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Pole figure measurements with an X-ray texture goniometer equipped with a

point detector are rather time consuming: depending on the angular resolution

to be recorded, of the order of several hours per pole figure. Conventionally, the

pole hemisphere is scanned along latitudinal small circles according to a regular

grid of constant step sizes in both the azimuthal and the polar angle. In the case

of sharp textures an adaptive successive local refinement strategy of the pole

hemisphere may offer a better performance in less time. Then the measurement

positions of the grid are highly irregularly distributed over the pole hemisphere.

To avoid erratic movements when turning the specimen, the scanning order is

optimized by means of resolving a travelling salesman problem such that the

total travelling time is minimized. Several algorithms are described resolving the

travelling salesman problem with respect to the irregular grid to be applied for

each pole figure and for each step of successive refinement. A practical

application to pole figure measurements exposes total savings of about 1/8

compared to the conventional scanning order. Successive local refinement of the

experimental design and optimization of the order of its measurement positions

are well suited to the purpose of controlling a texture goniometer.

1. Introduction
To analyse crystallographic preferred orientation it has been

common practice in many laboratories to measure experi-

mental pole intensities with an X-ray texture goniometer with

a point detector. These experiments are a less costly alter-

native to much more involved experiments including X-ray or

neutron diffraction intensities to be recorded with area

detectors or electron backscatter diffraction to be recorded

with an electron microscope. The major disadvantage is that it

usually takes hours to measure a single pole figure depending

on the required angular resolution of the pole sphere, and that

usually several pole figures are required to calculate a

reasonable approximation of the orientation probability

density function (ODF) representing the statistical distribu-

tion of crystallographic orientations in terms of volume

portions of crystallites.

Understanding that pole figures are discrete counterparts of

the totally geodesic Radon transform of the orientation

probability density function (Schaeben et al., 2001; Bernstein

& Schaeben, 2005; Bernstein et al., 2009) and applying fast

Fourier methods on SOð3Þ and S
2 � S

2 to resolve the inverse

Radon problem (Hielscher et al., 2010, 2008; Hielscher &

Schaeben, 2008) as encoded in the MATLAB (The Math-

Works Inc., Natick, MA, USA) toolbox MTEX for texture

analysis (Bachmann et al., 2010), it became feasible to calcu-

late intermediate ODFs during the actual measurements. Thus

it became possible to optimize the gain of information

acquired per unit time by successively adjusting the experi-

mental design of pole figure measurements to the progress of

the experiment itself. In particular, it has been suggested to

successively refine an initially coarse regular spherical grid

only locally where additional measurements may provide the

most, essentially new information with respect to a grid of

better resolution (Schaeben et al., 2007). While there the focus

was on the successive refinement itself and on the numerical

performance of MTEX when processing pole intensities

corresponding to a highly irregular spherical grid, here we

elaborate on optimizing the scanning order to minimize the

total experimental time. Since the time period to record the

diffracted intensity at a specific position of the grid is user

defined and constant for one experiment, only the total time

needed to turn the specimen successively from one to the next

measurement position through all positions of the grid can be

minimized. In this way, our contribution (Schaeben et al.,

2007) is being completed now.

While diffraction intensities have conventionally been

scanned on a regular grid according to a ‘canonical’ order of

measurement positions along latitudinal small circles, the

adaptive refinement strategy yields largely irregular, locally

refined grids, where such a ‘canonical’ order of measurement

positions may cause erratic movements of the sample stage,

wasting experimental time. Thus we aim to optimize the

scanning order for those locally refined grids by minimizing

the total ‘travelling’ time taken to travel through all

electronic reprint



measurement positions for each crystallographic form at each

level of adaptive refinement. The order of measurement

positions is actually optimized by solving a travelling salesman

problem constrained by the constructive design of the sample

stage turning the specimen. Observations justify the assump-

tion that the time spent between two successive measurement

positions depends roughly linearly on the movement of the

sample stage of the texture goniometer. Then minimizing the

total time of the experimental tour results in the minimum

total experimental time. The successive refinement strategy

itself and the optimization of the scanning order presented

here are apt for step scans, whereas the counterpart of

continuous scans or the use of area detectors leaves some

difficulties still to be resolved. We also would like to refer the

reader to our recent complementary publication (Bachmann

et al., 2012).

The rest of our paper is organized as follows. The problem is

properly stated in x2. x3 is dedicated to approaches to resol-

ving the travelling salesman problem. x4 provides details of an

additional weighting of measurements for the numerical esti-

mation of an ODF if the measurement positions are largely

unevenly distributed on the pole sphere. An experiment

applying this approach and a comparison of several numerical

methods to resolve the travelling salesman problem is

presented in x5. All computations have been carried out with

the MATLAB toolbox MTEX 3.3.0 for texture analysis. The

final section provides some conclusions and perspectives.

2. Statement of problem

An ODF is usually computed from experimental pole figure

intensities after a diffraction experiment with a texture goni-

ometer has been completed. Schaeben et al. (2007) suggested a

novel experimental strategy applying adaptive successive

refinement of measurement positions in the course of the

experiment. The logical steps of this procedure are summar-

ized as follows.

Step 1: Select crystallographic forms for which pole figure

intensities are to be measured.

Step 2: Define an initial experimental design as an actual

grid, i.e. define

(a) an initial unique regular spherical grid or

(b) an initial unique spherical resolution and generate a

corresponding approximately uniform grid for all crystal-

lographic forms selected in step 1.

Step 3: Record diffraction intensities for all crystallographic

forms at the positions of the actual grid.

Step 4: Estimate an intermediate ODF from all actually

measured pole figure intensities, applying the inversion

method of MTEX (Hielscher & Schaeben, 2008).

Step 5: Terminate if the refinement criteria are satisfied, i.e.

the intermediate ODF exposes no gain of information

compared to the previous refinement step or a certain angular

resolution is reached; otherwise continue.

Step 6: Generate a new preliminary grid for each crystal-

lographic form of approximately twice the spherical resolu-

tion, i.e. increase the preliminary number of positions to be

measured by a factor of four, by intertwining additional

positions in between the positions of the previous grids.

Step 7: Evaluate fitted pole figure intensities based on the

intermediate ODF at the new measurement positions of the

preliminary grid of each crystallographic form.

Step 8: Dismiss measurement positions of the preliminary

grid where the local adaptive refinement criterion is not

satisfied, i.e. where fitted pole figure intensities are smaller

than a user-defined threshold; set the preliminary grid with the

remaining measurement positions as the actual grid and

continue with step 3.

The criteria to terminate in step 5 may also refer to

expectation, to experience or to technical limitations of the

goniometer. More involved criteria, e.g. evaluation of the

spherical Laplacian, may be used for the actual refinement in

step 6. Note that in step 6 we avoid generating new

measurement positions that have already been part of the

previous scan. Steps 6–8 encode the updating of the experi-

mental design. This automated adaptive control largely

reduces the total number of measurement positions and thus

saves a large amount of measurement time without loss of

information, especially for sharp textures (Schaeben et al.,

2007).

It is emphasized that the locally refined grids to be

measured at each refinement step are highly irregular. Scan-

ning these irregularly arranged measurement positions

according to a random or generic sequence, e.g. recording

diffraction intensities according to latitudinal small circles as

usual, would be a large waste of experimental time in most

cases. The order of the measurement positions matters, and an

optimized sequence will considerably reduce the total

experimental time. Since the order of measurement positions

does not affect the time taken to record diffracted intensities,

the optimum measurement sequence is defined such that the

total time required to move the specimen is minimized. The

problem to determine the optimum order of measurement

positions is a travelling salesman problem (TSP), where the

length of the tour is measured in terms of time, subject to

constraints of the movements of the specimen due to the

constructive design of the sample stage of the texture goni-

ometer.

3. Resolving the travelling salesman problem

The objective of a TSP is to minimize the total travelling time

of a salesman who travels from his starting location visiting

given locations exactly once and returns back to his starting

position. This problem has been well studied in operations

research and provides a classical example for a notoriously

NP-hard (nondeterministic in polynomial time hard) problem

of combinatorial optimization.

In our application the locations are the measurement

positions with respect to an actual grid, and the travelling

distance of any two positions is provided by the corresponding

time required to move the sample stage of the texture goni-

ometer. Thus we analyse next the feasible movements of the

sample stage, then briefly summarize common methods to
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numerically resolve the TSP, and finally turn our attention to

an appropriate method for our specific application to control a

texture goniometer. For a more detailed introduction to and

reviews of the TSP and methods of its resolution the reader is

referred to the books by Gutin & Punnen (2002) and

Applegate et al. (2011).

3.1. Implications of the sample stage: goniometer metric

Conventional X-ray diffractometers commonly use a cradle

with four-circle Euler geometry to turn the specimen mounted

on the sample stage. Step motors fully and automatically

control the four goniometer angles ð2�; !; ’; �Þ of the cradle.

The setup of the goniometer angles we refer to throughout this

communication is sketched in Fig. 1. The angle 2� 2 ½0; ��
usually refers to the Bragg diffraction geometry, i.e. the crys-

tallographic form of a pole figure to be measured, and the

angles ! 2 ½0; �=2�, ’ 2 ½0; 2�Þ and � 2 ½0; �=2� control the

rotation of the coordinate system of the specimen relative to

the coordinate system of the goniometer, i.e. the measurement

positions in terms of specimen directions.

Let us denote by xg, yg, zg the axes of the goniometer fixed

coordinate system and by xs, ys, zs the axes of the specimen

fixed coordinate system. Then any direction r can be repre-

sented with respect to both coordinate systems as

r ¼ rð1Þg xg þ rð2Þg yg þ rð3Þg zg ¼ rð1Þs xs þ rð2Þs ys þ rð3Þs zs ð1Þ

by goniometer coordinates rg ¼ ðrð1Þg ; rð2Þg ; rð3Þg Þ> and specimen

coordinates rs ¼ ðrð1Þs ; rð2Þs ; rð3Þs Þ>, where the superscript >
denotes the transpose. Furthermore we denote a rotation

about an axis g 2 S
2 through an angle � by Rgð�Þ 2 SOð3Þ.

As illustrated in Fig. 1, we assume that the X-ray beam is

directed along yg with respect to the coordinate system of the

goniometer. A point detector is placed in the ygzg plane of the

coordinate system of the goniometer and the angle 2� specifies

the directional position of the detector to be at Rxg
ð�� 2�Þyg.

Then a plane normal rg 2 S
2 in goniometer coordinates

satisfies the Bragg condition for the described beam and

detector positions if and only if

rg ¼ Rxð�=2 � �Þyg: ð2Þ
The specimen is initially mounted such that the goniometer

and specimen coordinate systems coincide. Then the specimen

is rotated about the axis xs through the angle ! first, followed

by a rotation about the new axis ys through the angle �=2 � �,

and finally about the new axis zs through the angle ’. Hence,

the relation between goniometer coordinates rg 2 S
2 and

specimen coordinates rs 2 S
2 becomes

rs ¼ Rzð’ÞRyð�=2 � �ÞRxð!Þrg: ð3Þ
Thus, we have

rs ¼ Rzð’ÞRyð�=2 � �ÞRxð!ÞRxð�=2 � �Þyg: ð4Þ
It should be noted that this convention may explicitly differ

for different goniometers as it depends on the constructive

design of the cradle. For a different constructive design, e.g.

the kappa geometry (Sands, 2002), goniometer angles have to

be transformed into pole figure coordinates accordingly.

It is convenient to apply the Bragg–Brentano geometry and

set ! ¼ �. Then applying the first rotation of the specimen

through the angle ! causes the specimen coordinates of a

plane normal rg satisfying Bragg’s law to be

Rxð!Þrg ¼ Rxð�ÞRxð�=2 � �Þyg ¼ Rxð�=2Þyg ¼ zs ¼ ð0; 0; 1Þ>:
ð5Þ

Consequently, the relationship between the goniometer angles

and the specimen coordinates of a plane normal satisfying

Bragg’s law simplifies to

rs ¼ Rzð’ÞRyð�=2 � �Þzs ¼ ðcos ’ cos�; sin ’ cos�; sin�Þ>:
ð6Þ

In this way, the goniometer angles �; ’ relate directly to the

polar coordinates of a pole figure. Then we only need to

specify the angles �; ’ to address a measurement position of

the goniometer, i.e. to record the diffracted intensity at the

corresponding direction in a pole figure for a crystallographic

form specified by 2� and !.

We confine ourselves to measuring each pole figure sepa-

rately. Then, for each individual crystallographic form at each

level of refinement, the sequence of actual measurement

positions is given as an ordered list of goniometer angles

ð�i; ’iÞ, i ¼ 1; . . . ; n, referring to the sample stage. The time

required to move the specimen from one measurement

position ri ¼ ð’i; �iÞ to the next riþ1 ¼ ð’iþ1; �iþ1Þ, i ¼ 1; . . . ;
n� 1, is uniquely determined by the speed of the step motors

controlling the angles � and ’ of the cradle.

Observations justify the assumption that for step scanning

the step motors controlling � and ’ move the sample stage

with a speed that is a linear function of time, i.e. neglecting

acceleration we assume that the angular velocities !� and !’

of the step motors are constant. The bias due to acceleration

could be compensated within a penalty term, as most of the

acceleration usually occurs at very small movements when the
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Figure 1
Experimental setup of a pole figure measurement. The black axes denote
the coordinate system of the goniometer and the blue axes the coordinate
system of the specimen. The sample is initially located in the xgyg plane
and the X-ray beam is directed along yg. A detector is positioned in the
ygzg plane at D. Then the sample is rotated about the axis xs through the
angle ! ¼ �, such that the plane normal of a crystal within the sample
satisfying the Bragg condition is located at r. Next the sample is rotated
about the axis ys through the angle � and finally about the axis zs through
the angle ’.
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sample stage will be positioned precisely. The time tðri; riþ1Þ
required to move from position ri :¼ ð�i; ’iÞ to position

riþ1 :¼ ð�iþ1; ’iþ1Þ is composed of the times individually

required by the step motors,

t�ð�i; �iþ1Þ ¼ j�i � �iþ1j !�1
� þ c� ð7Þ

and

t’ð’i; ’iþ1Þ ¼ j’i � ’iþ1j !�1
’ þ c’; ð8Þ

where c� and c’ are some constants typically required for the

precise positioning of the sample stage.

If the step motors can control the tilt of the sample stage

independently, then we have

tðri; riþ1Þ :¼ max½t’ð’i; ’iþ1Þ; t�ð�i; �iþ1Þ�: ð9Þ
Generally, if we allow for simultaneous control of all four

angles of the cradle, i.e. allowing for interchanging of crys-

tallographic forms during the measurements, the time

required to move the sample and the detector extends to

tðri; riþ1Þ :¼ max½t’ð’i; ’iþ1Þ; t�ð�i; �iþ1Þ;
t!ð!i; !iþ1Þ; t2�ð2�i; 2�iþ1Þ�; ð10Þ

where t! and t2� are the times of the step motors for control of

! and 2� accordingly. Nevertheless we avoid such experi-

mental setups here as the size of the TSP would greatly

increase.

3.2. Finding a tour

At this point it is appropriate to formulate a TSP in terms of

graph theory. We call a measurement position ri a node of a

graph. Any two nodes ri; rj of the graph are connected by an

edge, and an edge is weighted by the time required to travel

between those two nodes, which is here the time tðri; rjÞ to

move the cradle analogously. The TSP amounts to the search

of a permutation � of n nodes, for which we want to minimize

Pn�1

i¼1

tðr�ðiÞ; r�ðiþ1ÞÞ þ tðr�ðnÞ; r�ð1ÞÞ: ð11Þ

The solution is called a Hamiltonian circuit, also referred to as

a tour, visiting all nodes connected by edges once and only

once, such that the sum of weights assigned to the edges

traversed is minimum.

Finding a suitable permutation of nodes is in fact an NP-

hard problem. However, the travelling time of the sample

stage from one measurement position ri to another rj satisfies

the properties of a metric TSP, namely

(a) tðri; rjÞ ¼ tðrj; riÞ (symmetry),

(b) tðri; rjÞ � 0 (non-negativity),

(c) tðri; rjÞ � tðri; r‘Þ þ tðr‘; rjÞ (triangle inequality).

The denomination ‘symmetry’ indicates that there is no

difference in moving from ri to rj or the opposite way. The

designation ‘triangle inequality’ states that every direct

movement between two measurement positions is at least as

short as any indirect movement. This is worth mentioning as

the solution of a metric TSP can be approximated in poly-

nomial time with known accuracy of the solution.

Next, we give a brief review of common algorithms with

special emphasis on our specific application.

3.2.1. Exact algorithms. The TSP can be formulated as a 0–1

integer programming problem. The weighted edges of the

graph give rise to a system of linear equations, where the

objective is to determine the edges participating in the tour by

simplex methods. The integer programming formulation is still

an NP-hard problem, but the TSP can be solved exactly.

Recent implementations have been shown to perform well for

problems of the size of 10 000–100 000 nodes (http://www.tsp.

gatech.edu/concorde/benchmarks/bench99.html, http://www.

tsp.gatech.edu/optimal/index.html).

Although the problem sizes of the TSPs to be resolved here

are of the order of 100–10 000 nodes for each crystallographic

form at each step of refinement of the automated adaptive

control, exact solvers do not appeal in terms of computation

times, ranging from seconds for smaller to days for larger

problems. For our application it is instrumental to resolve each

TSP in a reasonable time in order to minimize the total

experimental time. Therefore we focus on heuristic search

algorithms as already addressed by Bland & Shallcross (1989).

3.2.2. Heuristic algorithms. Heuristic algorithms can basi-

cally be distinguished in terms of tour construction and tour

improvement algorithms. While the former address the

problem of finding a good initial tour, the latter aim at

improving a given tour. Often composite methods combining

two or more heuristic procedures perform best. An heuristic

tour may also serve as an initial tour for exact solvers.

Tour construction heuristics are empirically known to

perform well or possess a guaranteed worst-case performance

for a metric TSP.

Nearest neighbour and insertion heuristics start at an arbi-

trary node, and nodes not yet included in the tour are

successively added at the end of the tour or inserted some-

where in the tour, such that the node added is closest to the

current tour or has the cheapest tour increment. Their

advantage is a complexity of Oðn2Þ or, with modifications, even

of Oðn log nÞ. For the cheapest insertion heuristic Rosenkrantz

et al. (1977) showed that the tour produced is at least twice as

good as the optimum tour if the problem is a metric TSP. In

many practical applications these heuristics often behave quite

well (Gutin & Punnen, 2002, cf. p. 392ff) and may be consid-

ered to initialize more sophisticated procedures for large scale

problems.

MST heuristics start with the computation of a minimum

spanning tree (MST). An MST is a tree containing all nodes of

a graph such that each node is connected by a path and edges

participating in the tree are of minimum weight. Using

Kruskal’s or Prim’s (Cheriton & Tarjan, 1976) algorithm the

computation of an MST is of numerical complexity Oðn log nÞ.
The double minimum spanning tree heuristic is a simple

heuristic proceeding as follows. In the first instance compute a

minimum spanning tree of the weighted graph. Then double

each edge of the tree such that all nodes of the resulting

multigraph are of even degree and therefore the multigraph is

Eulerian: that is, the multigraph then contains at least one

cycle traversing all edges. Then traverse the multigraph and
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skip nodes that have already been traversed. For instance,

consider a sequence of nodes ða; b; c; b; dÞ. Since b was

traversed previously we cut short to ða; b; c; dÞ. However, had

we traversed the other way round we would have found the

short cut ða; c; b; dÞ. Although finding the least and best short

cut is an NP-hard problem, skipping traversed nodes without

any further considerations guarantees a resolution that is at

most two times worse than the optimum tour for a metric TSP.

The above-mentioned heuristic is of numerical complexity

Oðn log nÞ.
The Christophides heuristic (Christofides, 1976) is an

improvement of the above procedure in the following way.

Build a minimum spanning tree. Then connect all nodes of odd

degree of the resulting tree by a minimum weight matching

(MWM). An MWM connects every node to exactly one edge,

such that the total weight of the edges is minimum. All nodes

of the resulting graph are then of even degree and can be

traversed as mentioned above. The tour being constructed is at

most 3=2 times worse than the optimum tour. The bottleneck

of this heuristic is the computation of the minimum weight

matching, particularly if the total number of odd nodes is

large. Using Edmond’s algorithm (Edmonds & Karp, 1972) an

MWM can be computed in a time proportional to Oðm4Þ,
where m is the number of odd edges. With more sophisticated

methods the complexity can be reduced to Oðm3Þ or less

(Cook & Rohe, 1999). Exploiting geometry will also consid-

erably speed up the matching procedure. Recent imple-

mentations of the MWM problem have been tackled by Cook

& Rohe (1999) and Kolmogorov (2009). Alternatively, a

greedy heuristic can be employed as a compromise between

numerical complexity and quality of matching. A greedy

method of matching can be realized as follows. Iteratively

match the remaining two closest yet unmatched nodes of odd

degree. This can be done in a time proportional to

Oðm2 logmÞ. Reingold & Tarjan (1981) stated that this greedy

method is far from a perfect matching and is not generally

appealing for a metric TSP as the total length could become

twice as long as the optimum tour at most. With respect to

large scale problems, we follow this approach, which has

already been suggested by Bland & Shallcross (1989), who

achieved sufficiently good results in their practical application.

Tour improvement heuristics attempt to optimize a given

tour locally by flipping subtours of arbitrary size as long as a

better resolution is feasible. Roughly speaking, whenever

possible delete k edges of the actual tour and try to reconnect

the heads and tails of the resulting kþ 1 segments in all

possible ways, such that the new tour will be improved. With

all its variations the method is referred to as the k-opt proce-

dure and goes back to the work of Croes (1958) and Lin (1965).

Considering a tour ðr1; . . . ; ri; riþ1; . . . ; rj; rjþ1; . . . ; rn; r1Þ of n

nodes with the two selected edges ðri; riþ1Þ and ðrj; rjþ1Þ, the

2-opt procedure would construct a better tour if

tðri; rjÞ þ tðriþ1; rjþ1Þ< tðri; riþ1Þ þ tðrj; rjþ1Þ ð12Þ
and the tour would be flipped between the nodes ri and rjþ1,

resulting in ðr1; . . . ; ri; rj; rj�1; . . . ; riþ1; rjþ1; . . . ; rn; r1Þ. A k-opt

procedure with k> 2 can be reduced to a sequence of 2-opt

flips. We apply this kind of flip repeatedly until no gain is

possible. The crucial part of the k-opt method is the search for

suitable flips. It requires the computation of Oðn2Þ combina-

tions to determine the actual best 2-opt local flip, but

successively applying the actual best flip does not necessarily

lead to the best possible solution. Therefore large scale

problems should be tackled in a more reasonable manner. A

way of speeding up the 2-opt procedure is to reduce the

number of edges to be considered for a 2-opt flip operation,

for instance by a tabu search excluding edges of the tour

where we do not expect any tour improvement.

The heuristic proposed by Lin & Kernighan (1973) is a

dynamical generalization of the k-opt procedure, focusing on

finding the most promising sequence of 2-opt flips to improve

the tour. The most promising 2-opt flips of the actual tour are

organized in a search tree. For all flips compiled in the search

tree, new most promising flips are repeatedly computed and

appended till the tree has reached a convenient level of

backtracking. Finally, the best branch of the search tree is

chosen, which is a sequence of flips corresponding to a k-opt

move. The Lin–Kerninghan algorithm has been widely

adapted in applied mathematics, and many variations have

been suggested. The chained Lin–Kerninghan heuristic addi-

tionally introduces random perturbations of the tour. They

may result in more expensive intermediate tours, but the aim

is to prohibit the algorithm from terminating before a better

local optimum has been reached. For more comprehensive

studies the reader is referred to Applegate et al. (2003) and

Helsgaun (2000, 2009).

4. Numerical ODF estimation revisited

Here we present an improved estimator of the unknown ODF

and the unknown normalizing constants for each experimental

pole figure, which is based on a statistical model [Hielscher &

Schaeben, 2008, equation (16)] and a modified least-squares

estimator [Hielscher & Schaeben, 2008, equations (44) and

(45)].

The inventory of the problem is summarized in Table 1,

where Ii, Ibi 2 R
Niþ , Hi � S

2 and ri ¼ ðri1; . . . ; riNi
Þ, rij 2 S

2,

i ¼ 1; . . . ;N, denote the known entities of a diffraction

experiment.

The improvement concerns an adaption to very unevenly

distributed measurement positions of the pole sphere by way

of explicitly considering the area vij ¼ vðrijÞ of the spherical
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Table 1
List of entities involved in the numerical inversion of experimental pole
figures into an orientation probability density function.

Symbol Description

N 2 N Total number of pole figures
Ni 2 N; i ¼ 1; . . . ;N Total number of specimen

directions
Hi ¼ Hð�i; �iÞ � S

2; i ¼ 1; . . . ;N Superposed lattice planes
rij 2 S

2; i ¼ 1 . . . ;N; j ¼ 1; . . . ;Ni Specimen directions
Iij ¼ IðrijÞ 2 Rþ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;Ni Diffraction counts
Ibij ¼ IbðrijÞ 2 Rþ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;Ni Background intensities
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Voronoi cell associated with the measurement position rij of

the Hi-pole sphere, i.e.

fMLS ¼ argmin
PN
i¼1

PNi

j¼1

vij ~��ið f ÞRf ðHi; rijÞ þ Ibij � Iij
� �2

=Iij

n o

þ � k fkH ½SOð3Þ�2; ð13Þ
with

~��ið f Þ ¼
PNi

j¼1

ðIij � Ibij Þ
.PNi

j¼1

Rf ðHi; rijÞ: ð14Þ

5. Numerical results

In this section we present and compare numerical results

resolving the TSP for the adaptive refinement strategy. The

actual diffraction experiment including successive local

refinement has already been reported by Schaeben et al.

(2007). However, optimization of the total experimental time

was not an issue there. Given the successively refined grids we

now resolve the corresponding TSPs numerically with the

methods discussed above and thus compute tours that would

have minimized the total experimental time. The travel times

between two measurement positions are calculated with a

model of the goniometer metric that had been fitted to

experimental travel times of the same type of goniometer.

A molybdenum specimen was analysed with a Siemens

Bruker D5000 diffractometer with a Huber goniometer. The

measurements were successively performed for the four

crystallographic forms f110g, f001g, f211g and f321g,
comprising 19 190 measurement positions in total. Table 2

gives the total number of measurements of each refinement

step. The initial experimental design (refinement step 0)

comprised 54 measurement positions distributed equidistantly

with an angular resolution of 20	. At each refinement step the

angular resolution was doubled, resulting in (refinement step

1) 10	, (refinement step 2) 5	, (refinement step 3) 2.5	 and

finally (refinement step 4) 1.25	 resolution.

We pursue five strategies to optimize the tours of

measurement positions.

(1) We take the initial tour provided by the sequence of

measurement positions as generated with the refinement

algorithms (referred to as Direct). This tour resembles a spiral

tour in latitudinal small circles from the centre to the rim of

the pole figure.

(2) We apply the Christophides heuristic (Christ.).

(3) We apply the 2-opt tour improvement to the Christo-

phides tour (Christ. 2-opt). Both algorithms have been

implemented as pure functions in the MATLAB programming

language and are distributed with the recent version of the

free MTEX 3.3.0 toolbox. The minimum weight matching of

the Christophides heuristic is realized as a greedy heuristic as

discussed above. For the 2-opt tour improvement we take all

possible combinations into account and iteratively choose the

combination with the best gain. These two implementations

are anticipated to be too poor to get sufficiently close to the

optimum solution of a TSP.

(4) We compare the previous implementations with the

more involved chained Lin–Kernighan heuristic available with

the TSP solver Linkern. The Linkern solver (http://www.

tsp.gatech.edu/concorde/) is a sophisticated implementation of

the chained Lin–Kernighan heuristic encoded with efficient

backtracking and random perturbations by Applegate et al.

(2003), and comes along with the Concorde solver (Applegate

et al., 1998, 2001, 2011).

(5) Another comparison concerns the LKH solver of the

chained Lin–Kernighan heuristic. The LKH solver (http://

www.akira.ruc.dk/~keld/research/LKH/) is another implemen-

tation of the chained Lin–Kernighan heuristic by Helsgaun

(2000, 2009), which includes direct 5-opt moves and also

includes an advanced tabu search.

Both TSP solvers were invoked via the MTEX toolbox

within the MATLAB environment through the generation of a

TSPLIB file (Reinelt, 1991). We applied the default settings of

the programs, being well aware of the many more specifica-

tions of the possible runtime behaviour, in particular restric-

tions regarding the running time.

For the model of the goniometer metrics as discussed in x3.1

we used the parameters

!� ¼ 2:45	 s�1; c� ¼ 4:47 s;

!’ ¼ 9:22	 s�1; c’ ¼ 5:1 s:
ð15Þ
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Table 2
Total number of measurements per crystallographic form and refinement
step.

No. at refinement step

Crystal form 0 1 2 3 4 Total

{110} 54 46 243 778 2821 3942
{100} 54 37 154 592 3013 3850
{211} 54 69 374 1178 3480 5155
{321} 54 75 407 1342 4365 6243
Total 216 227 1178 3890 13679 19190

Figure 2
Required experimental time to turn the specimen for certain angular
distances for the step motors moving � (red crosses) and ’ (blue crosses)
and their estimated linear models t̂t� and t̂t’, respectively.
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These parameters have previously been determined experi-

mentally by random movements of the sample stage (Bach-

mann et al., 2012). Fig. 2 shows the experimental time taken to

turn the sample stage and its linear relationship. Considering

19 190 measurements, the constant time between each

measurement of >4:47 s, mostly required for the precise

positioning of the specimen, causes the experiment to take at

least 
24 h.

Table 3 summarizes the estimated travel

times at each refinement step for the five

strategies included in this comparison. The

savings achieved by applying an optimized

tour are about 10–25% per pole figure and

refinement step, summing up to 3 h in

total.

Table 4 shows the computation times

required to resolve the TSP. The compu-

tations were performed on a Linux

machine with an Intel Core i7 CPU 920

with 8 MB cache and 12 GB RAM running MATLAB 2011b.

The computation time includes the time taken to generate a

TSPLIB file for the solvers Linkern and LKH, for which the

full weight matrix was computed. It is emphasized that there

may be a general loss of computational performance when

using a MATLAB implementation compared to a C-code

implementation owing to memory access behaviour. Our 2-opt

implementation is quite naive and could be improved by a

more involved choice of ‘kick’ strategy.

Table 5 summarizes the differences of the tour lengths

together with their computation time compared to the best

known results, which are accomplished by LKH for the

smaller instances and by Linkern for the larger ones. However,

although LKH turned out the best tour, it required notably

more time to run. It seems worthwhile to mention that the

Christophides heuristic performs the better the larger the TSP.

At the last refinement step the Christophides heuristic is only


1% off the best known solution; nevertheless applying a tour

improvement heuristic is still advantageous.

Fig. 3 illustrates the process of the refinement procedure

limited to the estimated travel time and the computation time

for the TSPs. Further costs regarding the process are not

mentioned here. A tour solution of the TSP is displayed in

Fig. 4. Altogether it is a notable benefit to resolve the TSPs.
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Table 3
Numerical results of pure moving time required for a measurement at each refinement step.

Step No. Direct Christ. Christ. 2-opt Linkern LKH

0 216 31 min 31 s 31 min 31 s 30 min 35 s 30 min 35 s 30 min 35 s
1 227 36 min 56 s 31 min 53 s 29 min 55 s 29 min 18 s 29 min 18 s
2 1178 2 h 16 min 54 s 2 h 03 min 13 s 1 h 59 min 01 s 1 h 57 min 56 s 1 h 57 min 42 s
3 3890 6 h 49 min 32 s 6 h 04 min 01 s 5 h 54 min 15 s 5 h 52 min 47 s 5 h 52 min 39 s
4 13679 22 h 10 min 15 s 19 h 59 min 02 s 19 h 48 min 58 s 19 h 46 min 49 s 19 h 46 min 23 s

Figure 3
Cumulative estimated time (in hours) to turn the specimen for the whole refinement procedure organized by optimization method and logical order of
experiment. Each coloured box denotes the pure estimated time required to turn the specimen for each crystallographic form (yellow f110g, pink f100g,
blue f211g and green f321g), while the black boxes (in particular for LKH) denote the computation time needed to resolve the TSP corresponding to the
crystallographic form. Note that LKH gave the best solution, but its computation time depending on its configuration negatively affects its overall
performance.

Table 4
Computation time required per refinement step to resolve the TSPs.

Step No. Direct Christ. Christ. 2-opt Linkern LKH

0 216 <1 s <1 s <1 s <1s <1 s
1 227 <1 s <1 s <1 s <1s <1 s
2 1178 <1 s <1 s <1 s 1 s 10 s
3 3890 <1 s 2 s 24 s 11 s 5 min 3 s
4 13679 6 s 1 min 6 s 16 min 22 s 58 s 1 h 20 min 22 s

Table 5
Difference (%) from the best computation time and moving time for each
refinement step.

Step No. Direct Christ. Christ. 2-opt Linkern LKH

0 216 3.08 3.08 – 0.01 0.02
1 227 26.04 8.80 2.11 – –
2 1178 16.14 4.53 0.98 0.08 –
3 3890 16.03 3.14 0.48 – 1.34
4 13679 12.00 1.04 1.48 – 6.65
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Detailed tables listing all measured pole figures individually

and organized either by refinement step or crystallographic

form are given as supplementary material.1

6. Conclusions

ODF-controlled successive local grid refinement provides an

effective experimental design to measure diffraction pole

figure intensities for the analysis of crystallographic preferred

orientation. In this paper we have shown that the total

experimental time can still be reduced by several hours, if the

measurement positions of the largely irregular refined grids

are appropriately ordered by resolving travelling salesman

problems at each refinement step. Two heuristics for the

resolution of the TSPs have been encoded and added to the

MATLAB toolbox MTEX. They have been applied to a

practical example and the results compare favourably with

randomly or otherwise poorly ordered sequences. They can

readily be used to control texture goniometers with point

detectors.
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