i = 1, . . . , N the equality

u
(n+1)
i � I

1
2
i = α

(n+1)
i Ψi

(
c(n) + τ (n)c̃(n)

)
+ Ibi − Ii

=
α

(n)
i α̃

(n)
i

τ (n)α
(n)
i + α̃

(n)
i

Ψi

(
c(n) + τ (n)c̃(n)

)
+ Ibi − Ii

=
α̃

(n)
i (α

(n)
i Ψic

(n) + Ibi − Ii) + τ (n)α
(n)
i (α̃

(n)
i Ψic̃

(n) + Ibi − Ii)

τ (n)α
(n)
i + α̃

(n)
i

=
α̃

(n)
i u

(n)
i + τ (n)α

(n)
i ũ

(n)
i

τ (n)α
(n)
i + α̃

(n)
i

� I
1
2
i .

For i = 0 the proof of equation (5.20) is analogous.

With the abbreviations of Definition 5.11 we find the following expression for the
gradient of the functional J .

Lemma 5.13. Let n ∈ N. Then the gradient of the functional J(c(n)) =
∑N

i=0

∥∥u(n)
i

∥∥2

2
.

is given by

1

2
grad J(c(n)) = α

(n)
0

(
Fg,L

(
u

(n)
0 �wλ,s

)
− ‖u(n)

0 ‖
2
2 a0

)
+

N∑
i=1

α
(n)
i

(
vi −α(n)

i vTi c
(n)ai

)
,

where vi = ΨT
i

(
u

(n)
i � I

−1
2

i

)
.

(5.21)
Proof. By the chain rule we obtain

1

2

d
dc(n)

∥∥∥∥Ψic
(n)

aTi c
(n)

+ Ibi − Ii

∥∥∥∥2

I−1
i

=
aTi c

(n)ΨT
i − ai

(
Ψic

(n)
)T(

aTi c
(n)
)2 ((

Ψic
(n)

aTi c
(n)

+ Ibi − Ii

)
� I−1

i

)

=
ΨT
i

(
u

(n)
i � I−1

i

)
aTi c

(n)
−
(
u

(n)
i � I

− 1
2

i

)T
Ψic

(n)(
aTi c

(n)
)2 ai.

On the other hand the gradient of the regularization term is

1

2

d
dc(n)

∥∥∥∥wλ,s �FHg,Lc(n)

aT0 c(n)

∥∥∥∥2

2

=
aT0 c(n)Fg,L − a0

(
FHg,Lc(n)

)T
(aT0 c)2

w2
λ,s �FHg,LcFg,L

aT0 c(n)

= α
(n)
0

(
Fg,L

(
u

(n)
0 �wλ,s

)
− ‖u(n)

0 ‖
2
2 a0

)
.
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We will also need the following representation of the function τ 7→ J(c(n) + τ c̃(n)) as
a simple rational function based on the quantities u

(n)
0 and ũ

(n)
0 as defined in Defini-

tion 5.11.

Lemma 5.14. Let c(n), c̃(n) ∈ RM . Then τ 7→ J(c(n) + τ c̃(n)) is a rational function in
τ . More precisely, we have

J
(
c(n) + τ c̃(n)

)
=

N∑
i=0

Ai + 2τBi + τ 2Ci(
τα

(n)
i + α̃

(n)
i

)2 , (5.22)

where we have set for any i = 0, . . . , N ,

Ai =
∥∥α̃(n)

i u
(n)
i

∥∥2

2
, Bi =

〈
α̃

(n)
i u

(n)
i ,α

(n)
i ũ

(n)
i

〉
, Ci =

∥∥α(n)
i ũ

(n)
i

∥∥2

2
. (5.23)

Proof. By Proposition 5.12 the function τ 7→ J(c + τ c̃) can be rewritten as

J
(
c(n) + τ c̃(n)

)
=

N∑
i=0

∥∥∥α̃(n)
i u

(n)
i + τα

(n)
i ũ

(n)
i

τα
(n)
i + α̃

(n)
i

∥∥∥2

2

=
N∑
i=1

∥∥α̃(n)
i u

(n)
i

∥∥2

2
+ 2τ

〈
α̃

(n)
i u

(n)
i ,α

(n)
i ũ

(n)
i

〉
+ τ 2

∥∥α(n)
i ũ

(n)
i

∥∥2

2(
τα

(n)
i + α̃

(n)
i

)2 .

Corollary 5.15. Line search of the functional J can be performed with numerical com-
plexity O(N̄ +M +L3 log2 L). A simple line search algorithm that makes use of formula
(5.22) is given in Algorithm 4.

The next lemma shows that one can choose the upper bound τ (n)
max as defined in equa-

tion (5.16) as the maximum stepsize.

Lemma 5.16. Let c(n) ∈ RM and let c̃(n) = c(n) � grad J(c(n)) be the modified gradient
of the functional J . Then the maximum step length as defined in equation (5.16)

τ (n)
max = min

{
−
[
c(n)
]
i[

c̃(n)
]
i

∣∣∣∣ m = 1, . . . ,M,
[
c̃(n)
]
i
< 0

}
.

is finite.

Proof. Since J(c(n)) does not depend on the scale of c(n), i.e. J(c(n)) = J(µc(n)) for all
µ > 0, the gradient of J(c(n)) is orthogonal to c(n). Taking into account that c(n) ≥ 0 we
conclude that the modified descent search direction c̃(n) = − grad J(c(n))� c(n) is either
zero or has at least one negative component. Hence, τ (n)

max is finite.
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Algorithm 5.4: Line Search
input : τ

(n)
max ∈ R /* maximum step length */

u
(n)
0 ∈ R 1

3
(L+1)(2L+1)(2L+3)

ũ
(n)
0 ∈ R 1

3
(L+1)(2L+1)(2L+3)

u
(n)
i ∈ RNi , i = 1, . . . , N

ũ
(n)
i ∈ RNi , i = 1, . . . , N
α(n) ∈ RN+1

α̃(n) ∈ RN+1

output: τ (n) ∈ R+ /* optimum step length */

for i← 0, . . . , N do /* precomputation */
Ai ←

∥∥α̃(n)
i u

(n)
i

∥∥2

2

Bi ←
〈
α̃

(n)
i u

(n)
i ,α

(n)
i ũ

(n)
i

〉
Ci ←

∥∥α(n)
i ũ

(n)
i

∥∥2

2

end
J0 ←

∑N
i=0Ai

(
α̃

(n)
i

)−2 /* current value of J(c(n)) */
τ ← τ

(n)
max

J ←
∑N

i=0
Ai+2τBi+τ

2Ci(
τα

(n)
i +α̃

(n)
i

)2 /* value of J(c(n) + τ c̃(n)) */

while J > J0 do
τ ← 1

2
τ /* reduce step length */

J ←
∑N

i=0
Ai+2τBi+τ

2Ci(
τα

(n)
i +α̃

(n)
i

)2 /* update value of J(c + τ c̃) */

end
τ (n) ← τ

Merging Proposition 5.12, Lemma 5.13, Corollary 5.15 and Lemma 5.16 we obtain the
following Theorem.

Theorem 5.17. Algorithm 5 implements the MSD algorithm for minimization problem
(5.10). Every iteration step has the numerical complexity O(N̄ +M + L3 log2 L).

Proof. Algorithm 5 implements the modified steepest descent Algorithm 5.3.
In lines 1 – 5 the vectors ai ∈ RM , i = 1, . . . , N needed for the calculation of the

normalization coefficients (cf. Proposition 5.7), the initial values of the residuals u
(0)
i

and the normalization coefficients α(0)
i , i = 1, . . . , N (cf. Definition 5.11) are calculated.

These calculations require the matrix vector multiplications ΨT
i 1Ni

(cf. Algorithm 5.2)
and Ψic, i = 1, . . . , N (cf. Algorithm 1). Both algorithms have the numerical complexity
O(Ni +M + L3 log2 L) (cf. Lemma 5.10).
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Algorithm 5.5: Modified Least Squares ODF Estimator
input : c(0) ∈ RM /* initial vector */

Ii ∈ RNi , i = 1, . . . , N /* diffraction counts */
Ibi ∈ RNi , i = 1, . . . , N /* background intensities */
wλ,s ∈ R 1

3
(L+1)(2L+1)(2L+3) /* regularization weights */

output: c ∈ RM

a0 ← 1M1

for i← 1, . . . , N do ai ←
ΨT

i 1Ni

(IT
i −Ib

i )
T 1Ni

2

for i← 0, . . . , N do α(0)
i ← 1

aT
i c(0) ; /* normalization coefficients */3

u
(0)
0 ← α

(0)
0 wλ,s �Fg,Lc

(0)4

for i← 1, . . . , N do u
(0)
i ←

(
α

(0)
i Ψic

(0) + Ibi − Ii
)
� I

− 1
2

i5

n← 16

while no convergence do7

ṽ
(n)
0 ← −α(n)

0

(
Fg,L

(
wλ,s � u

(n)
0

)
− ‖u(n)

0 ‖
2
2 a0

)
8

for i← 1, . . . , N do ṽ
(n)
i ← −α

(n)
i ΨT

i

(
u

(n)
i � I

− 1
2

i

)
9

v(n) ← ṽ
(n)
0 +

∑N
i=1 ṽ

(n)
i −α

(n)
i

〈
ṽ

(n)
i , c(n)

〉
ai /* gradient */10

c̃(n) ← v(n) � c(n) /* descent direction */11

for i← 0, . . . , N do α̃
(n)
i ← 1

aT
i c̃(n)12

ũ
(n)
0 ← α̃

(n)
0 wλ,s �Fg,Lc̃

(n)13

for i← 1, . . . , N do ũ
(n)
i ←

(
α̃

(n)
i Ψic̃

(n) + Ibi − Ii
)
� I

−1
2

i14

τ
(n)
max ← minm=1,...,M

{
−c

(n)
m

c̃
(n)
m

∣∣∣ c̃
(n)
m < 0,m = 1, . . . ,M

}
15

τ (n) ← LineSearch
(
τ

(n)
max,α

(n)
i , α̃

(n)
i ,u

(n)
i , ũ

(n)
i , i = 0, . . . , N

)
16

c(n) ← c(n) + τ (n)c̃(n) /* update solution */17

for i← 0, . . . , N do u
(n)
i ←

α̃
(n)
i

τ (n)α
(n)
i +α̃

(n)
i

u
(n)
i +

τ (n)α
(n)
i

τ (n)α
(n)
i +α̃

(n)
i

ũ
(n)
i18

for i← 0, . . . , N do α
(n)
i ←

α
(n)
i α̃

(n)
i

τ (n)α
(n)
i +α̃

(n)
i

19

n← n+ 120

end
c← c(n)21
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In lines 8 – 10 the gradient of the functional J in c(n) is calculated according to
Lemma 5.13. This essentially requires the matrix vector multiplications ΨT

i u
(n)
i , i =

1, . . . , N , which have the numerical complexity O(Ni +M + L3 log2 L).
In line 11 the modified descent direction of the MSD – algorithm is calculated according

to equation (5.15).
In lines 12 – 14 the updates ũ

(n)
i and α̃(n)

i , i = 1, . . . , N of the residuals and the
normalization coefficients are calculated (cf. Definition 5.11). Again this requires the
matrix vector multiplications Ψic, i = 1, . . . , N .

In lines 15 and 16 the step size is calculated using Algorithm 4 and the initial step
length as approved in Lemma 5.16.

The updating of the coefficient vector is done in line 17. Whereas the residuals and
the normalization coefficients are updated in lines 18 and 19 (cf. Proposition 5.12).

We conclude that a single iteration of algorithm 5 has numerical complexity O(N̄ +
M + L3 log2 L).

Calculations on the Estimated ODF. Once an estimate of the true ODF has been
calculated one is typically interested in several characteristics of this estimate, e.g. its
pointwise evaluation for specific orientations, the pointwise evaluation of the correspond-
ing PDF for specific crystal and specimen directions, the calculation of its Fourier co-
efficients, or its convolution with a radially symmetric function on SO(3). We gave a
fast algorithm for the calculation of the Fourier coefficients of the estimated ODF in
Proposition 5.3. Combining this algorithm with the fast Fourier transform on SO(3)
we obtained in Corollary 5.4 fast algorithms for the pointwise evaluation of the ODF
and its convolution with a radially symmetric function. Pointwise evaluation of the
corresponding PDF was already described in Lemma 5.10.

5.4 Numerical Tests
In this section we are going to perform some basic tests on the convergence and ro-
bustness of Algorithm 5. A second goal is to study the interplay between the estimation
error, the arbitrary parameters of Algorithm 5, and the parameters of the PDF–to–ODF
inversion problem itself (cf. Table 4.1).

The Default Setting. For a concise representation we first define three sample ODFs
and a default setting for the PDF–to–ODF inversion problem and alter this setting grad-
ually in the subsequent paragraphs to analyze the specific impact of single parameters.

The first sample ODF f1 is defined as a composition of two Abel–Poisson radially
symmetric functions with halfwidth 12◦ and halfwidth 6◦, respectively and follows or-
thorhombic crystal symmetry, i.e.

SLaue = Sorth = 〈−Id,Rote1(π),Rote2(π)〉 .
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Sample ODF f1 component 1 component 2
crystal symmetry orth. kernel Abel–Poisson kernel Abel–Poisson
specimen symmetry triclinic halfwidth 12◦ halfwidth 6◦

uniform portion 0 center Id center Rote3(25
◦)

texture components 2 weight 5 weight 1

Sample ODF f2 component 1 component 2
crystal symmetry orth. kernel v. M. Fischer kernel v. M. Fischer
specimen symmetry triclinic halfwidth 7◦ halfwidth 3◦

uniform portion 0 center Id center Rote1(10
◦)

texture components 2 weight 10 weight 1

Sample ODF f3 component 1
crystal symmetry trigonal kernel fibre v. M. Fischer
specimen symmetry triclinic halfwidth 7◦

uniform portion 0 center G(e1, e1)

Table 5.1: The parameters of the three sample ODFs f1, f2 and f3.

Here we have again used the notation G = 〈g1, . . . ,gN〉 for the group G generated by the
elements g1, . . . ,gN . The second sample ODF f2 follows the same crystal symmetry but
consists of two von Mises–Fischer radially symmetric components with halfwidth 7◦ and
halfwidth 3◦, respectively. The third sample ODF f3 follows trigonal crystal symmetry,
i.e. the corresponding Laue group is

SLaue = Strig =
〈
−Id,Rote3(

2π
3

),Rote1(π)
〉
,

and is fibre symmetric. More precisely, we have

f3(g) =
κ

sinhκ
exp
(
κ cos ](ge1, e1)

)
, g ∈ SO(3).

The function f3 is called fibre von Mises–Fischer kernel (cf. Schaeben and v.d. Boogaart,
2003). For the third sample ODF f3 we have fixed the free parameter κ such that the
halfwidth of f3 is 7◦. A summary of all three sample ODFs is given in Table 5.4. Displays
of their graphs can be found in the appendix in the Figures A.7, A.8, and A.9.

In order to simulate a diffraction experiment we have to specify all the parameters
listed in Table 4.1. Having no specific practical setting in mind we choose N = 7 crystal
directions

h =
((

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
,
(

1
1
0

)
,
(

1
0
1

)
,
(

0
1
1

)
,
(

1
1
1

))
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and assume that the corresponding diffraction intensities do not interfere with other
crystal directions, i.e. Hi = SLauehi, i = 1, . . . , 7. For each fixed specimen direction
hi ∈ S2 we construct a grid of Ni = 13, 201 specimen directions ri = (ri1, . . . , riNi

) that
forms an equidistribution on the hemisphere S2

+ such that the distance between two
neighboring nodes is about 1.25◦ (cf. Freeden, 1998, Example 7.1.9). We say grid r has
the resolution δ = 1.25◦. Neglecting measurement errors we simulate diffraction counts
I ∈ RN̄ by setting

Iij = X f(Hi, rij), i = 1, . . . , N, j = 1, . . . , Ni,

where f is one of the three sample ODFs f1, f2 or f3. In particular, we set αi = 1 and
Ibij = 0, i = 1, . . . , N, j = 1, . . . , Ni. The simulated diffraction counts I1, . . . , I7 of the
three sample ODFs are plotted in the Figures A.1,A.2, and A.3.

Finally, we have to specify the default values for the parameters of Algorithm 5, as they
are the discretisation V (g, ψ) (cf. Definition 5.5), the default regularization parameters
λ, s ∈ R (cf. Proposition 5.7) and the convergence criterion.

Let us fix s = 2. Then we choose for the discretisation V (g, ψ) of Hs(O(3)/SLaue)
an equidistribution g = (g1, . . . ,gM) on O(3)/SLaue with a resolution of δ = 2.5◦. In
the case of orthorhombic crystal symmetry the grid g contains M = 237, 600 nodes
and in the case of trigonal crystal symmetry it contains M = 158, 400 nodes. As the
ansatz function ψ : SO(3)→ R we chose the de la Vallée Poussin kernel with halfwidth
b = 1.875◦ restricted to the bandwidth L = 325.

Since we work with exact data in the default setting we do not apply regularization be
default but set λ = 0. As convergence criteria we use the criterion to stop if 32 iterations
has been exceeded or if the relative improvement of the residual error becomes less then
the largest relative improvement that occurred so far in the iteration process divided by
100, i.e. if

‖u(n−1)‖2 − ‖u(n)‖2

‖u(n)‖2
< 10−4 max

k=1,...,n−1

‖u(k−1)‖2 − ‖u(k)‖2

‖u(k)‖2
.

The complete list of all default parameters is given in Table 5.2.

Convergence. First of all we are going to check Algorithm 5 for convergence. As
a measure of the estimation error between the true ODF and the estimated ODF we
propose the following quantity.

Definition 5.18. Let ftrue, fest ∈ L1(O(3)/SLaue) be the true and the estimated ODF,
respectively. Then we define the estimation error ε(ftrue, fest) as

ε(ftrue, fest) =
1

32π2

∫
O(3)

|ftrue(g)− fest(g)| dg. (5.24)
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parameter default value
number of pole figures N = 7
number of specimen directions Ni = 13201, i = 1, . . . , N

crystal directions h =
((

1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
,
(

1
1
0

)
,
(

1
0
1

)
,
(

0
1
1

)
,
(

1
1
1

))
superposition of crystal directions Hi = SLauehi, i = 1, . . . , N
specimen directions r = equidistribution on S2

+, resolution 1.25◦

diffraction counts Iij = X f(hi, rij)
background intensities Ibij = 0, i = 1, . . . , N, j = 1, . . . , Ni

normalization coefficients αi = 0, i = 1, . . . , N,
discretisation of O(3)/SLaue g = equidistribution on SO(3)/SLaue, resolution 2.5◦

ansatz function ψ = de la Vallée Poussin kernel, b = 1.875◦

bandwidth L = 325
regularization parameter λ = 0

Table 5.2: Default parameters of the numerical experiments.

Remark 5.19. The estimation error ε(ftrue, fest) can be interpreted as the percentage
of mass that is dislocated between the two density functions ftrue and fest. In particular,
we have

0 ≤ ε(ftrue, fest) ≤ 1,

and ε(ftrue, fest) = 0 if and only if the ODFs ftrue and fest are identical and ε(ftrue, fest) =
1 if and only if they have disjoint support.

In our numerical tests we do not calculate the estimation error ε(ftrue, fest) exactly
but evaluate ftrue and fest at an equidistribution on O(3)/SLaue with resolution 1.25◦

and approximate the integral in equation (5.24) by a quadrature formula. Furthermore,
we do not apply the fast algorithms based on the fast Fourier transform on SO(3) as
described in Corollary 5.4 for the evaluation of the functions ftrue and fest but use the
direct algorithm.

Beside the weighted residual norm

RN = ‖I‖−1
1

(
N∑
i=1

∥∥∥[αest]iX fest(Hi, ri) + Ibi − Ii

∥∥∥2

I−1
i

) 1
2

that is minimized by Algorithm 5 for the default setting there is a second, in texture
community more established measure for the goodness of fit between the estimated
diffraction intensities and the measured diffraction counts.

Definition 5.20. Let I ∈ RN̄ be the measured diffraction counts with respect to the
diffraction parameters as summarized in Table 4.1 and let fest ∈ C(O(3)/SLaue) and
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Figure 5.2: The estimation error ε(ftrue, fest) (blue graph), the weighted residual norm
RN (red graph) and the RP values RPµ, µ = 0.01 (green graph) against the iteration steps
of Algorithm 5.

αest ∈ RN
+ be an estimated ODF and estimated normalization coefficients, respectively.

Then for any µ > 0 the RPµ - value is defined as (cf. Matthies et al., 1987, sec. 14.4)

RPµ =
1

|Vµ|
∑

(i,j)∈Vµ

∣∣[αest]iX fest(Hi, ri) + Ibi − Ii
∣∣

Ii − Ibi
(5.25)

where Vµ = { (i, j) | i = 1, . . . , N, j = 1, . . . , Ni, Ii − Ibi > [αest]iµ } and |Vµ| denotes
the number of elements in Vµ.

The estimation error ε(ftrue, fest), the weighted residual norm RN and the RP values
RPµ, µ = 0.001 are plotted in Figure 5.2 versus the iteration steps of Algorithm 5 applied
to the default setting.

We mention that the estimation error for the sharp ODF f2 is much smaller then
for the weaker ODF f1 which is conform to Section 4.4. Moreover, the decrease of the
estimation error is very small between iteration 32 and iteration 64. This approves our
restriction to the maximum iteration depth 32.

We have plotted the estimated ODFs in the Figures A.10, A.11, and A.12 in the
Appendix A for a morphological comparison with the original ODFs.

Discretisation. In a second experiment we alter the parameters of the discretisation
V (g, ψ) and keep track of the estimation error. Therefore we construct a list of equidis-
tributions in O(3)/SLaue with resolution δ as given in Table 5.3a and vary the halfwidth

100



5 Implementation of the MLS ODF Estimator

20 10 5 2.5 1.25

0.1

0.2

0.4

0.8

halfwidth b

(a) sample ODF f1

20 10 5 2.5 1.25

10
−2

10
−1

10
0

halfwidth b

(b) sample ODF f2

20 10 5 2.5 1.25
10

−3

10
−2

10
−1

10
0

halfwidth b

(c) sample ODF f3

Figure 5.3: The estimation error in dependency of the discretisation parameters (b, δ).
The blue graphs corresponds to δ = 20◦, the green graph to δ = 10◦, the red graph to
δ = 5◦, the cyan graph to δ = 2.5◦ and the magenta graph to δ = 1.875◦.

b and the bandwidth L of the de la Vallée Poussin ansatz function ψ as described in
Table 5.3b. The bandwidth L of the ansatz function ψ has been chosen such that for
any l > L the Chebyshev coefficients of ψ satisfy

ψ̂(l) < 10−15.

resolution δ (◦) 20 10 5 2.5 1.875
number of nodes for Sorth 576 3,708 29,736 237,600 563,232
number of nodes for Strig 384 2,472 19,824 158,400 375,488

(a) Parameters of the equidistribution g = (g1, . . . ,gM ) in O(3)/SLaue.

halfwidth b (◦) 20 15 10 7,5 5 3.75 2.5 1.875 1.25
bandwidth L 23 33 52 70 107 143 215 325 432

(b) Halfwidths and bandwidth of the ansatz function ψ.

Table 5.3: Tested discretisation parameters.

We calculate the estimation error for the three sample ODFs f1, f2, and f3 for all
combinations of the parameters (b, δ). The results are visualized in Figure 5.3.

One recognizes that for a fixed resolution δ of the grid g in O(3)/SLaue the estimation
error as a function of the halfwidth b of the ansatz function ψ is decreasing until b ≈ 3

2
δ
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and increasing for b > 3
2
δ. For b < 3

2
δ the halfwidth of the ansatz function ψ is clearly to

small for a good approximation. For b > 3
2
δ we loose in approximation of sharp textures

(cf. Figure 5.3b). For weak textures however, a halfwidth close to the actual halfwidth
of the ODF components could result in a better estimations (cf. Figure 5.3a, 5.3c).

Noisy Data. Until to now we have tested Algorithm 5 for exact data only. According
to Section 4.2 the measured intensity counts Iij can be modeled as a random sample of
the family of Poisson distributions

Iij = Poiss
(
Ibij + [αtrue]i X ftrue(Hi, rij)

)
, i = 1, . . . , N, j = 1, . . . , N, (5.26)

which depend on the normalization coefficients αtrue ∈ RN and the background intensi-
ties Ibij ∈ R.

Fixing the second sample ODF ftrue = f2 as the as the true ODF we select normaliza-
tion coefficients [αtrue]i and background intensities Ibij, i = 1, . . . , N , j = 1, . . . , Ni from
the list (10, 40, 60, 640, 2560) and simulate diffraction counts Iij ∈ R+ as random sam-
ples of the family of Poisson distributions (5.26). Applying Algorithm 5 to the simulated
diffraction counts we obtain estimates of the second sample ODF f2. The corresponding
estimation errors are plotted in Figure 5.4a.

One recognizes that the estimation error decreases for decreasing background inten-
sities and for increasing normalization coefficients. More interestingly, we note that the
estimation error also decreases in the case that the background intensities and the nor-
malization coefficients increase simultaneously. In practice this relates to the case that
the measure time is increased.

Regularization. In Section 4.3 we have already discussed that the ODF estimation
problem is ill–posed and hence regularization techniques are supposed to increase the
accuracy of estimation. In the case of Algorithm 5 we have three independent sources
regularization. First the implemented MLS ODF estimator itself includes explicit reg-
ularization which is controlled by the regularization parameter λ. A second origin of
regularization is the chosen discretisation V (ψ,g) as defined in Definition 5.5. Since
V (ψ,g) contains only linear combinations of translates of the ansatz function ψ with
non–negative coefficients the halfwidth of ψ directly controls the smoothness of the func-
tions in V (ψ,g). Third the maximum iteration depth of Algorithm 5 can be interpreted
as a regularization parameter.

In order to analyze the impact of these three independent sources of regularization we
simulate noisy diffraction data as in the previous experiment, setting [αtrue]i = 10, and
Ibij = 2560, i = 1, . . . , N , j = 1, . . . , Ni. We apply Algorithm 5 first using the default
setting of parameters, second with the ansatz function ψ with halfwidth 2.5◦, and third
with explicit regularization enabled, i.e. with λ = 10−4.25. The corresponding estimation
errors are plotted in Figure 5.4b in dependency of the iteration count.
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Figure 5.4: Plot (a) displays the estimation error in dependency of normalization coeffi-
cient α and the background intensity Ib. The blue graph corresponds to Ib = 10, the green
graph to Ib = 40, the red graph to Ib = 160, the cyan graph to Ib = 640, and the magenta
graph to Ib = 2560. The bottom yellow line corresponds to the estimation error for exact
data. Plot (b) displays the estimation error in dependency of the iteration count for noisy
data with α = 10 and Ib = 2560. The blue line corresponds to the default setting without
regularization, the green line corresponds to the default setting with regularization param-
eter λ = 10−4.25, and the red line corresponds to the default setting but with halfwidth
b = 2.5◦ of the ansatz function. Plot (c) displays the estimation error in dependency of the
number of pole figures and for the following configurations of specimen directions: blue
graph – configuration A, green graph – configuration B, red graph – configuration C, and
cyan graph – default configuration.

According to Figure 5.4b regularization by the maximum iteration depth leads to the
best estimation error. However, it requires a much more detailed analysis to derive
reliable results about the effect of regularization to Algorithm 5. The general prob-
lem of selecting an optimum regularization parameter has been exhaustively studied in
literature (e.g. in Vogel, 2002; Wahba, 1990; Bernier and Miller, 2006).

Incomplete Data. In the next experiment we are going to apply Algorithm 5 to incom-
plete pole figure data, i.e. to configurations of specimen directions that do not provide a
complete coverage of the hemisphere S2

+. For this purpose, we use three configurations
that typically arise in practical diffraction experiments. Configuration A and B represent
regular 1.25◦ × 2.5◦ grids on the hemisphere that contain only specimen directions with
θ < 80◦ or θ > 10◦, respectively. Configuration C contains 12,000 nodes at a resolution
of δ = 1◦ and is taken from a real world diffraction experiment with an area detector (cf.
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(a) configuration A (b) configuration B (c) configuration C

Figure 5.5: The three sample configuration of specimen directions.

Section 5.5). The three sample configurations A, B and C are visualized in Figure 5.5.
Next we simulate diffraction counts with respect to the configurations of specimen

directions A, B, and C following the same recipe as in the previous experiment and setting
the background intensities and the normalization coefficients to Ibij = [αtrue]i = 160,
i = 1, . . . , N , j = 1, . . . , Ni. We apply Algorithm 5 to the simulated diffraction data
and reduce in a second step successively the number N of pole figures to be used by
Algorithm 5. The resulting estimation errors in dependency of the number of pole
figures and the specific configuration of specimen directions are plotted in Figure 5.4c.
Additionally, the estimation error for the default configuration of specimen directions is
plotted in dependency of the number of pole figures.

For configuration A the estimation error is close to one until the fifth pole figure has
been included for ODF estimation. This is due to the fact that for configuration A the
pole figures with respect to the crystal directions e2, . . . , e4 are all empty, i.e. almost
all the mass is concentrated in the regions that are not covered by configuration A (cf.
Figure A.2). Consequently, the estimated ODF is concentrated along the fibre G(e3, e3).
The peaks of the fifth pole figure are located within the range of configuration A and
hence the estimation error decreases.

In the case of configuration C the peaks of the second and the third pole figure are
almost not contained in the diffraction data and hence the estimated ODF is concen-
trated along the fibre G(e1, e1). In the case of configuration B only the peak of the third
pole figure is not contained in the diffraction data and hence the first two pole figures
already narrow the range of possible ODF.

Unknown Background Intensities. In texture analysis it is a well established practice
to determine only the differences Idij = Iij − Ibij between the measured diffraction counts
and the estimated background intensities. In order to apply Algorithm 5 to those data
one can guess an arbitrary background intensity Ĩb = Ĩbij, i = 1, . . . , N , j = 1, . . . , Ni
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and define diffraction counts Ĩij = Idij + Ĩb, i = 1, . . . , N , j = 1, . . . , Ni.
In this paragraph we are going to check Algorithm 5 for its sensitivity against the

guessed background intensity Ĩb. For this purpose we simulate diffraction counts Iij
analogously to the previous experiments with normalization coefficients and background
intensities given by [αtrue]i = Ibij = 160, i = 1, . . . , N , j = 1, . . . , Ni. Based on these
diffraction counts we calculate the differences Idij = Iij − Ibij and apply Algorithm 5 to
the modified intensity counts Ĩij = Idij + Ĩb generated for guessed background intensities
Ĩb = 1, Ĩb = 40, Ĩb = 160, Ĩb = 640 and Ĩb = 2560. The estimation errors in dependency
of the guessed background intensity Ĩb are given in Table 5.4.

guessed background intensity Ĩb 1 40 160 640 2560 no weights
estimation error ε 0.215 0.125 0.020 0.025 0.030 0.045

Table 5.4: The estimations error in dependency of the guessed background intensity.

The last column corresponds to the minimizer of the functional

J̃(c) =
M∑
i=1

∥∥∥∥ Ψic

cTai
+ Ibi − Ii

∥∥∥∥2

+

∥∥∥∥FHg,LccTa0

∥∥∥∥2

w2
λ,s

,

which differs from the functional minimized by Algorithm 5 by the absence of the weights
I−1
i in the first sum. In fact this is the functional that is minimized by the HHSM method

(Bernier and Miller, 2006). We recognize that the weighted functional performs for the
specific test problem at 50% better then the functional without weights. On the other
hand it is quit sensitive against underestimated background intensities. The loss of
accuracy due to an overestimated background intensity is less notable.

5.5 Applications
We end our study of the MLS ODF estimator with a short discussion of its application
to two real world problems.

Area Detectors. The data for the first example were measured by Dr. U. Garbe at
FRM II at the Technische Universität München. He analyzed an AL3O3 specimen with
trigonal crystal symmetry using a neutron diffractometer and an area detector. He ex-
tracted diffraction counts corresponding to seven crystal directions and the configuration
C of specimen directions as introduced in Section 5.4. This configuration contains 12,600
specimen directions at a resolution of one degree. The measured diffraction counts are
plotted in Figure A.4a.

Since the diffraction counts suggest a weak texture we use the following rough discreti-
sation. As the ansatz function ψ we choose the de la Vallée Poussin kernel with halfwidth
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b = 7.5◦ and as the grid g on SO(3)/Strig we choose an equidistribution with resolution
δ = 10◦. With this settings we obtain after 10 iterations the RP value RPµ = 0.11,
µ = 0.001. The recalculated pole figures are plotted in Figure A.4b.

Adapptive Measurements. The second example is based on explorations of Dr. J. J.
Fundenberger on the texture of a Nigel specimen. He used a Siemens X–ray goniometer
with point detector which allows for the measurement of the diffraction intensity for
only one pair of crystal direction and specimen direction per measurement cycle. Since
each measurement cycle takes up to ten second the measurement of a sharp texture at
high resolution is a time critical problem. In the current experiment it were measured
four pole figures with respect to the crystal directions (110), (200), (211) and (321) at
a resolution of 1.25◦. In contrast to ordinary measurements the grid of specimen direc-
tions was not chosen to be regularly distributed on the hemisphere, but to be clustered
at regions of hight diffraction intensity and to be sparse at regions of low diffraction
intensities. Compare to a regular 1.25◦ × 1.25◦ grid the irregular grid contains only one
fourth of the specimen directions and hence only one fourth of the measuring cycles
are required. The irregular grid was constructed adaptively during the measurement
process. The measured diffraction counts are plotted in Figure A.5.

For ODF estimation we fix an almost uniform grid of rotations g in O(3)/Scub with a
resolution of 1.875◦. Here the Laue group Scub describes cubic crystal symmetry defined
as

SLaue = Sspace =
〈
−Id,Rote1(

π
2
),Rote1+e2+e3(

2π
3

),Rote1+e2(π)
〉
.

Together with the ansatz function ψ chosen as the de la Vallée Poussin kernel with
halfwidth 1.25◦ restricted to bandwidth L = 432 the pair (g, ψ) defines the discretisation
V (g, ψ) (cf. Definition 5.5). Using this discretisation we apply Algorithm 5 to the
measured diffraction counts.

The RP value for the recalculated pole figures is RPµ = 0.19, µ = 0.001. Indepen-
dently from the (110), (200), (211) and (321) pole figures J. Fundenberger has also mea-
sured the (2, 2, 2) and (3, 1, 0) pole figures. This time however for a regular 1.25◦ × 2.5◦

grid of specimen directions. The corresponding diffraction intensities are plotted in Fig-
ure A.6b and can be compared with the pole figures recalculated from the estimated
ODF which are plotted in Figure A.6a.
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A PDF and ODF Plots
PDF Plots. Let P ∈ C(S2/SLaue × S2) be an ODF with respect to the Laue group
SLaue ⊆ O(3). Then by Remark 3.25 each pole figure P (h, ◦) ∈ C(S2), h ∈ S/SLaue is
an even function and hence it is sufficient to plot P (h, r) only for specimen directions
r ∈ S2

+ in the upper hemisphere. This requires a projection of the hemisphere S2
+ to the

two dimensional plane. In this thesis we make use of the so called equal area projection
defined by

Π: S2
+ → R2, (θ, ρ) 7→

(
cos ρ

√
2(1− cos θ)

sin ρ
√

2(1− cos θ)

)
, (A.1)

which is also called Schmidt projection (cf. Bigalke, 1984, Sec. 5.5). According to
the equal area projection the upper hemisphere is projected onto a circle in the two
dimensional plane such that the specimen direction e3 ∈ S2 corresponds to its center,
and the specimen directions e1, e2 ∈ S2 to the right and upper most points of the circle,
respectively.

The color coding of the plotted pole figures we choose such that low values of P
correspond to blue colors and high values of P correspond to red colors. The maximum
and the minimum value of each pole figure is specified in the bottom line of each plot.
The crystal direction relative to which the pole figure is plotted is specified in the upper
left corner.

In the case of measured or simulated diffraction counts each data point Iij correspond-
ing to P (hi, rij), i = 1, . . . , N , j = 1, . . . , Nj is represented by a single dot at position
Π(rij) ∈ R2 with the corresponding color. In the case of pole figures calculated from an
estimated ODF interpolated plots are given.
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A PDF and ODF Plots

Figure A.1: Simulated diffraction counts of the sample ODF f1 with respect to the
default setting.

Figure A.2: Simulated diffraction counts of the sample ODF f2 with respect to the
default setting.
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Figure A.3: Simulated diffraction counts of the sample ODF f3 with respect to the
default setting.
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(a) Measured diffraction counts.

(b) Recalculated pole figures.

Figure A.4: Diffraction counts of an AL3O3 specimen with trigonal crystal symmetry
measured by U. Garbe at FRM II at the Technische Universität München using a neutron
diffractometer and an area detector (Figure (a)) and pole figures calculated from the ODF
which was obtained by applying Algorithm 5 to the above diffraction data (Figure (b)).
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Figure A.5: Diffraction counts of a Nickel specimen with cubic crystal symmetry mea-
sured at an adaptively constructed grid of specimen directions by J. J. Fundenberger at
the laboratoire détude des textures et application aux materiaux at Metz using an X-ray
goniometer and a point detector.
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(a) Recalculated pole figures.

(b) Independently measured diffraction counts.

Figure A.6: Pole figures of the Nickel specimen measured by J. Fundenberger with respect
of the crystal directions {222} and {310}. Figure (a) shows pole figures calculated from
an ODF which was obtained by applying Algorithm 5 to the diffraction counts plotted in
Figure A.5. Figure (b) shows the diffraction counts of an independent measurement of the
same Nickel specimen but with a conventional configuration of specimen directions.
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ODF Plots. In order to visualize an ODF f : O(3)/SLaue → R we plot sections of f
along two dimensional submanifolds of SO(3). Let

g = Rote3(α)Rote2(β)Rote3(γ)

be the Euler angle parameterization of the rotation g ∈ SO(3). Then the angles (β, α)
are the polar coordinates of the vector ge3 ∈ S2 and the angle σ = α + γ describes the
rotation of the vectors ge1 and ge2 relative to the vectors e1 and e2 in the e1-e2 plane.
The sets

Ωσ = {g = Rote3(α)Rote2(β)Rote3(γ) | α+ γ = σ }, σ ∈ [0, 2π)

splits the three-dimensional manifold SO(3) into disjoint two-dimensional submanifolds,
the so called σ-sections (cf. Helming et al., 1987).

In order to plot the ODF f : SO(3)→ R we fix discrete values σ = σ1, . . . , σK and plot
the restrictions of f to the σ-sections Ωσk

, k = 1, . . . , K using the equal area projection
with respect to the free variable (β, α). In fact, since (β, α) are the polar coordinates of
ge3 the plots of the σ-sections can be interpreted as the e3-pole figure of f split according
the value of σ.

In the case of orthorhombic crystal symmetry σ-sections are plotted for σ = 0◦, 9◦, . . . , 171◦

and in the case of trigonal crystal symmetry for σ = 0◦, 6◦, . . . , 114◦. The value of σ
is indicated in upper left corner of each plot. The color coding of the plots is handled
analogously to the pole figure plots.
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Figure A.7: The sample ODF f1 plotted as sigma sections.
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Figure A.8: The sample ODF f2 plotted as sigma sections.
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Figure A.9: The sample ODF f3 plotted as sigma sections.
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Figure A.10: The MLS ODF estimate of the sample ODF f1 calculated by Algorithm 5
using the default setting as described in Section 5.4.
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Figure A.11: The MLS ODF estimate of the sample ODF f2 calculated by Algorithm 5
using the default setting as described in Section 5.4.
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Figure A.12: The MLS ODF estimate of the sample ODF f3 calculated by Algorithm 5
using the default setting as described in Section 5.4.
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