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The inversion of the one–dimensional Radon transform on the rotation group
SO(3) is an ill posed inverse problem which applies to X–ray tomography with
polycrystalline materials. This communication presents a novel approach to the
numerical inversion of the one–dimensional Radon transform on SO(3). Based on
a Fourier slice theorem the discrete inverse Radon transform of a function sam-
pled on the product space S2 × S2 of two two–dimensional spheres is determined
as the solution of a minimization problem, which is iteratively solved using fast
Fourier techniques for S2 and SO(3). The favorable complexity and stability of
the algorithm based on these techniques has been confirmed with numerical tests.

1 Introduction
The Radon transform on SO(3) has recently been recognized to be instrumental for the analy-
sis of crystallographic preferred orientation as it is the cornerstone of the relationship between
a crystallographic orientation density function (ODF) and its experimentally accessible pole
density functions (PDF) cf. [21, 22, 6]. Thus, the major problem to determine a reasonable
ODF from experimental pole intensity data requires the inversion of the Radon transform on
SO(3). This problem has rarely been studied with mathematical rigor even so there are several
ad hoc methods most of which originate in material science, cf. [1, 13, 19, 10].
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1 Introduction

This communication presents a novel mathematically sound approach building on advanced
methods of the inversion of the Radon transform on R3, cf. [15]. The numerical inversion of
the Radon transform on the rotational group SO(3) is an ill posed inverse problem which
requires careful analysis and design of algorithms. Therefore, we formulate a Fourier slice
theorem for the Radon transform on SO(3) which characterizes the Radon transform as a
multiplication operator in Fourier space.

Based on this characterization we define a discrete inverse Radon transform in terms of dis-
crete Fourier transforms on SO(3) and S2× S2, respectively, and their inverses. We define the
inverse discrete Fourier transform of a function sampled on S2 × S2 as the solution of a mini-
mization problem. It is iteratively solved applying fast algorithms for spherical harmonics.

In particular, we present for the first time a fast algorithm for the evaluation of the discrete
inverse Radon transform in SO(3) based on fast Fourier techniques on the two–dimensional
sphere S2 and the rotational group SO(3). More precisely, we rely on the nonequispaced
Fourier transforms on S2 and SO(3), cf. [12, 8].

The paper is organized as follows. After introducing the major special functions on the
domains S2 and SO(3) we define in Section 2 the Radon transform on SO(3) as the integral
operator

R : L2(SO(3))→ L2(S2 × S2), (Rf)(h, r) =
1

2π

∫
G(h,r)

f(g) dg,

where G(h, r) denotes for any h, r ∈ S2 a geodesic in SO(3). In Theorem 2.7 we derive a
representation of the Radon transform R in Fourier space which might be interpreted as an
analogue to the classical Fourier slice theorem of the Radon transform in Rd.

We proceed by defining two finite dimensional approximations of the inverse Radon trans-
form of a function P ∈ C(S2 × S2) given its values at a finite set of nodes Γ ⊂ S2 × S2.
Depending on the number of sample nodes and the dimension of the approximation space we
define the approximations of the inverse Radon transform either as the solution of an interpo-
lation problem or as a the solution of an optimization problem. We end the section by proving
the basic approximation Theorem 2.11 relating the approximation error in L2(SO(3)) to the
approximation error in the Fourier space corresponding to S2 × S2.

Section 3 is devoted to the discrete theory. First we present in Theorem 3.4 a factorization of
the discrete Radon transform on SO(3), i.e., of the operator that evaluates the Radon transform
of a polynomial on SO(3) in a finite set of nodes Γ ⊂ S2×S2. Here we are concerned with sets
of nodes that are of the special form Γ = { (hi, rij) ∈ S2×S2 | i = 1, . . . , N, j = 1, . . . , Ni }.
Based on the factorization of the discrete Radon transform the Algorithms 1 and 2 implement
the direct and the adjoint forward transform with numerical complexityO(NL3 + |Γ|), where
L ∈ N is the maximum polynomial degree used for the approximation of the Radon transform
(cf. Lemma 3.6). This complexity compares favorably to the numerical complexityO(L3 |Γ|)
of the naive algorithm. In Theorem 3.5 the algorithm for the discrete Radon transform is
utilized to derive an algorithm for the computation of the inverse Radon transform that has the
numerical complexity O(NL3 + |Γ|) per iteration. A necessary condition on the structure of
the set of nodes Γ ⊂ S2 × S2 and in particular on the number N ∈ N such that the inverse
problem is well posed is given in Theorem 3.9.
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2 Integral Operators

In Section 4 we check the CGNR as well as the CGNE based algorithm for various com-
binations of polynomial degree and sampling sizes. In all our experiments both algorithms
converge if the polynomial degree is chosen sufficiently large. However, in the case that the
dimension of the approximation space is almost equal to the number of sampling nodes none
of both algorithms converges. A similar result for the case of approximation on the sphere can
be found in [9].

In the last Section 5 we address the application of the Radon transform on SO(3) to texture
analysis. We formulate the practical problem of recovering an orientation distribution func-
tion from diffraction measurements and perform some sample calculations using the CGNR
based algorithm. Since in texture analysis one is interested in the Fourier coefficients of cer-
tain orders we analyze the approximation error for each of the harmonic subspaces separately.
We observe that the maximum harmonic order up to which the Fourier coefficients can be
approximated is in general significantly lower than the theoretic bound given in Theorem 3.9.
Moreover, we observe that the approximation error in a fixed harmonic subspace decreases if
the total polynomial degree of approximation is increased. This observation has a direct con-
sequence for the practical determination of low order Fourier coefficients in texture analysis
since it suggests to choose the total polynomial degree of approximation much higher then the
order of the required Fourier coefficients.

2 Integral Operators
Functions on S2. For the following exposition we refer to [2]. The Legendre polynomials
Pl : [−1, 1] → R, l ∈ N0, are the key special functions in harmonic analysis on the two–
dimensional sphere. They are characterized as classical orthogonal polynomials on the interval
[−1, 1] by the properties

1. Pl is a polynomial of degree l,

2.
∫ 1

−1
Pl(t)Pl′(t) dt = 2

2l+1
δl,l′ for l, l′ ∈ N0 .

By property 2 the Legendre polynomials are normed to Pl(1) = 1, l ∈ N0. The associated
Legendre functions Pkl : [−1, 1]→ R, l, k ∈ N0, k ≤ l, are defined with the derivatives of the
Legendre polynomials

Pkl (t) =

(
(l − k)!

(l + k)!

)1/2

(1− t2)k/2
dk

dtk
Pl(t), t ∈ [−1, 1].

They satisfy for all l ∈ N0, k = 0, . . . , l, the three term recurrence relation

P ll−1(t) = 0, P ll (t) =

√
(2l)!

2ll!
(1− t2)l/2,

Pkl+1(t) = vkl tPkl (t)− wkl Pkl−1(t), t ∈ [−1, 1],

(2.1)

where

vkl =
2l + 1√

(l − k + 1) (l + k + 1)
and wkl =

√
(l − k) (l + k)

(l − k + 1) (l + k + 1)
.
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2 Integral Operators

Let ξ ∈ S2 and let (θ, ρ) ∈ [0, π]× [0, 2π) be its polar coordinates, i.e.,

ξ = (cos ρ sin θ, sin ρ sin θ, cos θ)T.

Then the spherical harmonics given as

Ykl (ξ) =

√
2l + 1

4π
P |k|l (cos θ)eikρ, k = −l, . . . , l, (2.2)

span the harmonic space Harml(S2) = span
{
Y−ll , . . . ,Y ll

}
of all spherical harmonics with

a fixed degree l ∈ N0. Moreover, the spherical harmonics (2.2) satisfy the orthogonality
relationship∫

S2

Ykl (ξ)Yk′l′ (ξ) dξ = δll′δk,k′ ,

and the function system Ykl , l ∈ N0, k = −l, . . . , l, forms an orthonormal basis of L2(S2).
The harmonic spaces Harml(S2), l ∈ N0, provide a complete system of rotational invariant,
irreducible subspaces of L2(S2), i.e.,

L2(S2) = closL2

∞⊕
l=0

Harml(S2).

Let L ∈ N0. Then any function

f ∈
L⊕
l=0

Harml(S2)

is called spherical polynomial of degree L.
For a given function f ∈ L2(S2) we define its Fourier sequence f̂ ∈ `2(I),

I = { (l, k) ∈ Z2 | l ∈ N0, k = −l, . . . , l },
as the sequence of coefficients with respect to the basis Ykl , (l, k) ∈ I , i.e.,

f̂(l, k) =

∫
S2

f(ξ)Ykl (ξ) dξ, (l, k) ∈ I.

Moreover, we define the index set

IL = { (l, k) ∈ Z2 | l = 0, . . . , L, k = −l, . . . , l },
of the Fourier coefficients of the space of spherical polynomials of degree L ∈ N0 which has
the dimension

|IL| = (L+ 1)2.

Definition 2.1. We define the continuous Fourier transform FS2 in L2(S2) as the operator

FS2 : `2(I)→ L2(S2), f̂ 7→
∑

(l,k)∈I

f̂(l, k)Ykl . (2.3)

By Parseval’s theorem the operators FS2 , F−1
S2 are well defined isometries between L2(S2)

and `2(I) and we have for any function f ∈ L2(S2),

F−1
S2 f = f̂ .
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2 Integral Operators

Functions on SO(3). By SO(3) we denote the Lie group of all orthogonal 3× 3 matrices
with determinant one. Setting

J = { (l, k, k′) ∈ Z3 | l ∈ N0, k, k
′ = −l, . . . , l },

we consider a basis system Dkk′

l ∈ L2(SO(3)), (l, k, k′) ∈ J of harmonic functions on SO(3)
following [23]. These functions Dkk′

l , (l, k, k′) ∈ J are called Wigner–D functions and are
defined by the representation properties

Dkk′

l (g) =

∫
S2

Yk′l (g−1ξ)Ykl (ξ) dξ, (l, k, k′) ∈ J, g ∈ SO(3). (2.4)

The Wigner–D functions form an orthogonal basis in L2(SO(3)) with respect to the Haar
measure. In particular, every function f ∈ L2(SO(3)) has a unique series expansion in terms
of Wigner–D functions

f =
∑

(l,k,k′)∈J

(l + 1
2
)

1
2

2π
f̂(l, k, k′)Dkk′

l , (2.5)

with Fourier coefficients f̂(l, k, k′), (l, k, k′) ∈ J , given by the integrals

f̂(l, k, k′) =
(l + 1

2
)

1
2

2π

∫
SO(3)

f(g)Dkk′
l (g) dg.

Note that the Wigner–D functions Dkk′

l are not normalized in the L2–sense but satisfy

∥∥Dkk′

l

∥∥2

L2(SO(3))
=

∫
SO(3)

∣∣∣Dkk′

l (g)
∣∣∣2 dg =

4π2

l + 1
2

,

with the measure on SO(3) normalized to
∫

SO(3)
dg = 8π2.

Let l ∈ N0. Then the harmonic space Harml(SO(3)) of degree l is defined as

Harml(SO(3)) = span
{
Dkk′

l | k, k′ = −l, . . . , l
}
.

For reasons of analogy we call any function f ∈
⊕L

l=0 Harml(SO(3)) a polynomial on SO(3)
of degree L ∈ N0 and correspondingly define the truncated index set

JL = { (l, k, k′) ∈ Z3 | l = 0, . . . , L, k, k′ = −l, . . . , l }.

The dimension of the space of these polynomials is given by

|JL| =
1

3
(L+ 1)(2L+ 1)(2L+ 3).

Similar to the spherical case we introduce the Fourier transform in L2(SO(3)).
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2 Integral Operators

Definition 2.2. The continuous Fourier transform in L2(SO(3)) is defined as the operator

FSO(3) : `2(J)→ L2(SO(3)), f̂ 7→
∑

(l,k,k′)∈J

(l + 1
2
)

1
2

2π
f̂(l, k, k′)Dkk′

l . (2.6)

By Parseval’s theorem the operators FSO(3), F−1
SO(3) are well defined isometries between

L2(SO(3)) and `2(J) and we have for any function f ∈ L2(SO(3))

F−1
SO(3)f = f̂ .

The One–Dimensional Radon Transform on SO(3). The initial Radon transform in-
troduced by Funk [3] and Radon [18] was largely generalized by Helgason, see [4, 5] and the
references therein. For more specific details concerning the Radon transform on SO(3) see
also [14].

Let h, r ∈ S2. Then the set

G(h, r) = {g ∈ SO(3) | gh = r }

of all rotations that map the vector h onto the vector r defines a geodesic in SO(3). Moreover,
for any geodesic G ⊂ SO(3) there is a pair (h, r) ∈ S2 × S2 such that G = G(h, r). The pair
(h, r) is well defined up to the symmetry G(h, r) = G(−h,−r).

Let h, r ∈ S2 and let g0 ∈ G(h, r) be an arbitrary rotation mapping h onto r. Then the
geodesic G(h, r) allows for the parameterization

G(h, r) = {Rotr(ω)g0 ∈ SO(3) | ω ∈ [0, 2π) },

where Rotr(ω) denotes the rotation about the rotational axis r by the rotation angle ω.
We now step to the definition of the one–dimensional Radon transform on SO(3) as a

bounded operator between L2(SO(3)) and L2(S2 × S2). The strict way to do so is to first
define the Radon transform for the class of continuous functions, show that it is bounded with
respect to the L2–norm and then extend it to a bounded operator between L2(SO(3)) and
L2(S2 × S2). However, we only refer to [22] and immediately define the Radon transform in
the Hilbert space setting.

Definition 2.3. The (one–dimensional) Radon transform on SO(3) is defined as the integral
operator

R : L2(SO(3))→ L2(S2 × S2),

(Rf)(h, r) =
1

2π

∫
G(h,r)

f(g) dg, (h, r) ∈ S2 × S2.

For completeness we prove the following Lemma (see also [22]).

Lemma 2.4. Let l ∈ N0 and k, k′ = −l, . . . , l. The Radon transform of the Wigner–D function
Dkk′

l is given by

RDkk′

l (h, r) =
2π

l + 1
2

Yk′l (h)Ykl (r), h, r ∈ S2. (2.7)
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2 Integral Operators

Proof. For arbitrary l ∈ N0, k, k′ = −l, . . . , l we obtain by equation (2.4)

RDkk′

l (h, r) =
1

2π

∫
G(h,r)

Dkk′

l (g) dg

=
1

2π

∫
G(h,r)

∫
S2

Yk′l (g−1ξ)Ykl (ξ) dξ dg

=
1

2π

∫
S2

Yk′l (ξ)

∫
G(h,r)

Ykl (gξ) dg dξ. (2.8)

Since we have for any ξ,h, r ∈ S2 and g0 ∈ G(h, r),

{gξ ∈ S2 | g ∈ G(h, r) } = {Rotr(ω)g0ξ ∈ S2 | ω ∈ [0, 2π) }

the inner integral rewrites as

1

2π

∫
G(h,r)

Ykl (gξ) dg =
1

2π

∫ 2π

0

Ykl (Rotr(ω)g0ξ) dω = Pl(r · g0ξ)Ykl (r).

Here we have applied the spherical mean value theorem (cf. [2, eq. 3.6.15]). Together with
(2.8) and the Funk–Hecke theorem (cf. [2, Th. 3.6.1]) we obtain

RDkk′

l (h, r) =

∫
S2

Yk′l (ξ)Pl(h · ξ)Ykl (r) dξ =
2π

l + 1
2

Yk′l (h)Ykl (r).

As a direct consequence of the above lemma we obtain the following characterization of the
range of the Radon transformR on SO(3).

Lemma 2.5. The range of the Radon transformR is the subspace of all functions P ∈ L2(S2×
S2) that have a Fourier expansion of the form

P =
∑

(l,k,k′)∈J

P̂ (l, k, k′)Yk′l (◦1)Ykl (◦2) (2.9)

with Fourier coefficients P̂ (l, k, k′), (l, k, k′) ∈ J satisfying the summation property∑
(l,k,k′)∈J

(2l + 1)
∣∣∣P̂ (l, k, k′)

∣∣∣2 <∞.
In particular, any function P ∈ RL2(SO(3)) in the range of the Radon transform possesses
the symmetry property

P (h, r) = P (−h,−r), h, r ∈ S2. (2.10)

For the specific subspace in L2(S2 × S2) spanned by the range of the Radon transform we
define the following Fourier transform.
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2 Integral Operators

Definition 2.6. By the operator

FR : `2(J)→ L2(S2 × S2), FRP̂ =
∑

(l,k,k′)∈J

P̂ (l, k, k′)Yk′l (◦1)Ykl (◦2)

we denote the restriction of the Fourier transform in L2(S2 × S2) to the subspace spanned by
functions of the form (2.9).

Next we want to derive an equivalent to the classical Fourier slice theorem for the Radon
transform in Rd. To this end we define the following two operators. The first operator V is
given as

V : `2(J)→ `2(I, L2(S2)), (VP̂ )(l, k) =
l∑

k′=−l

P̂ (l,−k, k′)Yk′l (2.11)

and defines for any sequence P̂ ∈ `2(J) a sequence of functions VP̂ (l, k) ∈ L2(S2), (l, k) ∈ I .
The norm in `2(I, L2(S2)) is given as

‖VP̂‖2
`2(I,L2(S2)) =

∑
(l,k)∈I

‖VP̂ (l, k)‖2
L2(S2) =

∑
(l,k)∈I

∫ π

0

∫ 2π

0

∣∣∣VP̂ (l, k)(θ, ρ)
∣∣∣2 dρ sin θ dθ.

The second operatorM : `2(J)→ `2(J) we define as the multiplication operator

Mf̂(l, k, k′) =
π√

2l + 1
f̂(l, k, k′), (l, k, k′) ∈ J. (2.12)

Theorem 2.7 (Fourier slice). The Radon transform R on SO(3) is a multiplication operator
in Fourier space

R = FRMF−1
SO(3). (2.13)

Moreover, we have the decomposition

FR = FS2V , (2.14)

which finally leads to

R = FS2VMF−1
SO(3).

Proof. The first decomposition (2.13) is a direct consequence of Lemma 2.4. In order to prove
the decomposition (2.14) we consider an arbitrary Fourier sequence P̂ ∈ `2(J) and verify

FS2VP̂ =
∑

(l,k)∈I

(VP̂ )(l, k)Ykl =
∑

(l,k,k′)∈J

P̂ (l,−k, k′)Yk′l Ykl

=
∑

(l,k,k′)∈J

P̂ (l, k, k′)Yk′l Ykl = FRP̂ .
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2 Integral Operators

The decomposition of the Radon transform R in Theorem 2.7 can be expressed in a com-
mutative diagram as

L2(SO(3))
R−−−→ L2(S2 × S2)xFSO(3)

xFR
`2(J )

M−−−→ `2(J ).

(2.15)

The Inverse Radon Transform. By Lemma 2.4 the inverse Radon transform

R−1 : L2(S2 × S2)→ L2(SO(3))

is an unbounded operator and hence its numerical evaluation is an ill posed problem. Reg-
ularization of the ill posed problem means to approximate the unbounded operator R−1 by
a bounded one. For this purpose we first define two approximations of the inverse Fourier
transform F−1

R .
The next result concerns minimization problems in discrete norms in `2, where `2 is either

`2(I) or `2(J). Therefore, we define the weighted norm ‖w‖W , w ∈ `2 for any nonnegative
operatorW : `2 → `2 called weight as

‖w‖W = ‖W1/2w‖2 .

Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0. Then we define for any
continuous function P ∈ C(S2 × S2) the set of Fourier sequences

ΩL,Γ(P ) = {ω ∈ `2(J) |ω(l, k, k′) = 0 for l > L and
(FRω)(h, r) = P (h, r) for (h, r) ∈ Γ }.

Lemma 2.8. Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0 such that for any
P ∈ C(S2 × S2) the set ΩL,Γ(P ) is not empty. Then the minimization problem

ω̃ = argmin
ω∈ΩL,Γ(P )

‖ω‖2
W (2.16)

has a unique solution for any positive operatorW and defines a linear, bounded operator

T EL,Γ : C(S2 × S2)→ `2(J), T EL,ΓP = ω̃. (2.17)

Proof. Existence and uniqueness of a solution of minimization problem (2.16) follows from
the fact that ‖◦‖2

W is a strictly convex functional on the convex set ΩL,Γ(P ). Since the set
ΩL,Γ(P ) is finite dimensional the solution of the minimization problem (2.16) coincides with
the solution of the corresponding normal equations of second kind (cf. [20]). In particular, the
solution depends linearly on the given continuous function P . Since the operator T EL,Γ is finite
dimensional it is bounded.
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2 Integral Operators

Replacing the normal equations of second kind by normal equations of first kind the proof
of the next lemma is analogous to the previous proof.

Lemma 2.9. Assume that a finite set of nodes Γ ⊂ S2 × S2 and a polynomial degree L ∈ N0

are chosen such that for any P ∈ C(S2 × S2) the set of Fourier coefficients ΩL,Γ(P ) contains
at most one element. Then the minimization problem

ω̃ = argmin
{ω∈`2(J) |ω(l)=0 for l>L }

∥∥(FRω)(Γ)− P (Γ)
∥∥2

2
+ ‖ω‖2

W (2.18)

has a unique solution for any positive operatorW and defines a linear, bounded operator

T RL,Γ : C(S2 × S2)→ `2(J), T RL,ΓP = ω̃. (2.19)

Obviously a necessary condition for the existence of the first operator is |Γ| ≤ |JL| whereas
the existence of the operator T RL,Γ requires |Γ| ≥ |JL|. In the general case of arbitrarily scat-
tered nodes Γ one can expect the operators T EL,Γ and T RL,Γ to be well defined if |Γ| < |JL| or
|Γ| > |JL|, respectively. A more precise result depending on the set of nodes Γ will be given
in Lemma 3.9.

Definition 2.10. Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0 be a polynomial
degree. If the operator T EL,Γ exists then we construct the operator

RE
L,Γ : C(S2 × S2)→ C(SO(3)), RE

L,Γ = FSO(3)M−1T EL,Γ,

and if the operator T RL,Γ exists then we construct the operator

RR
L,Γ : C(S2 × S2)→ C(SO(3)), RR

L,Γ = FSO(3)M−1T RL,Γ.

The operators RE
L,Γ and RR

L,Γ are finite dimensional approximations of the inverse Radon
transform R−1 which we will use for the numerical inversion. They share the characteristic
that for any function P ∈ C(S2 × S2) the functions RE

L,ΓP and RR
L,ΓP , respectively, depend

only on the values of the function P at the set of nodes Γ ⊂ S2 × S2. The subscript L ∈ N0

indicates that the range of both operators contains only functions of polynomial degree L. The
following theorem gives an estimate on the quality of approximation of the operators RE

L,Γ

andRR
L,Γ.

Theorem 2.11. Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0 be a polynomial
degree such that the operatorRE

L,Γ is well defined. Then we have for any P ∈ C(S2 × S2) the
equality

‖R−1P −RE
L,ΓP‖L2(SO(3)) = ‖P̂ − T EL,ΓP‖M−2 , (2.20)

whereM is the multiplication operator defined in (2.12).
If the set of nodes Γ and the polynomial degree L are chosen such that the operatorRR

L,Γ is
well defined then an analogous equality is satisfied, i.e.,

‖R−1P −RR
L,ΓP‖L2(SO(3)) = ‖P̂ − T RL,ΓP‖M−2 . (2.21)
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3 Discrete Operators

Proof. Since FSO(3) is an isomorphism we have by Theorem 2.7

‖R−1P −RE
L,ΓP‖L2(SO(3)) = ‖FSO(3)M−1F−1

R P −FSO(3)M−1T EL,ΓP‖L2(SO(3))

= ‖M−1F−1
R P −M−1T EL,ΓP‖2

= ‖P̂ − T EL,ΓP‖M−2 .

The second equality follows analogously.

3 Discrete Operators
This section is devoted to the discrete theory. Our main goal is to develop a fast numerical
algorithm for the evaluation of the operators RE

L,Γ and RR
L,Γ. Therefore we first introduce

discrete versions of the Fourier transforms in L2(S2) and inRL2(SO(3)), respectively.

Discrete Fourier Transforms. Let P ∈
⊕L

l=0 Harml(S2) be a spherical polynomial of
degree L ∈ N0. Then we use for the finite Fourier sequence P̂ of P the vector notation
P̂ ∈ CIL with P̂l,k = P̂ (l, k) for (l, k) ∈ IL, where the length of the vector is |IL|. According
to [8], we consider the evaluation of the function P at a list of arbitrary nodes given its vector
of Fourier coefficients.

Definition 3.1. [Discrete spherical Fourier transform] Let ξ = (ξ1, . . . , ξN) be a vector of
N ∈ N arbitrary nodes ξj ∈ S2 and let P̂ ∈ CIL be a vector of Fourier coefficients associated
to a spherical polynomial of degree L ∈ N0. Then the linear operator

FL,ξ : CIL → CN , [FL,ξP̂]j =
∑

(l,k)∈IL

P̂l,kYkl (ξj), j = 1, . . . , N,

is called discrete spherical Fourier transform. Its adjoint operator

FH
L,ξ : CN → CIL , [FH

L,ξc]l,k =
N∑
j=1

cjYkl (ξj), (l, k) ∈ IL,

is called adjoint discrete spherical Fourier transform.

A naive implementation of the discrete spherical Fourier transform and of its adjoint trans-
form for N ∈ N arbitrary nodes and for polynomial degree L ∈ N0 requires O(NL2) flops.
However, there exist much faster algorithms. The algorithm described in [12] and [7] calcu-
lates both transforms in an approximate way with numerical complexity of O(L2 log2 L+N)
flops. We refer to this algorithm as the nonequispaced fast spherical Fourier transform
(NFSFT). An implementation of this algorithm is availably as a part of the NFFT–library
[8].

Analogously to the spherical case, we use for the Fourier sequence f̂ of a polynomial f ∈
L2(SO(3)) of degree L ∈ N0 the vector notation f̂ ∈ CJL , f̂l,k,k′ = f̂(l, k, k′), (l, k, k′) ∈ JL.
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3 Discrete Operators

Definition 3.2. [Discrete Fourier transform on SO(3)] Let g = (g1, . . . ,gN) be a vector of
N ∈ N arbitrary nodes gi ∈ SO(3) and let f̂ ∈ CJL be the vector of Fourier coefficients
associated to a polynomial f ∈ L2(SO(3)) of degree L ∈ N0. Then the linear operator

FL,g : CJL → CN , [FL,g f̂ ]j =
∑

(l,k,k′)∈JL

(l + 1
2
)

1
2

2π
f̂l,k,k′D

kk′

l (gj), j = 1, . . . , N,

is called discrete Fourier transform on SO(3). Its adjoint operator

FH
L,g : CN → CJL , [FH

L,gc]l,k,k′ =
(l + 1

2
)

1
2

2π

N∑
j=1

cjDkk′
l (gj),

(l, k, k′) ∈ JL, is called adjoint discrete Fourier transform on SO(3).

We notice that a naive implementation of the discrete Fourier transform on SO(3) and of
its adjoint transform for N ∈ N arbitrary nodes and for a polynomial degree L ∈ N0 has
the numerical complexity of O(NL3) flops. An O(L4) algorithm for the case of regular
aligned nodes with N = O(L3) was proposed in [11], based on a separation of variables. This
algorithm was generalized in [17] to an O(L3 log2 L + N) algorithm that works for arbitrary
nodes, based on the nonequispaced fast Fourier transform (cf. [16]).

For our purposes we introduce a discrete version FL,Γ of the operator FR as defined in
Definition 2.6 with respect to a finite set of nodes Γ ⊂ S2 × S2. Therefore, we abbreviate
the Fourier sequence P̂ of a polynomial P ∈ RL2(SO(3)) of degree L ∈ N0 by the vector
P̂ ∈ CJL , P̂l,k,k′ = P̂ (l, k, k′), (l, k, k′) ∈ JL.

Definition 3.3. Let L ∈ N0 be a certain polynomial degree and let Γ ⊂ S2 × S2 be a finite set
of nodes of the form

Γ =
(
(h1, r1,1), (h1, r1,2), . . . , (h1, r1,N1),

(h2, r2,1), (h2, r2,2), . . . , (h2, r2,N2), . . . , (hN , rN,NN )
)
,

where N,Ni ∈ N, i = 1, . . . , N . Then we define the operator FL,Γ as

FL,Γ : CJL → CΓ, [FL,Γw]ij =
∑

(l,k,k′)∈JL

wl,k,k′Yk
′

l (hi)Ykl (rij), (3.1)

with i = 1, . . . , N , j = 1, . . . , Ni, and call

FH
L,Γ : CΓ → CJL , [FH

L,Γu]l,k,k′ =
N∑
i=1

Ni∑
j=1

ui,jYk
′

l (hi)Ykl (rij), (3.2)

with (l, k, k′) ∈ JL, its adjoint operator.

12



3 Discrete Operators

Discrete Fourier Slice Theorem. Now we are going to give a discrete analogue to the
Fourier slice Theorem 2.7 by decomposing the operator FL,Γ into N independent discrete
spherical Fourier transforms and an operator that is almost diagonal and acts separately on the
harmonic spaces.

The sum in (3.1) can be rewritten in the following way:

[FL,Γw]i,j =
L∑
l=0

l∑
k=−l

vi,l,kYkl (rij) = [FL,rivi]j, i = 1, . . . , N, j = 1, . . . , Ni (3.3)

with

vi,l,k =
l∑

k′=−l

wl,−k,k′Yk
′

l (hi), i = 1, . . . N, (l, k) ∈ IL. (3.4)

Here we have used the vector notation vi = (vi,l,k)(l,k)∈IL ∈ CIL , i = 1, . . . , N . The de-
composition of the operator FL,Γ will be based on the following matrices. We define the
permutation matrix Π ∈ CN |IL|×N |IL| by

[Πx]i,(l,k) = x(l,−k),i,

where x ∈ C|IL|N . Furthermore, we define the matrices Vl ∈ CN×(2l+1), l = 0, . . . , N , and
V ∈ C|IL|N×|JL| as

Vl = (Ykl (hi))i=1,...,N, k=−l,...,l, V = ([Vl]i,k̃′δl,l̃δk,k̃)((l,k)∈IL,i=1,...,N),((l̃,k̃,k̃′)∈JL).

The matrices Vl, l = 0, . . . , L, and V may also be written as

Vl =

Y
−l
l (h1) . . . Y ll (h1)

... . . . ...
Y−ll (hN) . . . Y ll (hN)

 , V =

I1 ⊗V0

. . .
I2L+1 ⊗VL

 ,

where the matrices I2l+1, l ∈ N0 are the identity matrices of C(2l+1)×(2l+1) and ⊗ denotes the
Kronecker product.

Finally, we assume the set of nodes Γ ⊂ S2×S2 to be indexed as specified in Definition 3.3
and additionally introduce the notation ri = (ri,1, . . . , ri,Ni).

Theorem 3.4. The operator FL,Γ satisfies the decomposition

FL,Γ =

FL,r1

. . .
FL,rN

ΠV. (3.5)

Proof. Let L ∈ N0 and let Γ ⊂ S2 × S2 be a set of nodes as specified in Definition 3.3. Then
we have, for any vector of Fourier coefficients w ∈ CJL , the equality

[ΠVw]i,(l,k) = [Vw](l,−k),i =
l∑

k′=−l

wl,−k,k′Yk
′

l (hi) = vi,l,k, i = 1, . . . , N, (l, k) ∈ IL.

13



3 Discrete Operators

Thus we obtain for any j = 1, . . . , Ni,

[FL,rivi]j =
∑

(l,k)∈IL

[vi]l,kYkl (rij)

=
∑

(l,k,k′)∈JL

wl,−k,k′Yk
′

l (hi)Ykl (rij)

=
∑

(l,k,k′)∈JL

wl,k,k′Yk
′

l (hi)Ykl (rij) = [FL,Γw]ij.

The decomposition of the operator FL,Γ leads to a fast algorithm for its computation. Let
w ∈ CJL and (ρi, θi) ∈ [0, 2π) × [0, π] be the polar coordinates of the node hi ∈ S2, i =
1, . . . , N . Then the vectors vi ∈ CIL , i = 1, . . . , N , given in (3.4) have, for (l, k) ∈ IL, the
form

[vi]l,k =

√
2l + 1

4π

l∑
k′=−l

wl,−k,k′P |k
′|

l (cos θi)e
ik′ρi

=

√
2l + 1

4π
wl,−k,0P0

l (cos θi)

+

√
2l + 1

4π

l∑
k′=1

(
wl,−k,k′e

ik′ρi + wl,−k,−k′e
−ik′ρi

)
Pk′l (cos θi).

Utilizing the three term recurrence relation (2.1) of the associated Legendre polynomials, Al-
gorithm 1 presents an implementation for the calculation of the vectors vi ∈ CIL given in
(3.4) with numerical complexity of O(L3) flops. In order to reduce memory consumption
Algorithm 1 does not precompute all values P k′

l (cos(θi)) but organizes the recurrence scheme
such that only four values of P k′

l have to kept in memory. Together with Theorem 3.4 we
conclude that utilizing the NFSFT for the calculation of FL,rivi, i = 1, . . . , N , i. e. the sum
(3.3), we obtain the overall complexity of O(NL3 + |Γ|) flops for the computation of FL,Γw.

Let u = (uT1 , . . . ,u
T
N)T , ui ∈ CNi , i = 1, . . . , N . For the adjoint operator FH

L,Γ we rewrite
(3.2) in the following way

[FH
L,Γu]l,k,k′ =

N∑
i=1

ṽi,l,−kYk
′

l (hi), (l, k, k′) ∈ JL, (3.6)

with

ṽi,l,k =

Ni∑
j=1

ui,jYkl (ri,j) = FH
L,ri

ui, i = 1, . . . , N, (l, k) ∈ IL.

Again we use the vector notation ṽi = (ṽi,l,k)(l,k)∈IL ∈ CIL , i = 1, . . . , N , and mention that,
given the vectors ui ∈ CNi , the vectors ṽi, i = 1, . . . , N , can be computed by N adjoint
NFSFTs with the numerical complexity of O(NL2 log2 L+ |Γ|) flops.
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3 Discrete Operators

It remains to compute (3.6). Therefore, we define the vectors w̃i ∈ CJL , i = 1, . . . , N , as

w̃i
l,k,k′ = ṽi,l,−kYk

′
l (hi) =

√
2l + 1

4π
[ṽi]l,−ke

−ik′ρiP |k
′|

l (cos θi), (l, k, k′) ∈ JL, (3.7)

the computation of which is implemented in Algorithm 2. Performing this algorithm N times
and summing up the vectors w̃i ∈ CJL , i = 1, . . . , N , results in the numerical complexity of
O(NL3) flops. Hence, we have the overall numerical complexity of O(NL3 + |Γ|) flops for
the application of the adjoint operator FH

L,Γ.
Summarizing the above we obtain the following result.

Theorem 3.5. Let L ∈ N0 be a polynomial degree, and let Γ ⊂ S2 × S2 be a set of nodes
as specified in Definition 3.3. Then, for any vector w ∈ CJL and any vector u ∈ CΓ, the
approximative computation of FL,Γw and FH

L,Γu using the NFSFT and the Algorithms 1 and
2, respectively, has the complexity of O(NL3 + |Γ|) flops, whereas a naive algorithm has the
complexity of O(|Γ|L3) flops.

Algorithm 1: Computation of vi = [ΠVw]i ∈ CIL given in (3.4).
input : w ∈ CJL

ρi ∈ [0, 2π)
θi ∈ [0, π] /* polar coordinates of the nodes hi ∈ S2

*/

output: vi = [ΠVw]i ∈ CIL

Pdiag ← 1 /* Add P 0
0 (cos(θi)). */

vi,(0,0) ← w0,0,0

P ′ ← Pdiag; P ′′ ← 0 /* Add P 0
l (cos(θi)), 0 < l ≤ L. */

for l← 1, . . . , L do
P ← 2l−1

l
cos θi · P ′ − l−1

l
· P ′′

P ′′ ← P ′; P ′ ← P
for k ← −l, . . . , l do

vi,(l,k) ← wl,−k,0 · P
end

end

for k′ ← 1, . . . , L do

Pdiag ← Pdiag ·
q

2k′−1
2k′ sin θi /* Add Pk

′
k′ (cos(θi)), 0 < k′ ≤ L. */

for k ← −k′, . . . , k′ do
vi,(k′,k) ← vi,(k′,k) +

“
wk′,−k,k′eik′ρi + wk′,−k,−k′e−ik′ρi

”
· Pdiag

end

P ′ ← Pdiag; P ′′ ← 0 /* Add Pk
′

l (cos(θi)), (l, k′) ∈ IL, 0 < k′ < l. */
for l = k′ + 1, . . . , L do

P ← 2l−1√
l2−k′2

cos θi · P ′ −
r

(l−k′−1)(l+k′−1)

l2−k′2 · P ′′

P ′′ ← P ′; P ′ ← P
for k = −l, . . . , l do

vi,(l,k) ← vi,(l,k) +
“
wl,−k,k′eik′ρi + wl,−k,−k′e−ik′ρi

”
· P

end
end

end

for (l, k) ∈ IL do vi,(l,k) ←
q

2l+1
4π

vi,(l,k)
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3 Discrete Operators

Algorithm 2: Computation of w̃i ∈ CJL from ṽi ∈ CIL as defined in (3.7).
input : ṽi ∈ CIL

ρi ∈ [0, 2π)
θi ∈ [0, π] /* polar coordinates of the nodes hi ∈ S2

*/

output: w̃i ∈ CJL

Pdiag ← 1 /* Comp. of P 0
0 (cos(θi)). */

w̃i
0,0,0 ← ṽi,(0,0)

P ′ ← Pdiag; P ′′ ← 0 /* Comp. of P 0
l (cos(θi)), 0 < l ≤ L. */

for l← 1, . . . , L do
P ← 2l−1

l
cos θi · P ′ − l−1

l
· P ′′

P ′′ ← P ′; P ′ ← P
for k ← −l, . . . , l do

w̃i
l,k,0 ← ṽi,(l,−k) · P

end
end

for k′ ← 1, . . . , L do

Pdiag ← Pdiag ·
q

2k′−1
2k′ sin θi /* Comp. of Pk

′
k′ (cos(θi)), 0 < k′ ≤ L. */

for k = −k′, . . . , k′ do
w̃i
k′,k,k′ ← ṽi,(k′,−k)e

−ik′ρi · Pdiag

w̃i
k′,k,−k′ ← ṽi,(k′,−k)e

ik′ρi · Pdiag

end

P ′ ← Pdiag; P ′′ ← 0 /* Comp. of Pk
′

l (cos θi), (l, k′) ∈ IL, 0 < k′ < l. */
for l← k′ + 1, . . . , L do

P ← 2l−1√
l2−k′2

cos θi · P ′ −
r

(l−k′−1)(l+k′−1)

l2−k′2 · P ′′

P ′′ ← P ′; P ′ ← P
for k ← −l, . . . , l do

w̃i
l,k,k′ ← ṽi,(l,−k)e

−ik′ρi · P
w̃i
l,k,−k′ ← ṽi,(l,−k)e

ik′ρi · P
end

end
end

for (l, k, k′) ∈ JL do w̃i
l,k,k′ ←

q
2l+1
4π

w̃i
l,k,k′

Numerical Inversion of the Radon Transform. Next we are going to combine the
discrete Fourier transforms introduced in the previous section in order to derive numerical
methods for the inversion of the Radon transform on SO(3). By Theorem 2.11 the operators

RE
L,Γ = FSO(3)M−1T EL,Γ and RR

L,Γ = FSO(3)M−1T RL,Γ

provide finite dimensional approximations of the inverse Radon transform R−1. Since a fast
algorithm for the Fourier transformFSO(3) exists (cf. [11, 17]), we focus on the computation of
the operators T EL,Γ and T RL,Γ. To be precise we emphasize now the dependence of the operators
T EL,Γ and T RL,Γ on the weightsW : `2(J)→ `2(J) and introduce W ∈ CJL×JL as its canonical
restriction to an operator acting between CJL and CJL .

Restricting the minimization problems (2.16) and (2.18) to their effective domains and
ranges Lemma 2.8 and Lemma 2.9 may be rewritten using the discrete operators FL,Γ and
W.
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3 Discrete Operators

Lemma 3.6. Let Γ ⊂ S2 × S2 be a finite set of nodes and let L ∈ N0 be a polynomial
degree such that the operator T EL,Γ is well defined. Then for any function P ∈ C(S2 × S2) the
minimization problem

wE = argmin
{w∈CJL |FL,Γw=P (Γ) }

‖w‖2
W (3.8)

has a unique solution wE ∈ CJL , which coincides with T EL,ΓP in the sense of

wE
l,k,k′ = T EL,ΓP (l, k, k′), (l, k, k′) ∈ JL. (3.9)

Lemma 3.7. Assume that the set of nodes Γ ⊂ S2×S2 and the polynomial degree L ∈ N0 are
chosen such that the operator T RL,Γ is well defined. Then for any function P ∈ C(S2 × S2) the
minimization problem

wR = argmin
w∈CJL

‖FL,Γw − P (Γ)‖2
2 + ‖w‖2

W (3.10)

has a unique solution wR ∈ CJL , which coincides with T RL,ΓP in the sense of (3.9).

The minimization problems (3.8) and (3.10) can be numerically solved by the CGNE and
the CGNR algorithm, respectively, cf. e.g. [20], which results in a fast numerical method for
the approximate calculation of the inverse Fourier transform FR in the range of the Radon
transform. More precisely, we obtain from Theorem 3.5 the following result.

Theorem 3.8. LetL ∈ N0 be a polynomial degree and assume that the set of nodes Γ ∈ S2×S2

has the structure as described in Definition 3.3. Then wR = T RL,ΓP or wE = T EL,ΓP can be
computed by the CGNR or CGNE algorithm, respectively. Moreover, both algorithms can be
implemented such that each iteration step has the numerical complexity ofO(NL3+|Γ|) flops.

The complexity of O(NL3 + |Γ|) flops for a single iteration step using the NFSFT com-
pares to the complexity of O(L3 |Γ|) flops of a naive implementation. Hence, the asymptotic
superiority of our algorithm depends on the quotient O(|Γ| /N). Next we are going to show
that this quotient can not be better then O(L2).

Theorem 3.9. For the matrix FL,Γ to be injective it is necessary that |Γ| =
∑N

i=1 Ni ≥ |JL|
and that N ≥ 2L+ 1.

Proof. The first condition follows immediately from the dimension of the matrix FL,Γ. For the
second condition we use the decomposition (3.5) and observe that the matrix V ∈ CN |IL|×|JL|

has full row rank |JL| if and only if each block Vl has full row rank 2l + 1. In particular, we
obtain for the last block VL the condition N ≥ 2L+ 1.

If O(|Γ|) = O(|JL|) and O(N) = O(L), our NFFT based algorithm has the numerical
complexity of O(|Γ|4/3) flops per iteration which compares to the numerical complexity of
O(|Γ|2) flops of a naive implementation.

Once the minimization problem (3.8) or (3.10) has been solved the numerical evaluation of
R−1P (g) ≈ FH

L,gMwE/R for a vector of rotations g = (g1, . . . ,gK) has the complexity of
O(L3 log2 L+K) flops by applying a fast Fourier transform on SO(3) [17]. Here the operator
M ∈ CJL×JL denotes the canonical restriction of the multiplication operator M : `2(J) →
`2(J).
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4 Numerical Tests

4 Numerical Tests
Let f ∈

⊕L
l=0 Harml(SO(3)) be an arbitrary function with polynomial degree at most L ∈ N0,

let Γ ⊂ S2× S2 be a finite set of nodes and let P = Rf(Γ) ∈ C|Γ| be a sampling of the Radon
transform of the function f .

Let furthermore w ∈ CJL be an approximation of the Fourier coefficients ofRf computed
by one of the algorithms introduced in this paper. Then the approximation error for the original
function f is

‖f −FSO(3)Mw‖L2(SO(3)) = ‖f̂ −Mw‖2 , (4.1)

where

M = diag(m), m ∈ RJL , ml,k,k′ =
π√

2l + 1
, (l, k, k′) ∈ JL.

is the discrete version of the multiplication operatorM introduced in 2.7. In this section we
analyze the error (4.1) in dependency of the set of nodes ΓN,N ′ and the polynomial degree L
in numerical experiments.

General Setting. First of all we construct approximative equidistributions hi ∈ S2, i =
1, . . . , 2N and rj ∈ S2, j = 1, . . . , N ′, N ′ ≈ (N/2)2 on the sphere following [2] such that
hi = −hi+N , i = 1, . . . , N , and define the set of nodes ΓN,N ′ ⊂ S2 × S2 as

ΓN,N ′ = { (hi, rj) ∈ S2 × S2 | i = 1, . . . , N, j = 1, . . . , N ′ }.

The reason to include only one of the vectors hi,−hi, i = 1, . . . , N , at time into the set of
nodes ΓN,N ′ is the symmetry property (2.10) of the function we are going to sample.

Second, we randomly generate Fourier coefficients f̂(l, k, k′) ∈ C, (l, k, k′) ∈ JL by taking
a |JL|–dimensional random sample of the uniform distribution on the disc D = { z ∈ C |
|z| ≤ 1 } and dividing it by (l + 1)2, l = 0, . . . , L. This ensures a decay of the Fourier
coefficients of O(l−2). In general this decay rate assured continuity of the corresponding
function and its Radon transform (cf. [6, Lemma 2.22]).

Third, we evaluate the Radon transformRf of the function f specified by its Fourier coef-
ficients f̂ at the nodes ΓN,N ′ , i.e., we calculate

Pij = P (hi, rj) =
∑

(l,k,k′)∈JL

π√
2l + 1

f̂(l, k, k′)Yk′l (hi)Ykl (rj).

In a fourth step we apply the CGNE and CGNR algorithms to the minimization problems
(3.8) and (3.10), respectively, and calculate the vectors wE = T EL,ΓN,N′P and wR = T RL,ΓN,N′P .
Hereby, we utilize Theorem 3.4 for fast multiplications with the matrix FL,ΓN,N′

. The weight
matrix W ∈ C|JL|×|JL| is the zero matrix in the case of the CGNR, and the identity matrix in
the case of the CGNE algorithm.

Finally, we calculate the relative residual norms ‖P− FL,ΓN,N′
wE/R‖2 / ‖P‖2 and the rel-

ative `2-errors in the Fourier space ‖f̂ −MwE/R‖2 / ‖f̂‖2 which, according to (4.1), are equal
to the relative approximation error ‖f −FSO(3)MwE/R‖L2(SO(3)) / ‖f‖L2(SO(3)) inL2(SO(3)).
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4 Numerical Tests

For each choice of L, N and N ′, we repeat the steps above for 10 times and take the
geometric means of the resulting relative residual norms and approximation errors, which we
call mean relative residual norm and mean relative approximation error, respectively.

Numerical Results. All calculations have been executed on computers of ”TSP IT Sys-
teme”, each of which has an AMD Athlon 64, 3000+ processor, 512 Mb RAM with SUSE
Linux 10.

For the concrete numerical experiment we have chosen the polynomial degrees L between
5 and 80, and sets of nodes ΓN,N ′ with N = 11, . . . , 308, N ′ = 34, . . . , 23898. In Figures 4.1
the (mean) relative residual norms and approximation errors for the CGNR based algorithm
are plotted for any combination of the polynomial degree L and the set of nodes ΓN,N ′ .

Figure 4.1: The relative residual norm ‖P− FL,ΓwR‖2 / ‖P‖2 in L2(SO(3)) and the relative
approximation error ‖f −FSO(3)MwR‖L2(SO(3)) / ‖f‖L2(SO(3)) in L2(SO(3)) of the CGNR
based algorithms for polynomial degrees L = 5 ( ), L = 10, ( ) L = 20 ( ),
L = 40 ( ), L = 80 ( ). The dimensions |JL| ∈ {286, 1771, 12341, 91881, 708561}
compares to the cardinalities |ΓN,N ′ | ∈ {374, 3588, 18860, 206816, 1143736, 7360584} of the
sets o nodes.

We observe that the relative residual norms in most cases become small showing the conver-
gence of the algorithm. The peaks in the cases of |ΓN,N ′| ≈ |JL| indicate that the underlying
matrices are ill-conditioned. By construction of the sets of nodes the condition |ΓN,N ′ | ≈ |JL|
implies in particular N ′ ≈ |IL|. Furthermore, we see that the original function f can be recon-
structed, provided the number of nodes is large enough. More precisely, we observed that, if
f can be reconstructed with a certain set of nodes ΓN,N ′ , then f can also be reconstructed with
each set of nodes ΓÑ,Ñ ′ under consideration such that Ñ > N and Ñ ′ > N ′. Interestingly, the
CGNR algorithm behaves well even in the cases with |ΓN,N ′| << |JL|.

The results for the CGNE based algorithm are not given here. They show up a similar
behavior except that the relative residual norms and the approximation error becomes worse
if the number of nodes becomes too large. This is due to the fact that the CGNE algorithm
requires |ΓN,N ′| < |JL|.

Runtime. In order to compare the performance of the NFSFT based algorithm with a direct
approach we measure the computation time of a forward transform FL,Γ using the NFSFT and
a direct implementation, respectively. Using the same parameters L, N , N ′ as in the previous
experiment we observe that the NFSFT based algorithm is substantially faster. As Table 4.1
shows the difference in runtime between the NFSFT based algorithm and the direct algorithm
increases as the polynomial degree increases.
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5 An Application to Texture Analysis

Parameter Runtime in sec.
L N N’ fast alg. direct alg.

10 23 156 0.25 0.61
20 41 460 1.22 6.30
40 92 2248 8.38 233
80 164 6974 60.5 5092

Table 4.1: Runtime comparison between the fast algorithm using the NFSFT and the direct
algorithm.

5 An Application to Texture Analysis
The Radon transform on SO(3) is of central importance for the analysis of crystallographic
preferred orientations, the technical term of which is texture analysis cf. [24]. It establishes
the relationship between the so called orientation density function (ODF) f : SO(3)/G → R,
which models the distribution of crystal orientations within a polycrystalline specimen and
the so called pole density function (PDF) P : S2/G × S2 → R, which models the distribution
of crystallographic lattice planes within the specimen. Here G ⊂ SO(3) denotes a finite
subgroup of SO(3) which represents the crystal symmetries. In terms of the Radon transform
the relationship between the ODF f ∈ L2(SO(3)/G) and the PDF P ∈ L2(S2/G × S2) of a
specimen reads as

P (h, r) =
1

2

(
Rf(h, r) +Rf(−h, r)

)
. (5.1)

PDFs can experimentally be sampled by diffraction techniques like X-ray, neutron, or syn-
chrotron diffraction, whereas ODFs cannot directly be measured by these techniques. A cen-
tral problem in texture analysis is the estimation of the ODF of a specimen given its measured
PDF cf. [1]. Of particular importance are the lower order Fourier coefficients of the ODF since
they characterize the macroscopic properties of the specimen, e.g. the second order Fourier co-
efficients characterize thermal expansion, optical refraction index, and electrical conductivity
whereas the fourth order Fourier coefficients characterize the elastic properties of the specimen
cf. [1, sec. 13].

By Proposition 2.4 we have the following relationship between the Fourier coefficients of
an ODF f ∈ L2(SO(3)/G) and the corresponding PDF P ∈ L2(S2/G × S2),

P = FRMevenF−1
SO(3)f, Mevenf̂(l, k, k′) =

{
π√

2l+1
f̂(l, k, k′) l even,

0 l odd.

In particular, the odd order Fourier coefficients of the ODF f cannot be reconstructed from
the PDF P without additional modeling assumptions.

In order to apply our algorithm to the PDF – to – ODF inversion problem we fix the trigonal
crystal symmetry group G ⊂ SO(3) (cf. [1]) and define a set of N = 37 different directions

hi ∈ G
{(

1
0
0

)
,
(

0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
0
2

)
,
(

1
1
1

)
,
(

0
2
1

)
,
(

1
1
2

)
,
(

0
1
2

)
,
(

2
0
1

)
,
(

0
0
1

)}
, i = 1, . . . , N.
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6 Conclusions

The nodes rj , j = 1, . . . , N ′, N ′ = 9791 we choose independently as an approximative
equidistribution on the hemisphere S2

+ and define the set of nodes Γ analogously as in Section
4 as

Γ = { (hi, rj) | i = 1, . . . , N, j = 1, . . . , N ′ }.

The construction of the sampling set reflects practical experimental settings that are restricted
to many directions rj but only few directions hi. As a consequence, only the Fourier coeffi-
cients of the lowest order can be determined (cf. Theorem 3.9).

Proceeding as in Section 4 we randomly generate Fourier coefficients f̂(l, k, k′), (l, k, k′) ∈
JL0 , up to the polynomial degree L0 = 128 with decay rate O(l−4) and simulate a sampling
of the corresponding PDF by calculating P = FL0,ΓMevenf̂ . For arbitrary non polynomial
functions on SO(3) the decay rate O(l−4) of the Fourier coefficients ensures that the function
is continuously differentiable. Applying the CGNR algorithm with L = 0, 2, . . . , 32 to the
sample P ∈ RΓ we obtain Fourier coefficients P̂ ∈ CJL . In fact, we use a modified version of
the CGNR algorithm which ensures that the components P̂l,k,k′ of P̂ with l odd become zero.
The weight matrix W is the zero matrix. By setting

ε(L, l) =

(
l∑

k,k′=−l

∣∣∣∣f̂(l, k, k′)−
√

2l + 1

π
P̂s
l,k,k′

∣∣∣∣2
)1/2( l∑

k,k′=−l

∣∣∣f̂(l, k, k′)
∣∣∣2)−1/2

(5.2)

we compute the relative error between the calculated and the initial Fourier coefficients of
the ODF separately for each harmonic space Harml(SO(3)), l = 0, . . . , L. Obviously, we
have ε(L, l) = 1 in the case that l > L or l is odd. In Figure 5.1a the relative errors ε(L, l),
l = 0, 2, . . . , L are plotted for different maximum polynomial degrees L ∈ N of calculation.

According to Lemma 3.9 and [1, sec. 4.2.2.1] the maximum polynomial degrees up to which
the Fourier coefficients can be reconstructed given the sampling P is l = 18. However, our
numerical experiments show that the polynomial degree up to which the Fourier coefficients
are reconstructed is in general lower. In our example the approximation error ε(L, l) is sig-
nificantly lower than 1 only for the orders l = 0, 2, 4. Interestingly, the approximation error
ε(L, l) decreases as the bandwidth L = 0, 2, . . . , 32 used for the approximation of the Radon
transform increases.

In a second experiment we have chosen cubic crystal symmetry and N = 73 different
directions hi ∈ S2, i = 1, . . . , N . For this setting the maximum polynomial degree is 36.
According to Figure 5.1b we came quit close to this bound. The observation that ε(L, l)
increases with increasing l = 0, 2, . . . , L is due to the decay rate O(l−4) of the generated
Fourier coefficients f̂(l, k, k′) implying that the denominator in (5.2) decreases as l increases.
Again we mention that the approximation error ε(L, l), l = 0, 2, . . . , 16 of the low order
Fourier coefficients decreases as the bandwidth L increases.

6 Conclusions
Analogously to the classical Radon transform in Euclidean spaces the representation of the
Radon transform on SO(3) in Fourier space has been shown to lead to a fast algorithm for its
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Figure 5.1: The approximation error ε(L, l) of the Fourier coefficients of a function with
polynomial degree L0 = 128 sampled at a set of nodes Γ in dependency of their order l and
the total bandwidth used for approximation L = 0 ( ), L = 2 ( ), L = 4 ( ),
L = 8 ( ), L = 16 ( ), L = 32 ( ).

inversion. Primarily the Fourier space representation allows to define a discrete inverse Radon
transform as the solution of a minimization problem. Applying fast Fourier transforms on S2

and SO(3) it can iteratively be solved with standard algorithms. Numerical tests have con-
firmed the convergence of CGNE and CGNR based algorithms for appropriate assumptions.

As with respect to the practical application in texture anaylsis we have shown that the clas-
sical “harmonic method” can largely be improved. The first low order Fourier coefficients
which are required to compute antipodally symmetric macroscopic specimen properties from
the corresponding single crystal properties are better approximated if the polynomial degree
of the ansatz function is much larger than commonly used by practitioners of texture analysis.
The frequently heard objection that large polynomial degrees result in numerical instability
and eventually in unreliable numbers is obsolete.

7 Acknowledgments
The authors gratefully acknowledge financial support by Deutsche Forschungsgemeinschaft,
grant “high resolution texture analysis” (PR 331/11, SCHA 465/15) and thank the referees and
the editor for their helpful comments and valuable suggestions.

22



References

References
[1] H. J. Bunge. Texture Analysis in Material Science. Butterworths, 1982.

[2] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation on the Sphere.
Oxford University Press, Oxford, 1998.
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