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Abstract

We are concerned with kernel density estimation on the rotation group SO(3). We prove asymp-
totically optimal convergence rates for the minimax risk of the mean integrated squared error for
different function classes including bandlimited functions, functions with bounded Sobolev norm
and functions with polynomial decaying Fourier coefficients and give optimal kernel functions.
Furthermore, we consider kernel density estimation with nonnegative kernel functions and prove
analogous saturation behavior as it is known for the Euclidean case, i.e., the optimal minimax rate
does not improve for smoothness classes of functions which are more then two times differentiable.
We also benchmark several families of kernel functions with respect to their capability for kernel
density estimation. To make our finding applicable, we give a fast algorithm for the computation
of the kernel density estimator for large sampling sets and illustrate our theoretical findings by
numerical experiments. Finally, we apply our results to answer a long standing question in crys-
tallographic texture analysis on the number of orientation measurements needed to estimate the
underlying orientation density function up to a given accuracy.

Keywords: kernel density estimation, minimax rates, rotation group, harmonic analysis,
crystallographic texture analysis

1. Introduction

Kernel density estimation has been proven to be a powerful and flexible technique to estimate
the underlying probability density function of a given random sample [40]. In this paper we are
concerned with kernel density estimation on the rotation group SO(3). Our major motivation to
consider this specific domain comes from crystallographic texture analysis, where kernel density
estimation on the rotation group is used to determine the orientation density function (ODF)
of a specimen from electron back scattering diffraction (EBSD) data [31, 11]. The main open
question in ODF estimation is: How many measurements are needed to achieve a given accuracy
[3, 6, 39, 26, 10]. This question will be answered in Section 3.4.

Let λ be the Haar measure on SO(3) and let X1, . . . , XN ∈ SO(3) be a random sample cor-
responding to a square integrable, probability density function f ∈ L2(SO(3)) with respect to λ.
Then we call any measurable function

EN :

N⊗
n=1

SO(3)→ L2(SO(3))

that assigns to a random sample X1, . . . , XN ∈ SO(3) a function in L2(SO(3)) a square integrable

density estimator. If we assume
⊗N

n=1 SO(3) to be endowed with the product measure correspond-

ing to the density function f we write EfN and call it square integrable density estimator of f . In
our paper we are interested in the mean integrated squared error (MISE),

MISE(EfN ) = E ‖f − EfN‖
2
2 = E

∫
SO(3)

∣∣∣f(x)− EfN (x)
∣∣∣2 dλ(x), (1)
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as a measure for the mean discrepancy between the probability density function f and the square
integrable density estimator EfN of f . More specifically, we want to prove asymptotic lower and
upper bounds for the so called minimax risk

inf
EN

sup
f∈F

MISE(EfN ), (2)

where the density function f is known to be within a certain smoothness class F ⊂ L2(SO(3)) and
the infimum is taken over all square integrable density estimators EN based on a random sample
of size N .

Asymptotic upper and lower bounds of the minimax risk have been considered by many authors

in the more general setting of d–dimensional compact groups. Upper bounds of rate N−
2s

2s+d for
the smoothness class of density function with bounded Sobolev norm of order s > d/2 have been
found in [14, 20, 13, 30]. Lower bounds of the same rate have been found in [23] by following a
general framework described in [35].

A specific class of density estimators are kernel density estimators. For a kernel function
ψ ∈ L2(SO(3)) with

∫
SO(3)

ψ(x) dλ(x) = 1 the corresponding kernel density estimator, cf. [30], is

defined by

f∗ψ(x) =
1

N

N∑
n=1

ψ(X−1n x). x ∈ SO(3). (3)

Kernel density estimators with specific kernel functions ψ have been used in [14, 20, 13, 30] to
derive upper bounds for the minimax risk (2). The purpose of this paper is to find optimal kernel
functions ψ and asymptotically optimal lower and upper bounds with explicit constants for the
minimax risk (2) for different smoothness classes F .

The findings of our paper are as follows. For the simple case that F is the class FL of
bandlimited functions of bandwidth L we show in Theorem 4 that the minimax risk restricted to
kernel density estimators satisfies asymptotically

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈FL

MISE(f∗ψ) ·N =
(L+ 1)(2L+ 1)(2L+ 3)− 3

3
,

with an asymptotically optimal kernel function being the Dirichlet kernel with bandwidth L. Since
FL is finite dimensional the density estimation problem is actually a parametric one.

For the smoothness class F2
s,S , cf. (A.18), of density functions with bounded Sobolev norm of

order s > 0 we show in Theorem 5 that the minimax risk restricted to kernel density estimators
satisfies asymptotically

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F2

s,S

MISE(f∗ψ) ·N
2s

2s+3 =
(

( 2s
3 )−

2s
2s+3 + ( 2s

3 )
3

2s+3

)
C

2s
2s+3S

6
2s+3 , (4)

where C =
(

4
3 −

8
s+3 + 4

2s+3

)
. The corresponding asymptotically optimal kernel function is the

Jackson type kernel (11). Surprisingly, the sharp constant in (4) differs from the Pinsker–Weyl
bound reported in [21], indicating that there is still a gap in understanding the asymptotic equiv-
alence of kernel density estimation and white noise experiments for the manifold case. For the
Euclidean case results have been recently reported by Reiß [33].

Finally, we consider the smoothness class F∞s,S ,cf. (A.19), of density functions with Fourier

coefficients decaying polynomial with order s > 1
2 . In Theorem 6 we show that the minimax risk

restricted to kernel density estimators satisfies asymptotically

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F∞s,S

MISE(f∗ψ) ·N
2s−1
2s+2 =

2
s−2
s+1 π

(s+ 1) sin 3π
2s+2

S
2

2s+2

and give an asymptotically optimal kernel function in (15).
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Of practical importance is the case when the kernel function ψ is assumed to be nonnegative
in order to guarantee a nonnegative kernel density estimator. In analogy to the Euclidean case
we prove in Theorem 7 an upper bound for the MISE of two times weakly differentiable density
functions f ∈ F2

2,S ,

MISE(f∗ψ) ≤ µ2(ψ)2 ‖4̃f‖22 +N−1 ‖ψ‖22 ,
that depend on the second moment

µ2(ψ) =
4

3π

∫ 1

0

(1− t2)ψ(t)
√

1− t2 dt

of the nonnegative kernel function ψ. In Theorem 8 we show that kernel density estimation
with nonnegative kernel functions ψ saturates at the convergence rate N−

4
7 , i.e., even for stricter

smoothness classes F2
s,S , s > 2 the minimax rate does not improve. An example of a nonnegative

kernel function ψ that attains this rate is the de la Vallée Poussin kernel (17).
Finally, we consider the minimax risk (2) without restricting the class of estimators to kernel

density estimators. Following the framework presented in [35] we extend the lower bound given
in [23] for the class of density functions with bounded Sobolev norm to the class of functions with
polynomial decaying Fourier coefficients. More specifically, we prove in Theorem 12 the existence
of a constant C such that

lim
N→∞

inf
EN

sup
f∈F∞s,S

MISE(EfN ) ·N
2s−1
2s+2 > C.

It should be stressed that throughout this paper we assume that the smoothness class where the
density belongs to is known in before, i.e., we consider only non–adaptive methods. For adaptive
methods the reader is referred to [35] and the references therein.

In order to make our finding applicable, we give in Section 3 a new fast algorithm for the
numerical computation of the kernel density estimator as well as for its Fourier coefficients for
large sampling sets. The algorithm is based on the nonequispaced fast Fourier transform [32] and
fast summation [17] on the rotation group. Furthermore, we describe in Section 3.1 an algorithm
for drawing a random sample from a distribution on the rotation group. These algorithms are
applied to illustrate our theoretical findings by numerical simulations.

In Section 3.4 we generalize our results to the quotient SO(3)/S where S ⊂ SO(3) is a finite
symmetry group. This allows us to apply our results and algorithms to the ODF estimation
problem from individual orientation measurements in crystallographic texture analysis [31, 11].
In particular, we answer the long standing question on the number of orientation measurements
needed to estimate the underlying orientation density function up to a given accuracy [3].

All the algorithms described in this paper are freely available as part of the texture analysis
toolbox MTEX [15]. In Section 3.4 the capabilities of this toolbox are demonstrated on a real
world example.

The Appendix A contains a tight representation of harmonic analysis on the rotation group
including some results from approximation theory. Most notably, we derive in Lemma 14 and 19
inequalities for the Fourier coefficients of nonnegative function on the rotation group and prove in
Theorem 18 for f ∈ F2

s,S and ψ ∈ L2(SO(3)) a nonnegative, zonal function the estimate

‖f − f ∗ ψ‖2 ≤
1

2

(
1− ψ̂(1)

)
S.

A similar result was already known for the spherical case [41]. Appendix B contains some proofs
that have been skipped in the previous sections.

2. Lower and upper bounds for kernel density estimators

2.1. Basic Properties of the MISE

Let throughout this section f ∈ L2(SO(3)) be a probability density function and ψ ∈ L2(SO(3))
a kernel function with

∫
SO(3)

ψ(x) dλ(x) = 1. We start with the following well known decompo-

sition result of the MISE (1) of the kernel density estimator f∗ψ into a bias term and a variance
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term, see e.g. [36], which actually holds true for the much more general setting of locally compact
groups.

Lemma 1. The MISE (1) of the kernel density estimator f∗ψ, c.f. (3), allows for the decomposition

MISE(f∗ψ) = ‖f − Ef∗ψ‖
2
2 + E ‖f∗ψ − Ef∗ψ‖

2
2

into a bias term
‖f − Ef∗ψ‖

2
2 = ‖f − f ∗ ψ‖22

and a variance term

E ‖f∗ψ − Ef∗ψ‖
2
2 =

1

N

(
‖ψ‖22 − ‖f ∗ ψ‖

2
2

)
.

In particular, we have with respect to L2 – convergence

lim
N→∞

f∗ψ = f ∗ ψ.

Proof. In order to keep the paper self contained we have included the proof in Appendix B.

In the following we consider only zonal kernel functions, i.e., ψ(x) depends only on the rota-
tional angle ω(x) of x ∈ SO(3). Those functions can be seen as the group counterpart of radially
symmetric functions in the Euclidean case. Some basic facts on zonal functions on the rotation
group can be found in Appendix A.2. Most importantly, we will utilize that a zonal function
ψ ∈ L2(SO(3)) can be expanded into a Chebyshev series

ψ(x) =

∞∑
`=0

ψ̂(`)(2`+ 1)U2`(cos ω(x)2 ),

where U2` denotes the Chebyshev polynomials of second kind and order 2` and the convergence
of the sum is meant in L2(SO(3)). We call the coefficients ψ̂(`) Chebyshev coefficients of ψ and

because of the normalization of ψ to integral one we have ψ̂(0) = 1.
Since the convolution of f with a zonal function ψ posses a simple representation in Fourier

space, c.f. (A.17), the decomposition of the MISE in Lemma 1 allows for a simple representation
in Fourier domain.

Lemma 2. Let f̂(`, k, k′), ` ∈ N, k, k′ = −`, . . . , ` be the Fourier coefficients of f ∈ L2(SO(3)) as
defined in Appendix A.1, and let

f̂2` =
1

(2`+ 1)2

∑̀
k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣2 , ` ∈ N. (5)

Then the MISE of the kernel density estimator f∗ψ has the representation

MISE(f∗ψ) =

( ∞∑
`=1

(2`+ 1)2f̂2` (1− ψ̂(`))2

)
+

(2`+ 1)2

N
ψ̂(`)2

(
1− f̂2`

)
. (6)

Proof. Representation (6) is a direct consequence of Parseval identities (A.9), (A.16) and the
convolution formula (A.17).

Note that in the Fourier representation (6) of the MISE the sum starts from ` = 1. This is due

to the fact by our assumption
∫
SO(3)

ψ(x) dλ(x) = 1 we have ψ̂(0) = 1.
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2.2. Optimal kernel functions and rates of convergence

Our goal is to find optimal kernel functions that minimizes the MISE (1) for certain smoothness
classes F ⊂ L2(SO(3)) and to investigate the asymptotic decay rates of the MISE. Let us first
consider the trivial case that the class of functions F = {f}, f ∈ L2(SO(3)) consists only of the
true density function itself.

Theorem 3. The MISE optimal kernel function for the class F = {f} is

ψf,N (x) =

∞∑
`=0

(2`+ 1)
Nf̂2`

(N − 1)f̂2` + 1
U2`(cos ω(x)2 ), (7)

where convergence of the sum is meant in L2(SO(3)). The corresponding MISE is

MISE(f∗ψf,N ) =

∞∑
`=1

(2`+ 1)2
f̂2` (1− f̂2` )

(N − 1)f̂2` + 1
. (8)

In particular, we have f∗ψf,N → f in L2(SO(3)) as N →∞ and the best possible rate of convergence

is N−1 unless f is constant.

Proof. See Appendix B.

A second simple case is that the class of functions F is the space of bandlimited probability
density functions

FL =

{
f ∈ L2(SO(3))

∣∣∣∣ f ≥ 0,

∫
f(x) dλ(x) = 1, and f̂(`, k, k′) = 0 for all ` > L

}
.

In this case the density estimation problem becomes a parametric problem and we have the
following result on the asymptotic minimax risk.

Theorem 4. An asymptotically optimal kernel function for the class FL of bandlimited density
functions of order L > 0 is the Dirichlet kernel ψD

L , L ∈ N,

ψD
L (x) =

L∑
`=0

(2`+ 1)U2`(cos ω(x)2 ). (9)

The corresponding asymptotic minimax risk is

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈FL

MISE(f∗ψ) ·N = ‖ψD
L ‖

2
2 =

(L+ 1)(2L+ 1)(2L+ 3)− 3

3
.

Proof. Let f ∈ FL. Plugging in the Dirichlet kernel ψD
L into (6) and making use of Parseval’s

identity (A.16) and the assumption f̂(0, 0, 0) = 1 we arrive at the estimate

MISE(f∗ψD
L

) =
1

N
(‖ψD

L‖
2
2 − ‖f‖

2
2) ≤ 1

N

((
L∑
`=0

(2`+ 1)2

)
− 1

)
=

(L+ 1)(2L+ 1)(2L+ 3)− 3

3N
.

In order to show that this upper bound is asymptotically sharp we consider for a fixed sample size
N a density function f ∈ FL that maximizes the optimal MISE (8). Componentwise differentiation
of (8) leads to

f̂2` =

√
N − 1

N − 1
, ` = 1, . . . , L.

Since f̂2` decays to zero as N tends to infinity f can be guarantied to be non negative for N
sufficiently large. By (8) we obtain

MISE(f∗ψf,N ) =

L∑
`=1

(2`+ 1)2

√
N−1
N−1 (1−

√
N−1
N−1 )

(N − 1)
√
N−1
N−1 + 1

=

L∑
`=1

(2`+ 1)2
(
N −

√
N
)2

N(N − 1)2
,
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and, hence,

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f̃∈FL

MISE(f̃∗ψ) ·N ≥ lim
N→∞

inf
ψ∈L2(SO(3))

MISE(f∗ψ) ·N

= lim
N→∞

MISE(f∗ψf,N ) ·N

= lim
N→∞

N ·
L∑
`=1

(2`+ 1)2
(
N −

√
N
)2

N(N − 1)2

=
(L+ 1)(2L+ 1)(2L+ 3)− 3

3
.

Next we consider for s, S > 0 the smoothness classes F2
s,S of density functions f with Sobolev

norm ‖f‖2,s < S, cf. (A.18). Then because of Lemma 1, Theorem 18 and the assumption ψ̂(0) = 1
the MISE can be bounded from above by

MISE(f∗ψ) ≤ sup
`∈N\{0}

|1− ψ̂(`)|2

`s(`+ 1)s
S2 +N−1 ‖ψ‖22 . (10)

It turns out that by selecting a kernel function ψ that minimizes this upper bounds we obtain
asymptotically optimal convergence rates.

Theorem 5. Let S > 0 be sufficiently small. Then an asymptotically optimal kernel function
with respect to the class F2

s,S of functions with Sobolev norm of order s > 0 bounded by S is the

Jackson type kernel ψJ
L,s : SO(3)→ R

ψJ
L,s(x) = 1 +

bLc∑
`=1

(2`+ 1)

(
1− `s/2(`+ 1)s/2

Ls/2(L+ 1)s/2

)
U2`(cos

ω(x)

2
), (11)

with bandwidth

L =

(
2s

3

NS2

C

) 1
2s+3

(12)

where C =
(

4
3 −

8
s+3 + 4

2s+3

)
. This kernel function asymptotically realizes the minimax risk

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F2

s,S

MISE(f∗ψ) ·N
2s

2s+3 =
(

( 2s
3 )−

2s
2s+3 + ( 2s

3 )
3

2s+3

)
C

2s
2s+3S

6
2s+3 .

Proof. See Appendix B.

For the specific case s = 2 the Jackson type kernel has the explicit representation

ψJ
L,2 (cosω) =

(2L+ 3)
(
(L− 2) cosω sin 2Lω − 3L cos 2Lω sinω

)
+ L(2L− 1) sin(2L+ 3)ω

8L(L+ 1) sin5 ω
2

.

The optimal rate of convergence, but with a worse constant, is also attained by the Dirichlet kernel
ψD
Lopt

, (9), see also [14]. For s = 2 the corresponding optimal parameter Lopt is given by

L7
opt ≈ NS2, (13)

which leads to the asymptotic upper bound

MISE(f∗ψD
Lopt

) ≤ L−2sopt S
2 +

4

3
(L3

opt +O(L2
opt))N

−1 ≈ 7

3
S6/7N−4/7.
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Finally, we consider for s > 1
2 , S > 0 the smoothness class F∞s,S of functions f with polynomial

decaying Fourier coefficients of order s, cf. (A.19). Then we have by Lemma 1, Theorem 18 and
(A.16) the upper bound

MISE(f∗ψ) ≤
∞∑
`=1

(
|1− ψ̂(`)|2

`s(`+ 1)s
S2 +N−1(2`+ 1)2ψ̂(`)2

)
. (14)

As in the just previous case of the Sobolev class we obtain asymptotically optimal convergence
rates by selecting a kernel function ψ that minimizes this upper bound.

Theorem 6. Let S > 0 be sufficiently small. Then an asymptotically optimal kernel function
ψF∞s,S ,N for the class F∞s,S of density function with polynomial decaying Fourier coefficients of

order s > 1
2 is the zonal function

ψF∞s,S ,N (x) =
∞∑
`=0

(2`+ 1)
NS2

NS2 + (2`+ 1)2`s(`+ 1)s
U2`
(

cos ω(x)2

)
. (15)

This function asymptotically realizes the minimax risk

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F∞s,S

MISE(f∗ψ) ·N
2s−1
2s+2 =

2
s−2
s+1 π

(s+ 1) sin 3π
2s+2

S
2

2s+2 .

Proof. See Appendix B.

The results of Theorem 5 and Theorem 6 compare well with the inclusions F∞s+ε,S ⊂ F`2s− 1
2 ,S

,

with ε, S, S′ > 0 as in (A.20), in the sense that for ε → 0 we obtain for both classes the same

optimal rates of convergence, namely, N−
2s−1
2s+2 .

2.3. Nonnegative kernel functions

In many practical applications one is often interested in nonnegative kernel density estimators,
i.e., in kernel density estimation with nonnegative kernel functions. In the Euclidean setting this
restriction allows for a simple, asymptotically sharp, upper bound for the MISE the so called
asymptotic mean integrated squared error (AMISE), cf. [40],

AMISE(f∗ψ) = µ2(ψ)2 ‖4f‖22 +N−1 ‖ψ‖22 (16)

where f : Rd → R is assumed to be a twice continuous differentiable function and

µ2(ψ) =

∫
Rd
‖x‖22 ψ(x) dx

denotes the second moment of the kernel function ψ. Using Theorem 18 we show an analogous
upper bound for (10) in the setting of kernel density estimation on the rotation group with non-
negative zonal kernel functions. For formulating this result it is handy to make use of he notation

ψ(t) = ψ(x), t ∈ [0, 1], where t = cos ω(x)2 , c.f. Appendix A.2.

Theorem 7. Let S > 0, let f ∈ F2
2,S(SO(3)) be a two times weakly differentiable density function

and let ψ ∈ L2(SO(3)) be a nonnegative, zonal kernel function with ψ̂(0) = 1. Then we have

MISE(f∗ψ) ≤ 1

4

∣∣∣1− ψ̂(1)
∣∣∣2 ‖f‖22,2 +N−1 ‖ψ‖22 = µ2(ψ)2 ‖4̃f‖22 +N−1 ‖ψ‖22 ,

with

µ2(ψ) =
4

3π

∫ 1

0

(1− t2)ψ(t)
√

1− t2 dt

and with 4̃ denoting the Laplace–Beltrami operator on SO(3).
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Proof. Using the decomposition of the MISE into a bias and a variance term, c.f. Lemma 1, the
left hand side inequality becomes a direct consequence of Theorem 18. For the right hand side
equality we observe that for any nonnegative zonal function ψ with ψ̂(0) = 1 we have

1

4
(1− ψ̂(1)) =

1

π

∫ 1

0

ψ(t)
(

1− 1

3
U2(t)

)√
1− t2 dt =

4

3π

∫ 1

0

ψ(t)(1− t2)
√

1− t2 dt

and, furthermore, that
‖f‖22,2 = ‖4̃f‖22 .

A popular nonnegative kernel function on SO(3) is the de la Vallée Poussin kernel ψVP
κ , cf.

[17], which is defined for any κ ∈ N\{0} by its finite Chebyshev expansion

ψVP
κ (x) =

(κ+ 1)22κ−1(
2κ−1
κ

) (cos ω(x)2 )2κ =

(
2κ+ 1

κ

)−1 κ∑
`=0

(2`+ 1)

(
2κ+ 1

κ− `

)
U2`(cos ω(x)2 ). (17)

Choosing the parameter κ in an optimal way the de la Vallée Poussin kernel yields the optimal
convergence rate N−

4
7 for the class F2

2,S .

Theorem 8. Let S > 0 and F2
2,S the class of density functions with bounded Sobolev norm of

order 2. Then the optimal parameter κopt of the de la Vallée Poussin kernel ψVP
κ satisfies

κ7opt ≈
27

9π
‖f‖42,2N

2 (18)

which yields the MISE estimate

sup
f∈F2

2,S

MISE(f∗ψVP
κopt

) ≤ 3.8S2N−4/7. (19)

Proof. The L2–norm of the de la Vallée Poussin kernel computes to

‖ψVP
κ ‖

2
2 =

4

π

∫ 1

0

ψVP
κ (t)2

√
1− t2 dt =

4

π

(κ+ 1)22κ−1(
2κ−1
κ

) ∫ 1

0

t4κ
√

1− t2 dt

=
√
π

Γ(κ+ 2)2Γ(2κ+ 1
2 )

Γ(κ+ 1
2 )2Γ(2κ+ 2)

.

Since we have asymptotically by the Stirling formula

Γ(κ+ 2)

Γ(κ+ 1
2 )

=
Γ(κ+ 2)Γ(κ)22κ−1

Γ(2κ)
√
π

= 22κ
κ+ 1√
π

Γ(κ+ 1)2

Γ(2κ+ 1)
≈ (κ+ 1)

√
κ

we obtain for the L2–norm of the de la Vallée Poussin kernel the approximation

‖ψVP
κ ‖

2
2 =
√
π

Γ(κ+ 2)2Γ(2κ+ 1
2 )

Γ(κ+ 1
2 )2Γ(2κ+ 2)

≈
√
π

2

√
κ(κ+ 1)2

2κ+ 1
≈
√
π

8
κ3/2.

Since

1− ψ̂VP
κ (1) = 1−

(
2κ+1
κ−1

)(
2κ+1
κ

) = 1− κ!(κ+ 1)!

(κ− 1)!(κ+ 2)!
= 1− κ

κ+ 2
=

2

κ+ 2

we obtain the upper bound

MISE(f∗ψVP
κ

) ≤ (κ+ 2)−2 ‖f‖22,2 +

√
π

8
κ3/2N−1.

Minimization with respect to κ gives the stated results.
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Similar to the Euclidean case kernel density estimation with nonnegative, zonal kernel functions
ψ does not allow for better convergence rates then N−

4
7 independent of the smoothness of the

function f . We have the following lower bound.

Theorem 9. Let F ⊂ L2(SO(3)) be any function class that contains the function f(x) = 1 +
D0,0

1 (x). Then we have the lower bound

inf
ψ≥0

sup
f∈F

MISE(f∗ψ) ≥ N−4/7 − 4

3
N−1.

Proof. From (A.5) we know that f = 1+D0,0
1 is indeed a density function. Let ψ be a nonnegative

kernel function. Then we have by Lemma 19 a lower bound on ‖ψ‖2 and by Lemma 14 the upper

bound ψ̂(1)2 ≤ 1. Together with Lemma 1 and (A.17) this gives the following lower bound for the
MISE of the kernel density estimator f∗ψ

MISE(f∗ψ) =
(1− ψ̂(1))2

3
+

1

N

(
‖ψ‖22 − 1− ψ̂(1)2

3

)

≥ (1− ψ̂(1))2

3
+

64
√

2

105N
(1− ψ̂(1))−

3
2 − 4

3

1

N
.

Minimizing the above expression with respect to ψ̂(1) results in

MISE(f∗ψ) ≥ 4

3

(
2

5

)4/7(
7

3

)3/7

N−4/7 − 4

3
N−1 > N−4/7 − 4

3
N−1.

For completeness we consider also another frequently applied nonnegative zonal kernel function
on the rotation group, the Abel Poisson kernel ψAP

κ , cf. [17], which is defined for κ ∈ (0, 1) by its
Chebyshev series

ψAP
κ (x) =

∞∑
`=0

(2`+ 1)κ2`U2`(cos ω(x)2 ). (20)

Computing its L2-norm to

‖ψAP
κ ‖

2
2 =

∞∑
`=0

(2`+ 1)2κ4l =
1 + 6κ4 + κ8

(1− κ4)3
,

Theorem 7 gives us for any f ∈ F2
2,S the upper bound

MISE(f∗ψAP
κ

) ≤ (1− κ2)2

4
S2 +

1 + 6κ4 + κ8

(1− κ4)3
N−1 ≈ (1− κ)2S2 +

1

8
(1− κ)−3N−1.

Minimization with respect to κ yields

(1− κopt)5 ≈
3

16
N−1S−2 (21)

and

MISE(f∗ψAP
κopt

) ≤

((
3

16

)2/5

+
1

8

(
3

16

)−3/5)
S6/5N−2/5 ≈ 0.86S6/5N−2/5.

Thus, the Abel Poisson kernel seems not be well suited for kernel density estimation on the
rotation group.
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2.4. General lower bounds

In this section we consider the minmax risk (2) for the general setting, i.e., where the infimum is
taken over all square integrable estimators. Since explicit constants are not known for this general
case we just show that the rates of convergence are the same as for kernel density estimation.
For the smoothness class F2

s,S of density functions with bounded Sobolev norm this has been
proven in [23]. We prove a similar result for the smoothness class F∞s,S of density functions with
polynomially decaying Fourier coefficients following the same lines. For completeness, we present
here both proofs simultaneously. A general recipe for the derivation of lower bounds can be found
in [35].

The idea is to restrict the density estimation problem to a finite subset F∗ ⊂ F∞s,S ⊂ L2(SO(3)),
s, S > 0 by observing that for any sequence ρN > 0 and any constant A > 0

ρ−2N inf
EN

sup
f∈F∞s,S

MISE(EfN ) ≥ ρ−2N inf
EN

sup
f∈F∗

E ‖f − EfN‖
2
2 ≥ A

2 inf
EN

sup
f∈F∗

Pf (‖f − EfN‖
2
2 ≥ ρ

2
NA

2). (22)

In order to bound the right hand side from below the density functions in F∗ have to be
sufficiently separated in the L2-norm and their Kullback divergences

K(f, g) =

∫
SO(3)

f(x) log
f(x)

g(x)
dλ(x), f, g ∈ F∗

have to be sufficiently small. More precisely, we are going to apply Theorem 2.5 in [35].

Theorem 10. Let N > 0 be the number of random samples and let F∗ be a finite set of density
functions on SO(3) such that there are constants A, ρN , α ∈ (0, 18 ) satisfying

1. the functions in F∗ are AρN separated, i.e., for all f, g ∈ F∗, f 6= g we have

‖f − g‖2 ≥ AρN ,

2. the Kullback divergences between the functions in F∗ is sufficiently small, i.e., there is a
function f0 ∈ F∗, f0 > 0 satisfying

N

|F∗|
∑

f∈F∗\f0

K(f, f0) ≤ α log |F∗| .

Then

inf
EN

sup
f∈F∗

Pf (‖f − EfN‖2 ≥ ρNA) ≥
√
|F∗|

1 +
√
|F∗|

(
1− 2α−

√
2α

log |F∗|

)
> 0.

As candidates for the finite set F∗ we consider for t ∈ R, L ∈ N and a constant C > 0 the sets

Ft,L =

 f(x) = 1 + CL−t−
3
2

2L∑
`=L+1

∑̀
k,k′=−`

f̂(`, k, k′)
√

2`+ 1D̄k,k′

`

∣∣∣∣∣∣ f̂(`, k, k′) ∈ {0, 1}

 ,

where the functions
√

2`+ 1D̄k,k′

l are chosen as a real valued orthonormal basis in Harm`(SO(3)).
Since for every L ∈ N, s > 0 and f ∈ Fs,L,

‖f‖22,s = 1 + C2L−2s−3
2L∑

`=L+1

∑̀
k,k′=−`

`s(`+ 1)s
∣∣∣f̂(`, k, k′)

∣∣∣2 ≤ C̃C2

and

‖f‖2∞,s+ 1
2

= max
{

1, C2L−2s−3 max
`=L+1,...,2L

∑̀
k,k′=−`

`s+
1
2 (`+ 1)s+

1
2

∣∣∣f̂(`, k, k′)
∣∣∣2} ≤ C̃C2

10



with a constant C̃ independent of L, the constant C can be chosen such that Fs,L ⊂ F2
s,S and

Fs,L ⊂ F∞s+ 1
2 ,S

. On the other hand we conclude from |Dk,k′

` (x)| ≤ 1, cf. (A.5), that the constant

C can be chosen such that all functions in Fs,L are nonnegative. It remains to compute the
separation distance and the Kullback divergences of the functions in Ft,L. For f, g ∈ Ft,L with
f 6= g we have

‖g − f‖2 ≥ CL
−t− 3

2

and for f0 = 1 ∈ Ft,L we have by Jensens inequality

K(f, f0) =

∫
SO(3)

f(x) log f(x) dλ(x) ≤
∫
SO(3)

(f(x)− 1)2 dλ(x) ≤ C̃L−2t (23)

with some constant C̃ independent of L. If we would apply Theorem 10 directly to the sets Ft,L
the gained lower bound would be not optimal. However, by applying the Lemma of Koo [22], we
find a subset F̂t,L of Ft,L that has a larger separation distance, but almost the same cardinality.

Lemma 11. Let N ∈ N, N > 8. Then the largest subset ΩN ⊂ {0, 1}N with separation distance√
N
8 , i.e., for all x, y ∈ ΩN we have ‖x− y‖2 ≥

√
N
8 , has the cardinality log |ΩN | − 1 ≥ 0.27N .

Applying Koo’s lemma to Ft,L we end up with a subset F̂t,L ⊂ Ft,L with separation distance

‖g − f‖2 ≥ CL
−t, f, g ∈ F̂t,L, f 6= g,

but almost the same cardinality log |F̂t,L| ≥ 0.27L3. Now we are ready to prove the general lower
bound.

Theorem 12. For the smoothness class of density functions with Sobolev norm of order s >

0 bounded by S > 0 the minimax risk is bounded from below at rate N−
2s

2s+3 , whereas for the
smoothness class of density functions with polynomially decaying Fourier coefficients of order s > 1

2

the minimax risk is bounded from below at rate N−
2s−1
2s+2 , i.e., there are constants C1, C2 > 0 such

that
lim
N→∞

inf
EN

sup
f∈F2

s,S

MISE(EfN ) ·N
2s

2s+3 > C1,

and
lim
N→∞

inf
EN

sup
f∈F∞s,S

MISE(EfN ) ·N
2s−1
2s+2 > C2.

Proof. Let N > 8, t > 0, C > 0 and let F̂t,L be the set defined just above the Theorem with

separation distance CL−t. Setting L = N
1

2t+3 this separation distance becomes

‖f − g‖22 ≥ C
2L−2t = C2N−

2t
2t+3 , f, g ∈ F̂t,L, f 6= g,

i.e. F̂t,L satisfies the first condition of Theorem 10 with ρN = N−
2t

2t+3 and A = C2. On the other
hand we obtain from (23) for the Kullback divergence with f0 = 1,

N

|F̂t,L|
∑

f∈F̂t,L\f0

K(f, f0) ≤ N8C2L−2s = 8C2L3 ≤ 8C2

0.27
log |F̂t,L| .

By adjusting C such that 8C2

0.27 ≤
1
8 the second condition of Theorem 10 is satisfied. Consequently,

inf
EN

sup
f∈F∗

Pf (‖f − EfN‖2 ≥ N
− 2t

2t+3C2) ≥ C̃ > 0.

Thus, setting t = s for the class F2
s,S and t = s − 1

2 for the class F∞s,S , the lower bounds for the
minimax risk claimed in Theorem 10 follow from (22).

11



3. Numerical Experiments

In this section we are going to illustrate our theoretical findings by numerical experiments.
The general concept is as follows:

1. Choose a test density function f ∈ L2(SO(3)).

2. Fix a kernel function ψ ∈ L2(SO(3)).

3. Draw a random sample from the distribution given by f of size N ∈ N.

4. Compute the kernel density estimator f∗ψ.

5. Compute the integrated squared error ‖f − f∗ψ‖
2
2.

6. Compute an estimate of the MISE by repeating M times the steps 3 to 5 and taking the
mean value of the integrated squared errors.

As the test density function f we chose a linear combination of de la Vallée Poussin kernels
ψVP
κ , cf. (17), translated to two arbitrarily chosen locations of the rotation group,

f(x) = 0.2 + 0.7ψVP
90 (Re2,π6 x) + 0.1ψVP

350(Re1, 4π9 x), (24)

where Rη,ω denotes the rotation about axis η ∈ S2 with angle ω. We have f ∈ F2
2,S and f ∈ F∞2.5,S′

with S = 4600 and S′ = 5200. Our numerical experiments showed that increasing the number or
changing the type of the zonal functions ψVP

κ in (24) has only minor influence to our numerical
results.

3.1. Drawing a random sample from a distribution on SO(3)

In this section we briefly describe how to draw a random sample of a radially symmetric
density function on SO(3). How to draw random samples for other classes of distributions, e.g.
the Bingham distribution, can be found in [5]. Let f > 0 be a strictly positive density function
on [0, 1]. Then the corresponding cumulative distribution function

F (y) =

∫ y

0

f(x) dx

defines a diffeomorphism
F : [0, 1]→ [0, 1]

and by the transformation rule we have for any integrable function h : [0, 1]→ R,∫ 1

0

h(y) dy =

∫ 1

0

h(F (x))f(x) dx.

Hence, the distribution of f under F becomes the uniform distribution and we can draw a random
sample from the distribution given by ψ by drawing a random sample of the uniform distribution
on [0, 1] and applying F−1 to it.

Let us now consider a zonal function ψ on the rotation group SO(3). Then ψ depends only
on the rotational angle ω of a rotation Rξ,ω about an arbitrary axis ξ ∈ S2 and we will write
φ(ω) = ψ(Rξ,ω). Using the parametrization of the rotational group by axis and angle the integral
of an integrable function h : SO(3)→ R with respect to ψ may be decomposed as∫

SO(3)

h(x)ψ(x) dλ(x) =

∫ π

0

∫
S2
h(Rξ,ω) dσ(ξ)φ(ω) sin2 ω

2
dω.

Hence, we can draw a random sample Xn ∈ SO(3), n = 1, . . . , N of the distribution given by ψ
by drawing a random sample ξn ∈ S2, n = 1, . . . , N of the uniform distribution on the unit sphere
and drawing a random sample ωn ∈ [0, π], n = 1, . . . , N of the distribution given by the density
f(ω) = φ(ω) sin2 ω

2 and setting Xn = Rξn,ωn .

12



3.2. Numerical computation of the kernel density estimator

Since we want to check our results for large sample sizes, i.e., up to N = 107, we have to apply
fast algorithms to compute the kernel density estimator. An algorithm that allows to evaluate the
kernel density estimator (3) corresponding to N random samples at M arbitrarily chosen nodes
with the numerical complexity O(N+M) is described in [17]. However, as we are only interested in
the L2–error ‖f∗ψ − f‖2 we rest at computing the Fourier coefficients of f and f∗ψ up to polynomial
degree L = 128 and applying Parsevals identity.

Let Xn ∈ SO(3), n = 1, . . . , N be a random sample and let ψ ∈ L2(SO(3)) be a zonal function
with finite Chebyshev expansion (A.13). Then according to (A.4) and (A.12) the kernel density
estimator f∗ψ has the representation

f∗ψ(x) =
1

N

N∑
n=1

L∑
`=0

(2`+ 1)ψ̂(`)U2`
(

cos
ω(x−1Xn)

2

)

=
1

N

N∑
n=1

L∑
`=0

(2`+ 1)ψ̂(`)
∑̀

k,k′=−`

Dk,k′

` (Xn)Dk,k′

` (x).

Hence, the Fourier coefficients of the kernel density estimator f∗ψ are given by the sum

f̂∗ψ(l, k, k′) =
1

N

N∑
n=1

ψ̂(`)
√

2`+ 1Dk,k′

l (Xn)

which is essentially an adjoined Fourier transform on the rotation group SO(3). Algorithms for
the fast Fourier transform on the rotation group as well as for its adjoined transform has been
described in [24] for regular nodes and in [32] for arbitrary nodes. An implementation of the latter
one is available as part of the NFFT library [19].

3.3. Numerical Results

In our numerical experiments we estimated the MISE for sample sizes N = 101 up to N = 107.
For a fixed sample size N we considered different kernel functions. On the one hand we applied
the MISE optimal kernel function as defined in Theorem 3 and compared the numerical estimated
MISE with the theoretical expression found in (8). On the other hand we used the formulae (12),
(15), (13), (18), and (21) for the optimal parameters of the F2

2,S optimal Jackson type kernel (11),
the F∞2.5,S optimal kernel (15), the Dirichlet kernel (9), the Abel Poisson kernel (20), and the de la
Valleé Poussin kernel (17) and computed the MISE for the kernel density estimator with respect to
these kernel functions. Figure 1 shows the Chebyshev coefficients of the kernel functions mentioned
above with optimal kernel parameter for the specific choice of N = 104 random samples. In Figure
2 the relative MISE

MISErel(f
∗
ψ) =

MISE(f∗ψ)

‖f‖22
is plotted for the different kernel functions ψ.

Our numerical experiments show, that the MISE for the optimal kernel almost perfectly fits
our theoretical findings. This indicates that our approaches for generating the random sample
and estimating the MISE work satisfactory. Furthermore, we observe for the F2

2,S optimal, the
F∞2.5,S optimal, the Dirichlet kernel, and the de la Valleé Poussin kernel the predicted convergence

rate N−4/7 with a slightly better constant for the F∞2.5,S optimal kernel function. As predicted

we observe for the Abel Poisson kernel the convergence rate N−2/5. The more rapid convergence
for the Dirichlet kernel starting with N = 106 is due to the fact that we worked with bandlimited
functions.
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Figure 1: This plot shows the Chebyshev coefficients of the kernel functions investigated throughout the numerical
experiments. The kernel parameter has been chosen to be optimal with respect to the test function (24) and
N = 104.
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Figure 2: This plot shows the MISE as a function of the number of random samples N and the kernel used for
kernel density estimation. The theoretical bound as well as the MISE optimal kernel were computed according to
Theorem 3. The parameters for the other kernel functions were chosen MISE optimal as specified in the formulae
(12), (15), (13), (18), and (21).
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3.4. Application to Crystallographic Texture Analysis

The subject of crystallographic texture analysis is the microstructure of polycrystalline mate-
rials. A central question is the relative alignment of the crystals within the specimen. Thanks
to the regular structure of the atom lattice of crystals one can define for each crystal within the
specimen a rotation x ∈ SO(3) that brings its atom lattice in coincidence with a reference lattice
fixed to the specimen. The rotation x ∈ SO(3) is uniquely defined up the symmetries of the atom
lattice. The rotational symmetries of the atom lattice form a finite symmetry group S ⊂ SO(3)
the so called point group. The orientation of a crystal is defined as the coset xS ∈ SO(3)/S of all
symmetrically equivalent rotations.

Electron back scatter diffraction (EBSD) is a technique that uses an electron microscope to
measure orientations XnS ∈ SO(3)/S, n = 1, . . . , N at certain positions pnx , p

n
y ∈ R at the surface

of a specimen [1, 25]. In general, these positions are chosen to form a regular grid. In order to
visualize such an orientation map each rotation is translated into Euler angles which in turn define
the RGB values of a color. Figure 3 shows a typical detail of such an orientation map. One easily
identifies the crystals within the specimen which show up as connected regions of the same color.

Figure 3: The raw EBSD data. Each square corresponds to a single orientation measurement at the surface of the
specimen. The color is computed by translating the rotation into Euler angles and assigning them to the RGB
values. Empty squares are locations of measurement errors.

Obviously, the orientation data are statistically dependent. This problem can be partly over-
come by identifying the grain structure within the measurements, cf. [2], and selecting only one
orientation per grain. Furthermore, the orientation data are usually affected by measurement
errors. For simplicity, we assume here that all the orientation data Xn are exact and statistically
independent, i.e., we completely disregard the spatial dependency. The impact of the absence of
these simplification should be part of an upcoming paper.

An important characteristic of the crystallographic structure of a specimen is the so called
orientation density function f : SO(3)/S → R which is defined as the relative frequency of ori-
entations within the specimen by volume, i.e., for any measurable set A ⊂ SO(3)/S the integral∫
A
f(x) dλ(x) is the volume portion of crystals within the specimen with an orientation in A. The

orientation density function (ODF) of a specimen is the starting point for the calculation of several
other texture characteristics and macroscopic properties of the specimen. Its determination from
experimental measurements is a key problem in crystallographic texture analysis [7, 28, 16].

Estimating the ODF from individual crystal orientations has been discussed in many publi-
cations starting with [8], see also [4, 39] and the references therein. Assuming the orientation
measurements to be a random sample of the unknown ODF f , a canonical estimator is the kernel
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density estimator [31, 11]

f∗ψ(xS) =
1

N

N∑
n=1

ψ̃(X−1n x), xS ∈ SO(3)/S, (25)

where ψ ∈ L2(SO(3)) is a zonal kernel function and

ψ̃(x) =
1

|S|
∑
s∈S

ψ(xs)

is its symmetrized version. Over the years there has been a lot of investigation in the texture
community to find good kernel functions ψ and, most importantly, to determine the number of
measurements which are necessary to estimate the true ODF f up to a given accuracy [3, 6, 39,
26, 10]. However, so far only results for specific model ODFs using numerical or experimental
simulations are known.

In order to apply the results of our paper to crystallographic texture analysis we have to
generalize them to the quotient SO(3)/S, where S ⊂ SO(3) is a finite subgroup of cardinality |S|.

Theorem 13. Let f ∈ L2(SO(3)/S) be the true ODF, X1S, . . . ,XNS ∈ SO(3)/S a corresponding
random sample and let f̃ ∈ L2(SO(3)) be defined by

f̃(x) = f(xS), x ∈ SO(3).

Then we have for any zonal kernel function ψ ∈ L2(SO(3)) and its symmetrized version ψ̃ ∈
L2(SO(3)),

ψ̃(x) =
1

|S|
∑
s∈S

ψ(xs)

the following representation of the MISE

MISE(f∗ψ) = ‖f̃ − f̃ ∗ ψ‖22 +N−1
(
‖ψ̃‖22 − ‖f̃ ∗ ψ‖

2
2

)
.

Proof. First of all we observe that with X1, . . . , XN ∈ SO(3) being a random sample of f̃ ∈
L2(SO(3)), the sequence X1S, . . . ,XNS ∈ SO(3)/S is a random sample of f ∈ L2(SO(3)/S).
Hence, we have for x ∈ SO(3),

f̃∗
ψ̃

(x) =
1

N

N∑
n=1

ψ̃(X−1n x) = f∗ψ(xS)

and, consequently,

Ef∗ψ(xS) = Ef̃∗
ψ̃

(x) = f̃ ∗ ψ̃(x)

=
1

|S|
∑
s∈S

∫
SO(3)

f(yS)ψ(y−1xs) dλ(y)

=
1

|S|
∑
s∈S

∫
SO(3)

f(ysS)ψ(s−1y−1xs) dλ(y) = f̃ ∗ ψ(x).

Together with Lemma 1 we obtain

MISE(f∗ψ) = E ‖f − f∗ψ‖
2
2 = E ‖f̃ − f̃∗

ψ̃
‖22

= ‖f̃ − f̃ ∗ ψ̃‖22 +N−1
(
‖ψ̃‖22 − ‖f̃ ∗ ψ̃‖

2
2

)
= ‖f̃ − f̃ ∗ ψ‖22 +N−1

(
‖ψ̃‖22 − ‖f̃ ∗ ψ‖

2
2

)
.
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Observing further, that for ψ sufficiently sharp, i.e.,∫
SO(3)

ψ(sx)ψ(sx) dλ(x) ≈ 0, s, s′ ∈ S, s 6= s′,

we have
‖ψ̃‖22 ≈ |S|

−1 ‖ψ‖22 ,
we conclude that all the results from section 2 remain true for the quotient SO(3)/S if the number
of random samples N is replaced by Ñ = |S|N . As a consequence, the number of measurements
N required for a given accuracy is the number of measurements Ñ required for the case without
crystal symmetry divided by the number of symmetry elements |S|.

Since nonnegativity of the ODF is often required in texture analysis, we conclude from Section
2.3 that the de la Vallée Poussin kernel ψVP

κ is well suited for ODF estimation. Furthermore, if the
smoothness of the ODF, i.e., ‖f‖2,2, is approximately known formula (18) gives the optimal kernel
parameter and formula (19) can be used to determine the number of measurement necessary to
achieve a given accuracy. If nothing is known about the smoothness of the function f adaptive
estimation procedures has to be applied to determine the smoothness class simultaneously with
the density estimate, cf. [35]. In this paper we mention only least squares cross validation [40],
where the optimal kernel parameter κopt is derived from the data by

κopt = argmin
κ

(
‖f∗ψVP

κ
‖22 +

2

(1−N−1)

(
ψVP
κ (0)− 1

N

N∑
m=1

f∗ψVP
κ

(Xm)

))
. (26)

A more throughout analysis of automatic bandwidth selection methods for kernel density estima-
tion on the rotation group will be part of a forthcoming paper.

We complete our paper by considering a real world EBSD data set of a Ferit specimen measured
by I. Lischewski at the department of physical metallurgy and metal physics, Aachen, Germany.
This data set consists of 124.000 single orientations which subdivides into about 1500 crystals. A
subset of these orientation data is plotted in Figure 3. Using least squares cross validation (26)
we estimate an optimal kernel parameter κ∗ and apply the algorithm presented in Section 3.2 to
efficiently evaluate the corresponding kernel density estimate f∗ψVP

κopt

. The common way to visualize

the estimate f∗ψVP
κopt

(x) of the ODF is to plot it as a function of the Euler angles φ1,Φ, φ2. In order

to sectioning this three dimensional domain we fix σ+ = φ1 + φ2 and plot f with respect to the
remaining parameters Φ and σ− = φ1 − φ2. Such two dimensional sections are plotted in Figure
4 where σ+ is set to the values 0◦, 9◦, . . . , 81◦. More details about these, so called, sigma sections
can be found in [27].

We conclude that the results presented in this paper allow to perform ODF estimation from
EBSD data more efficiently. To make our results easily applicable, all algorithms described in this
paper are freely available as part of the texture analysis toolbox MTEX [15, 18].

Appendix A. Harmonic Analysis on the Rotation Group

We start by giving some basic notations and results on harmonic analysis on the rotation
group SO(3). For a detailed introduction into harmonic analysis on SO(3) compare to [12, 38, 37].
By the rotation group SO(3) we denote the set of all orthogonal, three by three matrices with
determinant one. Any such matrix x ∈ SO(3) can be interpreted as a rotation in the three
dimensional Euclidean space about a certain axis of rotation ξ ∈ S2 and a certain rotational angle
ω = ω(x) = arccos 1

2 (Trx− 1), where Trx denotes the trace of x. Conversely, we denote for every
unit vector ξ ∈ S2 and every angle ω ∈ [0, 2π] the matrix that acts as a rotation about ξ with
angle ω by Rξ,ω ∈ SO(3).

Let e2 = (0, 1, 0)t , e3 = (0, 0, 1)t and let α, γ ∈ [0, 2π), β ∈ [0, π] be three angles. Then we
define the Euler angle parametrization of the rotation group by the surjective mapping

(α, β, γ) 7→ x(α, β, γ), x(α, β, γ) = Re3,αRe2,β Re3,γ .
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Figure 4: Two–dimensional sections of the estimated ODF f∗
ψVP
opt

(x) with σ+ = φ1 + φ2 fixed to the values

0◦, 9◦, . . . , 81◦ and the remaining parameters Φ and φ1 − φ2 describing in polar coordinates the location of a
rotation x ∈ SO(3) within the plot, where φ1,Φ, φ2 are the Euler angles of x ∈ SO(3). Red colors indicate high
values and blue colors low values.

Note, that the Euler angle parametrization is not unique in the identity, i.e., for all α ∈ [0, 2π],
Re2,0 = Re3,αRe2,0Re3,−α. Since SO(3) is a compact topological group it possesses a unique
Haar measure λ such that λ(SO(3)) = 1. In terms of Euler angles the Haar measure has the
representation

λ(A) =

∫
SO(3)

1A(x) dλ(x) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

o

1A(x(α, β, γ)) dα sinβ dβ dγ

where A is an open subset of SO(3) and 1A denotes the corresponding indicator function.

Appendix A.1. Harmonic Functions

Our major function space will be the space of square integrable functions L2(SO(3)) on the
rotation group endowed with the inner product

〈f1, f2〉 =

∫
SO(3)

f1(x)f2(x) dλ(x)

and the corresponding norm ‖f‖2 =
√
〈f, f〉. An important function system on the rotation group

is formed by the so called Wigner-D functions, cf. [37],

Dk,k′

` (x(α, β, γ)) = e−ikαe−ik
′γdk,k

′

` (cosβ), ` ∈ N, k, k′ = −`, . . . , `, (A.1)

with Wigner-d functions dk,k
′

` : [−1, 1]→ R, ` ∈ N, k, k′ = −`, . . . , `,

dk,k
′

` (t) =
(−1)`−k

2`

√
(`+ k)!

(`− k′)!(`+ k′)!(`− k)!

√
(1− t)k′−k
(1 + t)k+k′

∂`−k

∂t`−k
(1 + t)k

′+`

(1− t)k′−`
. (A.2)

The Wigner-D functions can be characterized as the matrix elements of the left regular repre-
sentation of the group SO(3) in L2(S2), i.e., for a certain orthonormal basis of spherical harmonics
Yk` ∈ L2(S2), ` = 0, . . . ,∞, k = −`, . . . , `, they satisfy the representation properties

Dk,k′

` (x) =
〈
Yk
′

` (x−1·),Yk`
〉

=
1

4π

∫
S2
Yk
′

` (x−1 · η)Yk` (η) dσ(η), x ∈ SO(3), (A.3)
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and

Dk,k′

` (xy) =
∑̀
j=−`

Dk,j
` (x)Dj,k′

` (y), x, y ∈ SO(3). (A.4)

In particular, (A.3) implies for all k, k′ = −`, . . . , `, x ∈ SO(3),∣∣∣Dk,k′

` (x)
∣∣∣ ≤ 1. (A.5)

As a consequence of the Peter - Weyl Theorem [38, Sect. 3.3] the Wigner-D functions are orthog-
onal, i.e.,〈

D
k1,k

′
1

`1
, D

k2,k
′
2

`2

〉
=

1

8π2

∫
SO(3)

D
k1,k

′
1

`1
(x)D

k2,k′2
`2

(x) dλ(x) =
1

2`1 + 1
δk1k2δk′1k′2δ`1`2 , (A.6)

`1, `2 ∈ N, k, k′ = −`, . . . , `, and form a basis of L2(SO(3)). In particular, any function f ∈
L2(SO(3)) has a unique series expansion in terms of Wigner-D functions

f =

∞∑
`=0

∑̀
k=−`

∑̀
k′=−`

f̂(`, k, k′)
√

2`+ 1Dk,k′

` (A.7)

with Fourier coefficients f̂(`, k, k′) given by the integral

f̂(`, k, k′) =
〈
f,
√

2`+ 1Dk,k′

`

〉
. (A.8)

The Parsevall identity yields

‖f‖22 =

∞∑
`=0

∑̀
k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣2 . (A.9)

Additionally, a complete system of rotational invariant and irreducible subspaces is given by

Harm`(SO(3)) = span
{
Dk,k′

` | k, k′ = −`, . . . , `
}

which satisfy

L2(SO(3)) = clos

∞⊕
`=0

Harm`(SO(3)),

where clos denotes the closure in L2(SO(3)). Let f, h ∈ L2(SO(3)) be two square integrable
functions on SO(3). Then their convolution

f ∗ h(x) =

∫
SO(3)

f(y)h(y−1x) dλ(y)

defines a function in L2(SO(3)) and we have the well known identity of its Fourier coefficients [24]

f̂ ∗ h(`, k, k′) =
1√

2`+ 1

l∑
j=−`

f̂(`, k, j)ĥ(`, j, k′), ` ∈ N, k, k′ = −`, . . . , `. (A.10)

Appendix A.2. Zonal Functions

A function ψ : SO(3)→ C is called zonal if and only if it satisfies for all x, y ∈ SO(3)

ψ(x) = ψ(yxy−1).
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Since for any x ∈ SO(3) the set of rotations { yxy−1 | y ∈ SO(3) } can be identified with the set
of all rotations y ∈ SO(3) having rotation angle ω(y) = ω(x), a zonal function ψ can be written

as a function of t = cos ω(x)2 . As long as it does not cause any confusion we write for the latter
function

ψ(t) = ψ(x),

where x is an arbitrary rotation with cos ω(x)2 = t. Moreover, we have for ψ ∈ L2(SO(3))

‖ψ‖22 =
1

8π2

∫
SO(3)

|ψ(x)|2 dλ(x) =
4

π

∫ 1

0

|ψ(t)|2
√

1− t2 dt, (A.11)

i.e., t 7→ ψ(t) is a function in L2([0, 1],
√

1− t2 dt).
By the Peter – Weyl Theorem the subspace of zonal functions in L2(SO(3)) is spanned by the

characters χ`, ` ∈ N,

χ`(x) =
∑̀
k=−`

Dk,k
` (x) = U2`(cos ω(x)2 ) =

sin 2`+1
2 ω(x)

sin ω(x)
2

, (A.12)

where U` denotes the Chebyshev polynomials of second kind and degree ` ∈ N. In particular,
the subspace of zonal functions in Harm`(SO(3)) is one dimensional and any zonal function ψ ∈
L2(SO(3)) has a Chebyshev expansion of the form

ψ =

∞∑
`=0

ψ̂(`)(2`+ 1)χ`(x). (A.13)

The Chebyshev coefficients ψ̂(`) are given by

ψ̂(`) =
4

π

1

2`+ 1

∫ 1

0

ψ(t)U2`(t)
√

1− t2 dt (A.14)

and are related to the Fourier coefficients ψ̂(`, k, k′), ` ∈ N, k, k′ = −`, . . . , ` of ψ by

ψ̂(`, k, k′) =

{√
2`+ 1ψ̂(`), k = k′,

0, k 6= k′.
(A.15)

In particular, the Chebyshev coefficients satisfy the Parsevall identity

‖ψ‖22 =

∞∑
`=0

(2`+ 1)2 |ψ̂(`)|2. (A.16)

As a special case of the convolution formula (A.10) the convolution of a function f ∈ L2(SO(3))
with a zonal function ψ ∈ L2(SO(3)) has the Fourier coefficients

f̂ ∗ ψ(`, k, k′) = f̂(`, k, k′)ψ̂(`), ` ∈ N, k, k′ = −`, . . . , `. (A.17)

We will need also the following estimate on the Fourier coefficients of nonnegative functions
on the rotation group.

Lemma 14. Let f ∈ L2(SO(3)), f 6= 0, be an almost everywhere nonnegative function. Then we
have for all ` ∈ N\{0},

1

(2`+ 1)2

∑̀
k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣2 < f̂(0, 0, 0)2.

For zonal functions ψ ∈ L2(SO(3)) with ψ ≥ 0, almost everywhere, and ψ̂(0) > 0 the above
inequality simplifies to

ψ̂(`)2 < ψ̂(0)2, ` ∈ N\{0}.
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Proof. Without loss of generality we may assume f̂(0, 0, 0) =
∫
SO(3)

f(x) dλ(x) = 1. Together with

the assumptions f ≥ 0 almost everywhere this implies that there is an open set A ⊂ SO(3) and an

ε > 0 such that f(x) ≥ ε for all x ∈ A. On the other hand the characters χ`(x) = U2`(cos ω(x)2 ),

` = 1, . . . ,∞ are polynomials in cos ω(x)2 and, hence, for every fixed x ∈ SO(3) we have f ∗χ`(x) 6=
χ`(xy

−1) for almost all y ∈ A. From this we conclude

0 <

∫
SO(3)

(
f ∗ χ`(x)− χ`(xy−1)

)2
f(y) dλ(y)

= (f ∗ χ`)2(x)− 2(f ∗ χ`)2(x) + f ∗ χ2
`(x) = (f ∗ χ2

`)(x)− (f ∗ χ`)2(x).

Integration over SO(3) and making use of Fubini’s Theorem, (A.13) and (A.17) results in

0 <

∫
SO(3)

(f ∗ χ2
`)(x)− (f ∗ χ`)2(x) dλ(x)

=

∫
SO(3)

∫
SO(3)

χ`(xy
−1)2f(y) dλ(y) dλ(x)− ‖f ∗ χ`‖22

= ‖χ`‖22 − ‖f ∗ χ`‖
2
2

= 1− 1

(2`+ 1)2

∑̀
k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣2 .

The second assertion is a direct consequence of (A.15).

Appendix A.3. Sobolev Spaces and Integral Means

In order to quantify the smoothness of functions on the rotation group we define weighted
Sobolev spaces. Let s ≥ 0 and let f ∈ L2(SO(3)) with Fourier coefficients f̂(`, k, k′), ` ∈ N,
k, k′ = −`, . . . , `. Then we define Sobolev semi–norms of f by

‖f‖22,s =

∞∑
`=1

∑̀
k,k′=−`

`s(`+ 1)s
∣∣∣f̂(`, k, k′)

∣∣∣2 ,
‖f‖2∞,s = sup

`∈N\{0}

∑̀
k,k′=−`

`s(`+ 1)s
∣∣∣f̂(`, k, k′)

∣∣∣2 ,
and consider for some S > 0 the smoothness class of probability densities

F2
s,S = { f ∈ L2(SO(3)) | f ≥ 0,

∫
f(x) dλ(x) = 1, and ‖f‖2,s < S }, (A.18)

with finite Sobolev norm and the smoothness class of probability densities

F∞s,S = { f ∈ L2(SO(3)) | f ≥ 0,

∫
f(x) dλ(x) = 1, and ‖f‖∞,s < S }. (A.19)

with polynomial decaying Fourier coefficients. Since for any s ≥ 1
2 and ε > 0,

sup
`∈N\{0}

∑̀
k,k′=−`

`s−
1
2 (`+ 1)s−

1
2

∣∣∣f̂(`, k, k′)
∣∣∣2

≤
∞∑
`=1

∑̀
k,k′=−`

`s−
1
2 (`+ 1)s−

1
2

∣∣∣f̂(`, k, k′)
∣∣∣2

≤

( ∞∑
`=1

`−
1
2−ε(`+ 1)−

1
2−ε

)
sup

˜̀∈N\{0}

˜̀∑
k,k′=−˜̀

˜̀s+ε(˜̀+ 1)s+ε
∣∣∣f̂(˜̀, k, k′)

∣∣∣2
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we have for S > 0 and S′ = S

∞∑
`=1

`−
1
2−ε(`+ 1)−

1
2−ε,

F∞s+ε,S ⊂ F2
s− 1

2 ,S
′ ⊂ F∞s− 1

2 ,S
′ . (A.20)

The final goal of this section is to derive an estimate for the approximation error ‖f − f ∗ ψ‖22
for functions f ∈ F2

s,S and f ∈ F∞s,S and a zonal function ψ ∈ L2(SO(3)) with ψ̂(0) = 1. To this
end we consider the integral means

τtf(x) =
1

4π

∫
S2
f(xRξ,2 arccos t) dσ(ξ), t ∈ [0, 1], x ∈ SO(3),

where Rξ,2 arccos t ∈ SO(3) is the rotation about ξ ∈ S2 with angle 2 arccos t ∈ [0, π] and σ is
the spherical surface measure. The value τtf(x) represents the mean of the function f along all
rotations y that are at distance 2 arccos t from x. In analogy to the spherical Funck Hecke formula,
cf. [29, Theorem 6], we have the following result on integral means of the Wigner-D functions.

Lemma 15. Let t ∈ [0, 1], ` ∈ N, and k, k′ = −`, . . . , `. Then we have

τtD
k,k′

` =
1

2`+ 1
U2`(t)Dk,k′

` .

Proof. First of all we recognize that τtD
k,k′

` may be rewritten by using (A.4) as

τtD
k,k′

` (x) =
1

4π

∫
S2
Dk,k′

` (xRξ,2 arccos t) dσ(ξ)

=
∑̀
j=−`

Dk,j
` (x)

1

4π

∫
S2
Dj,k′

` (Rξ,2 arccos t) dσ(ξ)

=
∑̀
j=−`

Dk,j
` (x)

1

8π2

∫
SO(3)

Dj,k′

` (Ryξ,2 arccos t) dλ(y)

=
∑̀
j=−`

Dk,j
` (x)

1

8π2

∫
SO(3)

Dj,k′

` (yRξ,2 arccos ty
−1) dλ(y)

where the last two terms are independent from the specific choice of ξ ∈ S2. Since the last integral
defines a zonal function with respect to Rξ,2 arccos t that is contained in Harm`(SO(3)) we obtain

1

8π2

∫
SO(3)

Dj,k′

` (yRξ,2 arccos ty
−1) dλ(y) =

{
1

2`+1U2`(t), if j = k′,

0, if j 6= k′

and consequently

τtD
k,k′

` (x) =
1

2`+ 1
U2`(t)Dk,k′

` (x).

Next we proceed as in [41] and show that the family of integral means τt, t ∈ [0, 1] defines an
approximation process as t→ 1. To this end we need the following estimate.

Lemma 16. Let ω ∈ [0, π] and ` ∈ N, ` > 0. Then

(2`+ 1)− sin(2`+1)ω
sinω

(2`+ 1)`(`+ 1)
≤

3− sin 3ω
sinω

6
.
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Proof. Let ω ∈ [0, π] and ` ∈ N, ` > 0. Using the cosine expansion of the Dirichlet kernel and the
Fejér kernel, c.f. [9],

sin(2`+ 1)ω

sinω
= 1 + 2

∑̀
k=1

cos 2kω,
sin2 `ω

sin2 ω
= `+ 2

`−1∑
k=1

(`− k) cos 2kω,

we obtain

(2`+ 1)− sin(2`+ 1)ω

sinω
= 2

∑̀
k=1

(1− cos 2kω) = 4(sin2 ω)
∑̀
k=1

sin2 kω

sin2 ω

= 4(sin2 ω)

(
`(`+ 1)

2
+ 2

∑̀
k=1

k−1∑
m=1

(k −m) cos 2mω

)

= 2(sin2 ω)

(
`(`+ 1) + 2

`−1∑
m=1

(`−m)(`+ 1−m) cos 2mω

)
.

In particular, we have

(2`+ 1)`(`+ 1)

(
3− sin 3ω

sinω

)
− 6

(
(2`+ 1)− sin(2`+ 1)ω

sinω

)
= 4(sin2 ω)

(
(2`+ 1)`(`+ 1)− 3`(`+ 1)− 6

`−1∑
m=1

(`−m)(`+ 1−m) cos 2mω

)

≥ 4(sin2 ω)

(
2(`− 1)`(`+ 1)− 6

`−1∑
m=1

(`−m)(`+ 1−m)

)
= 0.

Lemma 17. Let S > 0, f ∈ F2
2,S and t ∈ [0, 1]. Then

‖f − τtf‖2 ≤
2

3
(1− t2)S.

Proof. For f ∈ F2
2,S and t ∈ [0, 1] we have by Lemma 15 and the normalization U0(t) = 1,

‖f − τtf‖22 =

∞∑
`=0

∑̀
k,k′=−`

(
1− U2`(t)

2`+ 1

)2 ∣∣∣f̂(`, k, k′)
∣∣∣2

≤

(
sup

`∈N\{0}

(2`+ 1)− U2`(t)
`(`+ 1)(2`+ 1)

)2 ∞∑
`=1

∑̀
k,k′=−`

`2(`+ 1)2
∣∣∣f̂(`, k, k′)

∣∣∣2 .
From Lemma 16 we know that for all ω ∈ [0, π] and ` ∈ N, ` > 0,

(2`+ 1)− U2`(cosω)

`(`+ 1)(2`+ 1)
=

(2`+ 1)− sin(2`+1)
sinω ω

(2`+ 1)`(`+ 1)
≤

3− sin 3ω
sinω

6
=

3− U2(cosω)

6
,

and, hence,

‖f − τtf‖22 ≤
(

3− U2(t)

6

)2

S2 =

(
2− 2t2

3

)2

S2.

We conclude our remarks on harmonic analysis on the rotation group by giving the promised
approximation result on ‖f − f ∗ ψ‖22.
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Theorem 18. Let ψ ∈ L2(SO(3)) be a zonal function with ψ̂(0) = 1. Then we have for any
s, S > 0, f ∈ F2

s,S the inequality

‖f − f ∗ ψ‖22 ≤ sup
`∈N\{0}

|1− ψ̂(`)|2

`s(`+ 1)s
S2,

and for any s > 1
2 , f ∈ F∞s,S the inequality

‖f − f ∗ ψ‖22 ≤
∞∑
`=1

|1− ψ̂(`)|2

`s(`+ 1)s
S2.

If f ∈ F2
2,S and ψ ≥ 0. Then the above estimate simplifies to

‖f − f ∗ ψ‖2 ≤
1

2

(
1− ψ̂(1)

)
S. (A.21)

Proof. By (A.7) and (A.17) the convolution f ∗ ψ has the Fourier expansion

f ∗ ψ =

∞∑
`=0

∑̀
k,k′=−`

ψ̂(`)f̂(`, k, k′)
√

2`+ 1Dk,k′

` .

Using Parseval’s identity (A.9) and the assumption ψ̂(0) = 1 we obtain the approximation error

‖f − f ∗ ψ‖22 =

∞∑
`=0

∑̀
k,k′=−`

∣∣∣1− ψ̂(`)
∣∣∣2 ∣∣∣f̂(`, k, k′)

∣∣∣2
=

∞∑
`=1

∑̀
k,k′=−`

|1− ψ̂(`)|2

`s(`+ 1)s
`s(`+ 1)s

∣∣∣f̂(`, k, k′)
∣∣∣2

≤ sup
`∈N\{0}

|1− ψ̂(`)|2

`s(`+ 1)s
‖f‖22,s .

and, analogously,

‖f − f ∗ ψ‖22 ≤
∑

`∈N\{0}

|1− ψ̂(`)|2

`s(`+ 1)s
‖f‖2∞,s .

The last sum is finite since we assumed s > 1
2 .

The proof for the case that ψ is nonnegative we adapted from [41]. First, we notice that for
zonal functions ψ the convolution f ∗ ψ can be written in terms of the integral means τt,

f ∗ ψ(x) =

∫
SO(3)

f(y)ψ(y−1x) dλ(y) =

∫
SO(3)

f(xy)ψ(y) dλ(y)

=
1

π2

∫ 1

0

∫
S2
f(xRξ,2 arccos t)ψ(Rξ,2 arccos t) dσ(ξ)

√
1− t2 dt

=
4

π

∫ 1

0

τtf(x)ψ(t)
√

1− t2 dt.

Together with ψ̂(0) = 1 this allows us to write

‖f − f ∗ ψ‖2 =

∥∥∥∥ 4

π

∫ 1

0

(f − τtf)ψ(t)
√

1− t2 dt

∥∥∥∥
2

.
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Since ψ ≥ 0 we may apply Jensen’s inequality to interchange norm and integral. Using the estimate
of the norm ‖f − τtf‖2 found in Lemma 17 and formula (A.14) for the Chebyshev coefficients of
ψ we obtain

‖f − f ∗ ψ‖2 ≤
4

π

∫ 1

0

‖f − τtf‖2 ψ(t)
√

1− t2 dt

≤ 4

π

∫ 1

0

‖f‖2,2
(1

2
− 1

6
U2(t)

)
ψ(t)

√
1− t2 dt

=
1

2

(
1− ψ̂(1)

)
‖f‖2,2 .

It should be noted, that because of ψ ≥ 0 and Lemma 14 we have 1− ψ̂(1) > 0.

Equation (A.21) of Theorem 18 allows us to find a lower bound of the L2 – norm of a nonneg-
ative zonal function in dependency of its first Chebyshev coefficient.

Lemma 19. Let ψ ∈ L2(SO(3)) a nonnegative zonal function with ψ̂(0) = 1. Then we have

‖ψ‖22 ≥
64
√

2

105
(1− ψ̂(1))−

3
2 .

Proof. By Theorem 18 we have for any function f ∈ L2(SO(3)) with ‖f‖2,s <∞,

‖f − f ∗ ψ‖22 ≤
(1− ψ̂(1))2

4

∞∑
`=0

∑̀
k,k′=−`

`2(`+ 1)2
∣∣∣f̂(`, k, k′)

∣∣∣2 .
Setting for some ` ∈ N, f =

√
2`+ 1Dk,k′

` we obtain

(1− ψ̂(`))2 ≤ (1− ψ̂(1))2

4
`2(`+ 1)2

and, hence,

ψ̂(`) ≥ 1− (1− ψ̂(1))

2
`(`+ 1).

The right hand side is nonnegative whenever L :=
√

2
1−ψ̂(1)

− 1 ≥ `. Applying Parseval’s identity

(A.16) we obtain

‖ψ‖22 ≥
L∑
`=0

(2`+ 1)2ψ̂(`)2 ≥

√
2

1−ψ̂(1)
−1∑

`=0

(2`+ 1)2

(
1− (1− ψ̂(1))

2
`(`+ 1)

)2

≥ 64
√

2

105
(1− ψ̂(1))−

3
2 .

Appendix B. Proofs of Section 2

Proof of Lemma 1. First of all, we note that the mean of the kernel density estimator f∗ψ may be
written as

Ef∗ψ(x) =
1

N

N∑
n=1

Eψ(X−1n x) =

∫
SO(3)

f(y)ψ(y−1x) dλ(y) = f ∗ ψ(x).

Inserting the mean of the kernel density estimator f∗ψ into the definition of the MISE and applying
Fubini’s Theorem we obtain

E ‖f − f∗ψ‖
2
2 = E ‖(f − Ef∗ψ)− (f∗ψ − Ef∗ψ)‖22

= E ‖f − f ∗ ψ‖2 + E ‖f∗ψ − Ef∗ψ‖
2
2 − 2E

〈
f − Ef∗ψ, f∗ψ − Ef∗ψ

〉
= ‖f − f ∗ ψ‖2 + E ‖f∗ψ − Ef∗ψ‖

2
2 .
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Using the independence of the random sample Xn, we have for any x ∈ SO(3)

E(Ef∗ψ(x)− f∗ψ(x))2 =
1

N2

N∑
n=1

E(Eψ(X−1n x)− ψ(X−1n x))2

=
1

N2

N∑
n=1

E(ψ(X−1n x)2 − (Eψ(X−1n x))2)

=
1

N

(
(f ∗ ψ2)(x)− (f ∗ ψ)2(x)

)
,

and, hence, the variation term on the right hand side of the previous sum yields

E ‖f∗ψ − Ef∗ψ‖
2
2 =

∫
SO(3)

E(Ef∗ψ(x)− f∗ψ(x))2 dλ(x)

=
1

N

∫
SO(3)

(f ∗ ψ2)(x)− (f ∗ ψ)2(x) dλ(x)

=
1

N

∫
SO(3)

∫
SO(3)

ψ2(y−1x)f(y) dλ(y) dλ(x)− 1

N
‖f ∗ ψ‖22

=
1

N
‖ψ‖22 −

1

N
‖f ∗ ψ‖22 .

Proof of Theorem 3. Since f ≥ 0, we have by Lemma 14 for all ` ∈ N the inequality 0 ≤ f̂2` ≤ 1.

Hence, each summand in (6) is a quadratic polynomial with respect to ψ̂(`) with minimum at

ψ̂f,N (`) =
Nf̂2`

(N − 1)f̂2` + 1
.

Since, f ∈ L2(SO(3)) we have by the Parseval identity (A.9) that

∞∑
`=0

(2`+ 1)2f̂2` =

∞∑
`=0

∑̀
k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣2 = ‖f‖22 <∞,

which shows that the Chebyshev coefficients ψ̂f,N (`) ≤ Nf̂2` are absolutely summable and, hence,
square summable with respect to the weights (2`+ 1)2. In particular, using the Parseval identity

for zonal functions (A.16) we conclude that the Chebyshev coefficients ψ̂f,N (`), ` ∈ N define a
zonal function ψf,N ∈ L2(SO(3)) such that the MISE of the corresponding kernel density estimator
is optimal. Direct calculation of MISE(f∗ψf,N ) shows (8).

Since, we assumed f ∈ L2(SO(3)) to be not constant and nonnegative almost everywhere we

conclude from Lemma 14 that there is a polynomial degree `0 ∈ N\{0} such that 0 < f̂2`0 < 1.
Hence, there is a constant C > 0 such that

MISE(f∗ψf,N ) ≥ (2`0 + 1)2
f̂2`0(1− f̂2`0)

(N − 1)f̂2`0 + 1
= (2`0 + 1)2

f̂2`0(1− f̂2`0)
N−1
N f̂2`0 +N−1

N−1 ≥ CN−1.

Proof of Theorem 5. We start by deriving an asymptotic expression for the L2–norm of the Jack-
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son type kernel ψJ
L,s,

‖ψJ
L,s‖

2
2 =

bLc∑
`=0

(2`+ 1)2
(

1− `s/2(`+ 1)s/2

Ls/2(L+ 1)s/2

)2

≤ O(L2) + 4

bLc∑
`=0

`2
(

1− `s

Ls

)2

= O(L2) + 4

∫ L

0

`2 − 2
`2+s

Ls
+
`2+2s

L2s
d` = O(L2) + CL3,

and, analogously,

‖ψJ
L,s‖

2
2 ≥ O(L2) + 4

bLc∑
`=0

(`+ 1)2
(

1− (`+ 1)s

(L+ 1)s

)2

= O(L2) + CL3, (B.1)

where C = 4
(

1
3 −

2
s+3 + 1

2s+3

)
= 8s2

3(s+3)(2s+3) . Inserting this asymptotic expression into (10) we

can bound the MISE for any function f ∈ F 2
s,S by

MISE(f∗ψJ
L,s

) ≤ L−2sS2 + (CL3 +O(L2))N−1,

which is asymptotically minimized by

L2s+3
opt =

2s

3
C−1S2N.

Hence, we arrive at the upper bound

lim
N→∞

inf
ψ∈L2(SO(3))

sup
f∈F2

s,S

MISE(fψ) ·N
2s

2s+3 ≤
(

( 2s
3 )−

2s
2s+3 + ( 2s

3 )
3

2s+3

)
C

2s
2s+3S

6
2s+3 .

Next we want to show that this upper bound is strict. Therefore we consider an arbitrary
kernel function ψ with Chebyshev coefficients satisfying 0 ≤ ψ̂(`) ≤ 1 for all ` = 1, . . . ,∞. Let
`0 ∈ N and L ∈ R, L > 0 such that

`0 = argmax
`∈N\{0}

1− ψ̂(`)

`s/2(`+ 1)s/2

and

L−s/2(L+ 1)−s/2 =
1− ψ̂(`0)

`
s/2
0 (`0 + 1)s/2

. (B.2)

Then the Chebyshev coefficients of the Jackson type kernel ψJ
L,s satisfy for all ` = 1, . . . , L,

ψ̂J
L,s(`) = 1− `s/2(`+ 1)s/2

1− ψ̂(`0)

`
s/2
0 (`0 + 1)s/2

≤ 1− `s/2(`+ 1)s/2
1− ψ̂(`)

`s/2(`+ 1)s/2
= ψ̂(`),

where equality is attained for ` = `0. In particular, we have by Parseval’s equality (A.16) ‖ψJ
L,s‖2 ≤

‖ψ‖2.

For S > 0 sufficiently small the function f = 1 + S`
−s/2
0 (`0 + 1)−s/2

√
2`+ 1D0,0

`0
∈ F2

s,S is
nonnegative and we have by Parsevals equality (A.9), (A.17) and (B.2)

‖f‖22 = 1 + S2`−s0 (`0 + 1)−s ≤ 1 + S2
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and

‖f − f ∗ ψ‖22 = f̂(`0, 0, 0)2(1− ψ̂(`0))2 = S2`−s0 (`0 + 1)−s
`s0(`0 + 1)s

Ls(L+ 1)s
= S2L−s(L+ 1)−s

Hence, we obtain by Lemma 1, the fact ‖f ∗ ψ‖2 ≤ ‖f‖2 ≤ 1 + S2, and (B.1) the following lower
bound for the MISE of the function f ,

MISE(f∗ψ) ≥ ‖f − f ∗ ψ‖22 +N−1
(
‖ψ‖22 − ‖f‖

2
2

)
≥ S2L−s(L+ 1)−s +N−1

(
‖ψJ

L,s‖
2
2 − 1− S2

)
≥ S2(L+ 1)−2s +N−1(CL3 +O(L2)).

Minimizing the last term with respect to L we see that the lower bound coincides asymptotically
with the upper bound.

Proof of Theorem 6. Let f ∈ F∞s,S and ψ ∈ L2(SO(3)) a zonal kernel function. Setting the partial

derivative of the upper bound (14) for each Chebyshev coefficient ψ̂(`), ` ∈ N\{0} to zero we
obtain, that the optimal kernel function ψF∞s,S ,N is defined by the Chebyshev coefficients

ψ̂F∞s,S ,N (`) =
NS2

NS2 + (2`+ 1)2`s(`+ 1)s
, ` ∈ N. (B.3)

Given s > 1
2 the corresponding Chebyshev series converges in L2(SO(3)). Plugging in the kernel

function ψF∞s,S ,N into the upper bound we obtain

MISE(f∗ψF∞
s,S

,N
) ≤

∞∑
`=1

(
(1− ψ̂F∞s,S ,N (`))2

`s(`+ 1)s
S2 + (2`+ 1)2ψ̂F∞s,S ,N (`)2N−1

)

=

∞∑
`=1

(2`+ 1)4`s(`+ 1)sS2 + (2`+ 1)2NS4

(NS2 + (2`+ 1)2`s(`+ 1)s)
2 .

Next we make use of the fact
|(`+ 1)s − `s| ≤ O(`s−1)

and of the integral (cf. (3.241.5) in [34])∫ ∞
0

xa−1

(A+ xb)
2 dx = A

a
b−2

π(b− a)

b2 sin aπ
b

, a ≤ 2b, A > 0

to conclude

MISE(f∗ψF∞
s,S

,N
) ≤

∫ ∞
0

(16`2s+4 +O(`2s+3))S2 + (4`2 +O(`))NS4

(NS2 + 4`2s+2)
2 d`

=
2
s−2
s+1 π

(s+ 1) sin 3π
2s+2

S
6

2s+2N−
2s−1
2s+2 +O(N−

2s
2s+2 ).

In order to prove that the upper bound is asymptotically sharp we consider the zonal function
f ∈ F∞s,S ,

f = 1 + S

∞∑
`=1

`−s/2(`+ 1)−s/2
√

2`+ 1D0,0
` ,

which is a density function for S sufficiently small. Then for any zonal kernel function ψ ∈
L2(SO(3)) the bias term becomes

‖f − f ∗ ψ‖22 =

∞∑
`=1

(1− ψ̂(`))2S2`−s(`+ 1)−s = S2
∞∑
`=1

(1− ψ̂(`))2

`s(`+ 1)s
,
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and, hence, the MISE evaluates to

MISE(f∗ψ) =

∞∑
`=1

(1− ψ̂(`))2

`s(`+ 1)s
S2 +

1

N

∞∑
`=0

ψ̂(`)2
(

(2`+ 1)2 − S2

`s(`+ 1)s

)
.

Minimizing the MISE with respect to ψ̂(`) we obtain a similar result as in (B.3), i.e., with (2`+1)2

replaced by (2`+ 1)2 − S2

`s(`+1)s ,

ψ̂(`) =
NS2

NS2 +
(

(2`+ 1)2 − S2

`s(`+1)s

)
`s(`+ 1)s

=
NS2

(N − 1)S2 + (2`+ 1)2`s(`+ 1)s
` ∈ N.

Performing a similar calculation of the MISE as above shows that the upper bound is asymptoti-
cally sharp.
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1971.

[10] P. Eisenlohr and F. Roters. Selecting sets of discrete orientations for accurate texture recon-
struction. Comp. Mat. Sci., 42:670 – 678, 2008.

[11] O. Engler, G. Gottstein, J. Pospiech, and J. Jura. Statistics, evaluation and representation
of single grain orientation measurements. Mater. Sci. Forum, 157 — 162:259–274, 1994.

[12] I. M. Gelfand, R. A. Minlos, and Z. Y. Shapiro. Representations of the Rotation and Lorentz
Groups and Their Applications. Pergamon Press, Oxford, 1963.

29



[13] D. M. Healy, Jr., H. Hendriks, and P. T. Kim. Spherical deconvolution. J. Multivariate Anal.,
67:1 – 22, 1998.

[14] H. Hendriks. Nonparametric estimation of a probability density on a Riemannian manifold
using Fourier expansion. Ann. Statist., 18:832 – 849, 1990.

[15] R. Hielscher. MTEX 3.0 - A texture calculation toolbox. http://mtex.googlecode.com.

[16] R. Hielscher, D. Potts, J. Prestin, H. Schaeben, and M. Schmalz. The Radon transform on
SO(3): A Fourier slice theorem and numerical inversion. Inverse Problems, 24:025011, 2008.

[17] R. Hielscher, J. Prestin, and A. Vollrath. Fast summation of functions on SO(3). Math.
Geosci., 42:773 – 794, 2010.

[18] R. Hielscher and H. Schaeben. A novel pole figure inversion method: specification of the
MTEX algorithm. Journal of Applied Crystallography, 41(6):1024–1037, Dec 2008.

[19] J. Keiner, S. Kunis, and D. Potts. Using NFFT3 - a software library for various nonequispaced
fast Fourier transforms. ACM Trans. Math. Software, 36:Article 19, 1 – 30, 2009.

[20] P. T. Kim. Deconvolution density estimation on SO(N). Ann. Statist., 26:1083 – 1102, 1998.

[21] P. T. Kim, J. Y. Koo, and Z. M. Luo. Weyl eigenvalue asymptotics and sharp adaptation on
vector bundles. J. Multivariate Anal., 100(9):1962–1978, 2009.

[22] J. Y. Koo. Optimal rates of convergence for nonparametric statistical inverse problems. Ann.
Statist., 21:590 – 599, 1993.

[23] J. Y. Koo and P. T. Kim. Asymptotic miinmax bounds for stochastic deconvolution over
groups. IEEE Trans. Inform. Theory, 54:289 – 298, 2008.

[24] P. J. Kostelec and D. N. Rockmore. FFTs on the rotation group. J. Fourier Anal. Appl.,
14:145 – 179, 2008.

[25] K. Kunze, S. I. Wright, B. L. Adams, and D. J. Dingley. Advances in automatic EBSP single
orientation measurements. Textures and Microstructures, 20:41 – 54, 1993.

[26] V. Luzin. Optimization of texture measurements. iii. statistical relevance of ODF represented
by individual orientations. Mater. Sci. Forum, 273 – 275:107 – 112, 1998.

[27] S. Matthies, K. Helming, and K. Kunze. On the representation of orientation distributions
in texture analysis by sigma-sections. II. consideration of crystal and sample symmetry, ex-
amples. Phys. Status Solidi (B), 157:489 – 507, 1990.

[28] S. Matthies, G. Vinel, and K. Helmig. Standard Distributions in Texture Analysis, volume 1.
Akademie-Verlag Berlin, 1987.

[29] C. Müller. Spherical Harmonics. Springer, Aachen, 1966.

[30] B. Pelletier. Kernel density estimation on Riemannian manifolds. Statist. Probab. Lett., 73:297
– 304, 2005.
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