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Circular and spherical mean data arise in various models of thermoacoustic and pho-
toacoustic tomography which are rapidly developing modalities for in vivo imaging. We
describe variants of a summability type reconstruction method adapted to this type of
data. Among the highlights of the resulting algorithms, suggested by the results of numeri-
cal experiments, is the feature that the detectors need not lie on a regular curve or surface,
such as a circle or a sphere. Several such numerical examples are included here.
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1. Introduction

Given a sufficiently regular scalar valued function f on R
n , n � 2, its spherical mean at ξ and r, where ξ ∈ R

n and r > 0,
is the integral of f over the sphere of radius r centered at ξ . It can be expressed as the following integral over the unit
sphere in R

n

Sf (ξ, r) =
∫

Sn−1

f (ξ + ru)rn−1 dσ(u) (1)

where dσ(u) denotes the usual surface measure on the unit sphere S
n−1 = {u ∈ R

n: |u| = 1}. Sf (ξ, r) is used to model
the data in various models of thermoacoustic and photoacoustic tomography where f represents the phantom and ξ the
position of a detector. More specifically, in such models the phantom f is taken to have compact support, usually in a ball,
and the data Sf (ξ, r) is known for ξ on the boundary of the supporting set, usually a sphere, and all relevant r.

The basic problem considered here is the following: Suppose Sf (ξ, r) is known for ξ in a subset Ξ of Rn and all rele-
vant r. Find an algorithm to reconstruct f .

Various aspects of this basic problem have been studied in great detail in the mathematical literature. The recent survey
[4] contains a description of some of this work and a fairly exhaustive bibliography. See also the mathematically oriented
articles in [8].

The objective of most of the mathematical literature is to obtain precise conditions for existence and uniqueness of
solutions and, of course, exact reconstruction formulas and numerical procedures. The objective of the present article is
to describe a heuristic procedure which gives rise to algorithms which provide good reconstructions under fairly general
conditions. Thus by a reconstruction of f we mean an appropriate approximation of f .

Thermoacoustic and photoacoustic tomography are rapidly developing modalities for in vivo imaging. There are many
technical articles on various engineering and biological aspects of the subject. For example, see [7], the recent collection [8],
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and the references cited there; [4] also contains a brief but informative discussion and many references to such material.
Many of these articles contain a description of the relation between the measured data and spherical mean data; for
example, the mathematically oriented article [1], among others found in [8], has such a description.

There are several equivalent definitions of the spherical mean Sf (ξ, r) which differ only by a constant factor or a power
of the variable r. The particular normalization used here is quite natural for certain practical applications and leads to a
convenient formulation of our observations.

The general idea on which our reconstruction methodology is based is outlined in Section 2. The summability type
reconstruction procedure is succinctly described in Section 3. Thus the impatient reader can skip directly to Section 3 for
a straightforward description of the reconstruction method. Section 4 contains several specific numerical examples. We
summarize our observations in Section 5.

2. Rationale

A function G on Rn is said to be radial with center ξ if there is a univariate function g such that G(x) = g(|x − ξ |). If G
is radial with center ξ then integrating its product with another function f on R

n and expressing the integral in terms of
polar coordinates centered at ξ results in

∫
Rn

G(x) f (x)dx =
∞∫

0

∫
Sn−1

g(r) f (ξ + ru)rn−1dσ(u)dr =
∞∫

0

g(r)Sf (ξ, r)dr. (2)

We are of course assuming that all the functions involved are sufficiently well behaved so that the integrals make sense.
The rudimentary identity (2) is the basis of our method of reconstruction. Namely, if a function K can be expressed as a

sum of functions that are respectively radial with centers ξ which are contained in a subset Ξ of R
n then the integral of the

product of K and f can be computed from knowledge of the spherical means Sf (ξ, r), ξ ∈ Ξ . Furthermore, if K is a good
approximation of the identity at a point x = x0 in Rn then the integral of the product will result in a good approximation
of f (x0), thus giving rise to summability type reconstruction method. The definitions and formulas below are simply more
precise versions of this observation.

Suppose Ξ is a measurable set and μ is a measure on Ξ . For instance, if Ξ is finite then a natural example of μ is the
standard counting measure so that∫

Ξ

f (ξ)dμ(ξ) =
∑
ξ∈Ξ

f (ξ).

On the other hand, if Ξ is the unit sphere in Rn then a natural example would be the usual surface measure so that∫
Ξ

f (ξ)dμ(ξ) =
∫

Sn−1

f (u)dσ(u).

A locally integrable function K is a sum of radial function with centers in Ξ if there is a locally integrable function k(ξ, r),
ξ ∈ Ξ and r > 0, and a measure μ on Ξ such that

K (x) =
∫
Ξ

k
(
ξ, |x − ξ |)dμ(ξ). (3)

If K (x) enjoys representation (3) and f (x) is an integrable function with compact support then in view of (2) we have

∫
Rn

K (x) f (x)dx =
∫
Ξ

{ ∞∫
0

k(ξ, r)Sf (ξ, r)dr

}
dμ(ξ). (4)

Hence, if the function K enjoys representation (3) and is a good approximation of the identity at some point x = x0,
i.e.

∫
K (x) f (x)dx is a good approximation of f (x0) for sufficiently regular f , then formula (4) shows how to get a good

approximation to f (x0) in terms of the spherical mean data Sf (ξ, r), ξ ∈ Ξ and r > 0.
In other words, if K(x, y), (x, y) ∈ R

n × R
n , is a kernel that enjoys representation (3) in the y variable, i.e.

K(x, y) =
∫
Ξ

k
(
x, ξ, |y − ξ |)dμ(ξ), (5)

then
∫

K(x, y) f (y)dy can be evaluated in terms of the spherical mean data Sf (ξ, r), ξ ∈ Ξ and r > 0. Specifically we have
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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∫
Rn

K(x, y) f (y)dy =
∫
Ξ

{ ∞∫
0

k(x, ξ, r)Sf (ξ, r)dr

}
dμ(ξ). (6)

Now if f is sufficiently regular and has support in a region Ω and K(x, y) is a good approximation of the identity in y
at each x ∈ Ω then identity (6) represents an approximate reconstruction of f in terms of the data Sf (ξ, r), ξ ∈ Ξ and
r > 0. Such a kernel K(x, y) can be conveniently viewed as a family of functions in the y variable parameterized by x, each
member of which is a sum of radial functions with centers in Ξ .

The natural assignment then is the following: Given the function K and the set Ξ find a solution k in representation (3).
Of course, not every pair K and Ξ will admit such a solution k. For example, if Ξ is a finite set with a small number

of elements then it is unlikely that the set of functions K which admit representation (3) is sufficiently rich to include
good approximations of the identity. On the other hand, if Ξ is a sphere, say Ξ = S

n−1 = {ξ ∈ Rn: |ξ | = 1}, then one might
expect that the set of functions K which admit representation (3) is sufficiently rich to include good approximations of the
identity, at least at points x inside the unit ball B = {x ∈ Rn: |x| < 1}.

The case when Ξ is a sphere is important. It is used as the model for many experimental setups [7,8] and has given
rise to many important mathematical results [1,4]. However, unlike the analogous equation in the standard Radon transform
model of tomography studied in [6], we are not aware of any reasonably simple solutions for k in terms of K .

We therefore take a heuristic approach.
Our objective is to find a family of radial functions {k(x, u, |x − u|)}u∈Sn−1 with centers on the unit sphere Ξ = S

n−1 =
{u ∈ Rn: |u| = 1} so that

K(x, y) =
∫

Sn−1

k
(
x, u, |y − u|)dσ(u) (7)

is a good approximation of the identity in the variable y, |y| < 1, at least for points x close to the origin.
Look at the right-hand side of (7). We want the result to be a good point response function in the variable y at the point

x where |x| < 1. Consider the solution h of

K (y) =
∫

Sn−1

h
(〈y, u〉)dσ(u) (8)

which is solvable whenever K (y) is a reasonable radial function with center 0, see [6, Section 2]. If K (y) is a good approx-
imation of the identity at the origin then

K (x − y) =
∫

Sn−1

h
(〈x, u〉 − 〈y, u〉)dσ(u) (9)

is a good approximation of the identity at x. For fixed u and x the function h(〈x, u〉 − 〈y, u〉) is constant on (n − 1)-
dimensional hyperplanes (lines when n = 2 or planes when n = 3) perpendicular to u. On the other hand, the function
k(x, u, |y − u|) as a function of y is constant on spheres centered at u. Comparison of (7) and (9) and consideration of the
respective geometrical setups suggest that the choice

k
(
x, u, |y − u|) = h

(|x − u| − |y − u|)
might give rise to a reasonable approximation of the identity at the point x in the variable y, at least in cases when x is
close to the center of the sphere and relatively far from the boundary.

The above choice for the function k(x, u, |y − u|) can be further explained by the observation that

lim
r→∞

{|x − ru| − |y − ru|} = 〈y, u〉 − 〈x, u〉 (10)

and the fact that h is even. Namely, if in (7) we replace k(x, u, |y − u|) with h(|x − ru| − |y − ru|) then in the limiting case
as r → ∞ the resulting identity reduces to (9).

With this rationale we consider kernels K(x, y) of the form

K(x, y) =
∫

Sn−1

h
(|x − u| − |y − u|)dσ(u) (11)

where h is a solution to (8) and the left-hand side of (8) is an approximation of the identity at the origin. Explicit formulas
for such h can be found in [6, Section 3]. In Section 4 we consider specific examples and include results of numerical
experiments in the practical cases n = 2 and n = 3, respectively. Some of these experiments seem to suggest that (11) gives
rise to a good approximation of the identity even when the set of centers is not necessarily a sphere but a much more
general collection of points.
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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Reconstruction procedures based on analogies with the classical Radon transform are well known in photoacoustic and
thermoacoustic imaging. For example, in [3] a variant of the so-called rho-filtered layergram method of classical tomography,
a sum of backprojections followed by appropriate deconvolution, is considered. Backprojection methods based on regular-
ization of existing inversion formulas are described in [2,5], see also Chapter 4 in [8] and related articles and citations found
there. The procedure described here is, roughly speaking, a direct summability method analogous to that associated with
the Fejer kernel and related kernels found in the theory of Fourier series. An application in classical tomography can be
found, for example, in [6]. To our knowledge the summability type approximate reconstruction method described here is
new and exact results are not yet known.

3. An approximate reconstruction procedure

Given spherical mean data, Sf (ξ, r), ξ ∈ Ξ and r > 0, we consider reconstructions or, more accurately, approximations f̃
of the phantom f in terms of this data which are of the form

f̃ (x) =
∫
Ξ

{ ∞∫
0

h
(|x − ξ | − r

)
Sf (ξ, r)dr

}
dμ(ξ) (12)

where h(t) is a appropriately chosen function of one real variable t and dμ(ξ) is an appropriate measure on Ξ . More
specifically, the function h(t) is a solution to (8) and can also be expressed as

h(t) = K (0) + t

t∫
0

(
t2 − s2)−1/2

K ′(su)ds when n = 2 (13)

and

h(t) = K (tu) + t K ′(tu) when n = 3, (14)

where K (x) is an radial function with center 0 chosen so that K (x) is an approximation of the identity at the origin. Here
u is any unit vector in R

2 or R
3 respectively and K ′(tu) denotes the derivative of K (tu) with respect to the variable t . For

these and other formulas relating h(t) to K (x) see [6, Section 2]. Specific examples of K and h in the cases n = 2 and 3 are
given in Section 4.

4. Examples

The reconstructions below are considered in dimension two and three, i.e. n = 2 and n = 3, which are cases of practical
interest.

The phantom f (x) is taken to have support in the unit ball B = {x ∈ R
n: |x| < 1}. Initially we take Ξ to be the unit

sphere Ξ = Sn−1 = {u ∈ Rn: |u| = 1} (unit circle in the case n = 2) but subsequently consider much more general sets of
detectors. Of course in the numerical calculations Ξ is taken to be a finite set and the sampling in the variable r is also
discrete, say at r = r1, . . . , rm so that (12) reduces to

f̃ (x) = c
∑
ξ∈Ξ

{
m∑

i=1

h
(|x − ξ | − ri

)
Sf (ξ, ri)

}
, (15)

where c is a conveniently chosen normalizing constant. For example,

1/c = a
∑
y j∈D

∑
ξ∈Ξ

h
(|x − ξ | − |y j − ξ |),

where D is the region of interest, y j denotes the center of the jth pixel, and a is the pixel area.

4.1. Two-dimensional case

A convenient choice of K (x) in Eqs. (13) is the so-called Poisson kernel

Kε(x) = 1

2π

ε

(ε2 + |x|2)3/2
.

The parameter ε > 0 determines the thickness or resolution of K , the smaller the ε the better the resolution. The corre-
sponding function h(t) is
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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Fig. 1. Kε (x, y) at x = (0.5,0.5), |x| = 0.7071.

hε(t) = 1

2π

ε2 − t2

(ε2 + t2)2
. (16)

See [6, (21)].
In the case that Ξ is the unit circle it is natural to parameterize it as uθ = (cos θ, sin θ), 0 � θ < 2π , and discretize it by

taking θ = θ1, . . . , θN where θ j = 2π( j − 1)/N , j = 1, . . . , N .

Figure 1. We exhibit the image and surface plot of

Kε(x, y) = 1

2π

2π∫
0

hε

(|x − uθ | − |y − uθ |
)

dθ (17)

as a function of y, y ∈ [−1,1] × [−1,1], for x = (0.5,0.5) so |x| = 0.7071. The function hε(t) is given by (16) with ε = 0.01.
This of course is equivalent to the phantom f being a point source (Dirac measure) at x in formula (12). As suggested by
(15) formula (17) is numerically realized as

Kε(x, y) = c
N∑

j=1

hε

(|x − uθ j | − |y − uθ j |
)

(18)

where θ j = 2π( j − 1)/N , j = 1, . . . , N , and c is a normalizing constant.
In the image and plot below N = 300 and the variable y ranges over a square grid of size 300 × 300.
For other points x in the unit disk |x| < 1, the images and plots of Kε(x, y) as a function of y, y ∈ [−1,1] × [−1,1], are

essentially indistinguishable from Fig. 1 mutatis mutandis.

Figure 2. We exhibit images of a phantom f , its data Sf (uθ j , ri), ri = 2i/(M + 1), i = 1, . . . , M , j = 1, . . . , N , and its recon-
struction

f̃ (x) = c
N∑

j=1

{
M∑

i=1

hε

(|x − uθ j | − ri
)
Sf (uθ j , ri)

}

where hε(t) is given by (16) with ε = 0.01. Thus the approximation of the identity is the one depicted in Fig. 1 with
x = (0.5,0.5). As in Fig. 1, N = 300 and the independent variable, in this case x, ranges over a square grid of size 300 × 300.
Furthermore, M + 1 = 300. The phantom f is a linear combination of indicator functions of ellipses and rectangles, the
largest of which is a disk of radius 0.9.

Note that because the phantom is assumed to be supported in the unit disk, |x| < 1, and the detector sites ξ are on the
unit circle, |ξ | = 1, the integrand in formula (12) vanishes for r > 2 so that the range of integration in the r variable is 0
to 2 in this example. In the numerically discrete case it reduces to the scenario mentioned above, namely, ri = 2i/(M + 1),
i = 1, . . . , M . Specifically θ j = 2π( j − 1)/300, j = 1, . . . ,300, and ri = 2i/300, i = 1, . . . ,299.
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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Fig. 2a. Phantom and detectors.

Fig. 2b. Data and reconstruction.

Figure 3. In this numerical experiment we use the same phantom as in Fig. 1 but take the detector sites ξ to be on the
ellipse (x/2)2 + y2 = 1. In this case the variable ξ in formula (12) can be expressed as ξ(θ) = (2 cos θ, sin θ), 0 � θ < 2π .
Under the assumption that f has support in the unit disk for fixed θ the integrand will vanish outside the range ρ(θ)− 1 �
r � ρ(θ) + 1, where ρ(θ) = √

(2 cos θ)2 + (sin θ)2. So the discrete version of (12) becomes

f̃ (x) = c
N∑

J=1

{
M∑

i=1

hε

(∣∣x − ξ(θ j)
∣∣ − ri(θ j)

)
Sf

(
ξ(θ j), ri(θ j)

)}
.

We consider two types of data Sf (uθ j , ri(θ j)):

Data 1: θ j = 2π( j − 1)/300, j = 1, . . . ,300, and ri(θ j) = (ρ(θ j) + 1)i/300, i = 1, . . . ,299. In this case for each θ j the
sampling in the r variable is uniform over the interval 0 � r � ρ(θ j) + 1. The size of the increment ri+1(θ j) − ri(θ j) =
(ρ(θ j) + 1)/300 depends on θ j so this should be taken into account when viewing the image of this data. Note that
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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Fig. 3a. Detectors.

Fig. 3b. Data 1 and data 2.

Sf (uθ j , ri(θ j)) = 0 whenever ri(θ j) � ρ(θ j) − 1 so that there is not as much effective data in this particular scheme as in
Fig. 2.

Data 2: θ j = 2π( j − 1)/300, j = 1, . . . ,300, and ri(θ j) = (ρ(θ j) − 1) + 2i/300, i = 1, . . . ,299. In this case for each θ j the
sampling in the r variable is uniform over the interval ρ(θ j) − 1 � r � ρ(θ j) + 1, the total length of which is 2, and size of
the increment ri+1(θ j) − ri(θ j) = 2/300 is independent of θ j just as in the case of Fig. 2. This should be taken into account
when viewing the image of this data. Apparently the amount of effective data in this particular scheme is the same as that
in Fig. 2.

Figure 4. In this numerical experiment the of detectors ξ were somewhat randomly placed according to the following
scheme:

ξ(θ j) = (a j cos θ j, sin θ j), θ j = 2π( j − 1)/300, j = 1, . . . ,300, and the coefficients a j are independent pseudo random
variables uniformly distributed on the interval 1 � a j � 2.

As in the case of Fig. 1 we present the corresponding image and plot of

Kε(x, y) = c
N∑

j=1

hε

(∣∣x − ξ(θ j)
∣∣ − ∣∣y − ξ(θ j)

∣∣)

as a function of y, y ∈ [−1,1] × [−1,1], for x = (0.5,0.5).
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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Fig. 3c. Reconstruction from data 1.

Fig. 3d. Reconstruction from data 2.

Fig. 4a. Detectors.

4.2. Three-dimensional case

In the three-dimensional case, i.e. n = 3, we consider the Gaussian kernel

Kε(x) = 1

(ε
√

π)3
e−|x/ε|2 . (19)

As in the case n = 2 the parameter ε > 0 determines the thickness or resolution of K , the smaller the ε the better the
resolution. The corresponding function h(t) is

hε(t) = 1√
3

(
1 − 2(t/ε)2)e−|t/ε|2 . (20)
Please cite this article in press as: F. Filbir et al., Reconstruction from circular and spherical mean data, Appl. Comput. Harmon. Anal. (2009),
doi:10.1016/j.acha.2009.10.001
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Fig. 4b. Image of Kε (x, y), x = (0.5,0.5).

Fig. 4c. Plot of image in Fig. 4b.

In the case that Ξ is the unit sphere it is natural to parameterize it as u(θ,φ) = (cos θ sin φ, sin θ sin φ, sinφ), 0 � θ < 2π ,
0 � φ � π , and discretize it by taking φ = φ0, . . . , φN where φ j = jπ/N , j = 0, . . . , N . The discretized parameter values θ

should depend in some natural way on φ.

Figure 5. We exhibit the image of (19) and both the image and surface plots of

Kε(x, y) = c
N∑

j=0

{ M j−1∑
m j=0

hε

(|x − u(θm j ,φ j)| − |y − u(θm j ,φ j)|
)}

(21)

as a function of y, y ∈ [−1,1] × [−1,1] × [−1,1], for ε = 0.05 and x = (0.4,−0.4,0.3) so |x| = 0.6403. The function hε(t)
is given by (20). The other parameters are φ j = π j/N , j = 0,1, . . . , N , M j = min{4 j,4(N − j)} and θm j = 2πm j/M j , m j =
0, . . . , M j − 1. Specifically in the figure below N = 32 and the voxel size is 0.025, y takes on the values y = (−1,−1,−1) +
0.025(i1, i2, i3) where i j = 0,1, . . . ,80 for j = 1,2,3.

The first row in the figure below contains the image of Kε(x − y) as a function of y = (y1, y2, y3) followed by the image
and surface plot of Kε(x, y) as a function of y = (y1, y2, y3) in the plane y1 = 0.4. The second and third rows contain the
same sequence plotted in the planes y2 = −0.4 and y3 = 0.3, respectively.

5. Concluding remarks

To obtain reconstructions of the phantom f from its spherical mean data Sf (ξ, r), ξ ∈ Ξ and r > 0, it suffices to have
good approximation of the identity kernels, or point response functions, K(x, y) of the form

K(x, y) =
∫

k
(
x, ξ, |y − ξ |)dμ(ξ), (22)
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Fig. 5. The second and third columns contain the image and surface plots of (21) respectively restricted to the planes mentioned above.

because then
∫

K(x, y) f (y)dy can be computed in terms of the data. Our numerical experiments seem to indicate that by
choosing

k
(
x, ξ, |y − ξ |) = h

(|x − ξ | − |y − ξ |)
where h(t), −∞ < t < ∞, is a solution of

K (y) =
∫

Sn−1

h
(〈y, u〉)dσ(u)

with an appropriate radial function K (y) can lead to good point response functions K(x, y) in (22) for various sets, spherical
and otherwise, of detectors Ξ .
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