
UNCORRECTED P
ROOF

PROD. TYPE: COM
PP:1-19 (col.fig.: nil) CAM5540 MODC+

ED: MG
PAGN: VD -- SCAN: v4soft

ARTICLE IN PRESS

Journal of Computational and Applied Mathematics ( ) –
www.elsevier.com/locate/cam

1

Kernel-based methods for inversion of the Radon transform on
SO(3) and their applications to texture analysis3

K.G. van den Boogaarta, R. Hielscherb, J. Prestinc,∗, H. Schaebenb

aDepartment of Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, D-17489 Greifswald, Germany5
bInstitute of Geology, Freiberg University of Mining and Technology, Bernhardt-von-Cotta Straße 2, D-09596 Freiberg, Germany

cInstitute of Mathematics, University of Lübeck, Wallstraße 40, D-23560 Lübeck, Germany7

Abstract

Texture analysis is used here as short term for analysis of crystallographic preferred orientation. Its major mathematical objective9
is the determination of a reasonable orientation probability density function and corresponding crystallographic axes probability
density functions from experimentally accessible diffracted radiation intensity data. Since the spherical axes probability density11
function is modelled by the one-dimensional Radon transform for SO(3), the problem is its numerical inversion. To this end, the
Radon transform is characterized as an isometry between appropriate Sobolev spaces. The mathematical foundations as well as first13
numerical results with zonal basis functions are presented.
© 2005 Published by Elsevier B.V.15

1. Introduction

The analysis of crystallographic preferred orientations by means of orientation density functions and pole density17
functions is a widely used method in texture analysis (cf. [2,10]). On the other hand, the zonal basis function method
(cf. [9]) or kriging method with covariance functions (cf. [17]) has already found its way into many fields of application.19
Utilizing the zonal basis function method to interpolate pole figure intensities and to reconstruct the orientation density
function of a specimen we introduce a new method in addition to hitherto used harmonic method (cf. [2]), WIMV21
(cf. [10]), maximum entropy (cf. [13]), or component fit method (cf. [8]). The main advantage of the zonal basis
function method is that it can deal with X-ray intensities that are measured for arbitrary arranged crystal and specimen23
directions. In particular, the method is not restricted to data that are measured in pole figure notation, i.e., for a few
crystal directions and many specimen directions.25

We consider a polycrystalline specimen that consists only of one type of crystals. To this type one can associate a
certain point group G ⊆ SO(3) characterizing its symmetries (cf. [15]). Furthermore, each crystal provides a canonical27
crystal coordinate system which is well defined up to actions of the point group G. Fixing a specimen coordinate system
we define the orientation of a crystal to be the rotation g ∈ SO(3)/G that realizes the basis transformation from the29
crystal coordinate system to the specimen coordinate system. Directions relative to the crystal coordinate system we
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will call crystal directions and directions relative to the specimen coordinate system specimen directions. Hence, every1
orientation of a crystal rotates crystal directions onto specimen directions.

The orientation density function (ODF) f : SO(3)/G → R is defined as the relative frequency of orientations by3
volume within a specimen, whereas the pole density function (PDF) P : S2/G × S2 → R is defined as the relative
frequency P(h, r) of orientations g ∈ SO(3)/G rotating the crystal direction h ∈ S2/G onto the specimen direction5
r ∈ S2. The ODF f and the PDF P of a specimen are connected by the crystallographic X-ray transform on SO(3)/G.
Denote G(h, r)={g ∈ SO(3)/G | r ∈ gh} the set of all orientations g ∈ SO(3)/G that maps a given crystal direction7
h ∈ S2/G onto a given specimen direction r ∈ S2. With the help of the one-dimensional Radon transform on SO(3)/G,

R: C(SO(3)/G) → C(S2/G × S2),

Rf (h, r) :=
∫

G(h,r)

f (g) dg
9

we define the crystallographic X-ray transform

X: C(SO(3)/G) → C(S2/G × S2),

Xf (h, r) := 1
2 (Rf (h, r) + Rf (−h, r)).11

The fundamental result of Bunge (cf. [2, Section 4.2]) states that

P(h, r) = Xf (h, r).13

For a fixed crystal direction h ∈ S2/G the PDF P(h, ·): S2 → R is called pole figure. Conversely, fixing specimen
directions r ∈ S2 we obtain inverse pole figures P(·, r) which allows to investigate the anisotropy of the specimen.15

There are several experiments like X-ray, neutron, and synchrotron diffraction that allows to measure the PDF of a
specimen for a sequence of crystal and specimen directions. To such a list of PDF measurements (Pi)

N
i=1 with respect17

to crystal and specimen directions (hi, ri)
N
i=1 we refer as to a set of X-ray intensities (Pi, hi, ri)

N
i=1. It is a central

problem in texture analysis to reconstruct the true PDF P and the true ODF f from a set of X-ray intensities. Since19
both, ODF and PDF, are not uniquely determined by the data set we have to make additional assumptions to obtain
approximations f̃ and P̃ of the true density functions. It seems quite natural to ask for an ODF f̃ and a PDF P̃ that21
fit best to the pole figure data and are sufficiently smooth. In order to specify these conditions we introduce in Section
2.3 Sobolev spaces H(SO(3)) and H(S2 × S2) on SO(3) and S2 × S2, respectively. Taking the Sobolev norm as a23
measure of smoothness such functions f̃ and P̃ are given as the solution of the minimization problems

1

N

N∑
i=1

(Xf (hi, ri) − Pi)
2 + �‖f ‖2

H(SO(3)) → min (f ∈ H(SO(3))) (1.1)
25

and

1

N

N∑
i=1

(P (hi, ri) − Pi)
2 + �‖P ‖2

H(S2×S2)
→ min (P ∈ H(S2 × S2)). (1.2)

27

Here, the regularization parameter � > 0 determines the balance between fitting to the given data set and smoothness
of the solution.29

In Theorem 2.11 we present conditions which ensure that the Radon transform is an isometry between the Sobolev
spaces H(SO(3)) and H(S2 × S2). Moreover, in the Theorems 2.15 and 2.17 we characterize the Sobolev spaces31
H(SO(3)) and H(S2 × S2) which turn out to be reproducing kernel Hilbert spaces. In this case the solutions of the
minimization problems (1.1) and (1.2) can be identified as the solutions of corresponding systems of linear equations.33
Thus, applying Sobolev norms as measures of smoothness of the ODF and its X-ray transform and Corollary 2.18 as
the major result of Section 2 leads to a novel numerical inversion of the Radon and the restricted X-ray transform by35
approximation with zonal basis functions which is presented in Section 3. It is emphasized that these basis functions
are radial with respect to the fibres {ghi = ri | g ∈ SO(3)}. Hence, our ODF is constructed by a linear combination37
of fibre ODFs. Let us note that the fibre-symmetric radial basis functions are very much related to the ridge functions
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discussed by Donoho (cf. [4]). The Radon transform of the ridge functions as well as of the fibre-symmetric radial1
basis functions provides a system of well-localized functions in frequency and space.

In Section 2.5 we give an example of a zonal basis function which allows an explicit representation of the recalculated3
ODF and its X-ray transform. Furthermore, in Theorem 3.3 we prove an error estimate and finally we discuss some
numerical results obtained with a Matlab implementation of the method.5

2. The Radon transform on SO(3)

Throughout this paper three domains of integration S2, SO(3) and G[h, r] := {g ∈ SO(3) | gh = r} (cf. Section7
2.2) appear frequently. These domains we assume to be equipped with its canonical Haar measure, normed to one.

2.1. Basis systems on S2 and SO(3)9

We start our considerations by introducing some notations and fundamental results concerning functions on S2 and
SO(3) (cf. [12]). The starting point of all work on the sphere are the Legendre Polynomials Pl of degree l ∈ N0 given11
by

Pl (t) = 1

2l l!
dl

dt l
((t2 − 1)l) (t ∈ [−1, 1])13

and the associated Legendre Polynomials Pk
l , l, k ∈ N0 with k� l given by

Pk
l (t) =

(
(l − k)!
(l + k)!

)1/2

(1 − t2)k/2 dk

dtk
Pl (t) (t ∈ [−1, 1]).15

In terms of the associated Legendre Polynomials we define an orthonormal basis of the space of spherical harmonics
Harml (S

2) of degree l ∈ N0 by17

Yk
l (�, �) = √

2l + 1P|k|
l (cos �)eik� (k = −l, . . . , l).

In this formula (�, �) are the polar coordinates of a point on the sphere S2. Since L2(S2) = closL2(
⊕∞

l=0 Harml (S
2))19

the function system (Yk
l )l∈N0,k=−l,...,l provides an orthonormal basis of L2(S2). Corresponding to this basis we define

the Fourier coefficients of a function f ∈ L2(S2) to be21

f̂ (l, k) =
∫

S2
f (�)Yk

l (�) d� (l ∈ N0, k = −l, . . . , l).

For the vector of functions (Y−l
l , . . . ,Yl

l )
t we will write just Yl . The well-known addition theorem can now be viewed23

as

(2l + 1)Pl (�
t�) = Yl (�)tYl (�). (2.1)25

There are different ways to introduce basis systems in L2(SO(3)). The way we start with is based on representation
theory. It is well known that for l ∈ N0 the translations27

Tl : SO(3) → GL(Harml (S
2)),

Tl (g)f (�) = f (g�) (2.2)

form a complete system of irreducible finite dimensional representations of the group SO(3). Let Tl = (T
i,j
l )li,j=−l be29

the matrix corresponding to the operators Tl . Now the Peter–Weyl theorem and its conclusions (cf. [16, Sections 2.3.4
and 2.3.5]) states that for i, j = −l, . . . , l the normalized matrix elements

√
2l + 1T

i,j
l with31

T
ij
l (g) = 〈Yi

l (g ·),Yj
l (·)〉L2(S2) =

∫
S2

Yi
l (g�)Y

j
l (�) d� (g ∈ SO(3)) (2.3)
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define an orthonormal basis of L2(SO(3)). The matrix elements T
i,j
l are also called generalized spherical harmonics1

of degree l (cf. [2, Section 11.1]). The definition of Tl can also be written as

Tl(g)Yl (�) = Yl (g�) (g ∈ SO(3), � ∈ S2).3

Let us look at the basis functions on SO(3) from a different view. Denote S3 the three-dimensional unit sphere
embedded in the space of quaternions H. Then observing that q, −q ∈ S3 ⊆ H define the same rotation R3 
 x �→5
qxq we see that S3 is a two-fold covering of SO(3). Since the Haar measure on SO(3) is the induced measure of the
spherical measure on S3 the space L2(SO(3)) is isomorphic to {f ∈ L2(S3) | ∀q ∈ S3 : f (−q)=f (q)} and therefore7
the direct sum of the spaces of spherical harmonics Harm2l (S

3) of even degree 2l (cf. [12]). In particular, for l�0 the
normalized matrix entries T

i,j
l , i, j = −l, . . . , l provide an orthonormal basis of Harml (S

3). As a consequence we can9
formulate the addition theorem for the generalized spherical harmonics (cf. [12, Theorem 2]).

Theorem 2.1. Let Tl be defined as in Eq. (2.3). Then Tr Tl(g) = ∑l
i=−l T

i,i
l (g) depends only on the rotation angle11

�(g) of g. In particular, it yields

Tr Tl(g) = sin (((2l + 1)/2)�(g))

sin( 1
2 �(g))

= U2l

(
cos

(
�(g)

2

))
,

13

where Ul denotes the Chebychev polynomial of second kind and degree l.

A function on SO(3) depending only on the distance to some fixed rotation is called radial basis function. From15
Theorem 2.1 we conclude that every square integrable radial basis function on SO(3) has a Fourier expansion in terms
of Chebychev polynomials of even degree.17

2.2. The Radon transform as an L2-operator

The Radon transform appears in many guises and different settings. A comprehensive introduction can be found in19
Helgason [7]. The standard Radon transform on R2 maps each continuous function with compact support f ∈ Cc(R

2)

onto its integrals along all straight lines. It was shown by Radon that knowing all these integrals one can reconstruct21
f. The orientation density function defined on the group of rotations SO(3) plays the role of f in texture analysis.
The paths of integration are all one-dimensional great circles G[h, r] = {g ∈ SO(3) | gh = r} parameterized by all23
pairs (h, r) ∈ S2 of crystal and specimen directions. Since the integral over G[h, r] of a continuous function varies
continuously with respect to h and r we can define the one-dimensional Radon transform on SO(3) as the operator25

R̃: C(SO(3)) → C(S2 × S2),

(R̃f )(h, r) =
∫

G[h,r]
f (g) dg.

The path of integration G[h, r] can be identified with the set of quaternions27

Q[h, r] = {q(�) = cos(�)q1 + sin(�)q2 | � ∈ [0, �)},
where q1 and q2 are two quaternions representing rotations mapping h onto r-first about the axis h+r and second about29
the axis h × r . For a detailed presentation of the geometry of the spherical Radon transform, the reader is referred to
Meister and Schaeben [11]. In terms of quaternions, the definition of R̃ rewrites as31

R̃f (h, r) = 1

�

∫ �

0
f (q(�)) d�. (2.4)

This integration formula has two important special cases. Let f be a radial symmetric ODF, i.e., f (g) depends only33
on the rotation angle �(g−1g0) of g−1g0 for a fixed g0 ∈ SO(3). Then there is a function f̃ such that for all g ∈ SO(3)

one has f (g) = f̃ (cos(�(g−1g0)/2). In this case Eq. (2.4) becomes (cf. [14])35

R̃f (h, r) = 1

�

∫ �

0
f̃ (cos(�) cos( (g0h, r)/2) d� (h, r ∈ S2).
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Let f be a fibre symmetric ODF, i.e., there are crystal and specimen directions h0, r0 ∈ S2 and a function f̃ such that1
f (g) = f̃ (〈gh0, r〉0). We can obtain an integration formula from Eq. (2.4) by determining 〈gh0, r0〉 from q(�). Fixing
h, r ∈ S2 we conclude from (qh0q, r) = (h0, qrq) = h0h for all q ∈ H with qhq =r that {qh0q | q ∈ Q[h, r]}3
perform a small circle around r with radius h0h (cf. [11]). Therefore, we can choose a parameterization q(�), � ∈
[−�, �) of Q[h, r] such that the angle at r in the spherical triangle r, r0, qh0qequals �. By spherical trigonometry we5
compute the distance

〈qh0q, r0〉 = cos( hh0) cos( rr0) + sin( hh0) sin( rr0) cos(�).7

Finally, we find the integration formula

R̃f (h, r) = 1

�

∫ �

0
f̃ (cos( hh0) cos( rr0) + sin( hh0) sin( rr0) cos(�)) d�. (2.5)9

The next lemma on the Radon transform of the generalized spherical harmonics T
i,j
l seems to be a well-known result

(cf. [2, Section 11.5.2]). However, we were not able to locate a complete proof of it. Therefore, we show11

Lemma 2.2. Let l ∈ N0 and i, j ∈ −l, . . . , l. The Radon transform of T
i,j
l is given by

R̃T
i,j
l (h, r) = 1

2l + 1
Yi

l (r)Y
j
l (h) (h, r ∈ S2).13

Proof. From Eq. (2.3) we obtain for arbitrary l�0, −l� i, j � l

R̃T
i,j
l (h, r) =

∫
G[h,r]

T
i,j
l (g) dg

=
∫

G[h,r]

∫
S2

Yi
l (gy)Y

j
l (y) dy dg

=
∫

S2
Y

j
l (y)

∫
G[h,r]

Yi
l (gy) dg dy. (2.6)

15

Since for every y, h, r ∈ S2 we have {gy | g ∈ G[h, r]} = {x ∈ S2 | 〈x, r〉 = 〈h, y〉} the inner integral rewrites as∫
G[h,r]

Yi
l (gy) dg = 1

2�
√

1 − 〈h, y〉2

∫
{x∈S2 | 〈x,r〉=〈h,y〉}

Yi
l (x) dx dy

=Pl (〈h, y〉)Yi
l (r).17

Here, we have applied the spherical mean value theorem on harmonic functions (cf. [5, equation 3.6.15]). Together
with Eq. (2.6) we obtain19

R̃T
i,j
l (h, r) =

∫
S2

Y
j
l (y)Pl (〈h, y〉)Yi

l (r) dy = 1

2l + 1
Yi

l (r)Y
j
l (h).

The last equality is due to the fact that (2l + 1)Pl is the reproducing kernel of Harml (S
2) (cf. [5, Lemma 3.1.4]). �21

Remark 2.3. Eq. (2.6) from Lemma 2.2 may be written as

R̃Tl(h, r) = 1

2l + 1
Yl (r)Yl (h)t (h, r ∈ S2).23

An application to Tr Tl gives

(R̃Tr Tl)(h, r) = 1

2l + 1

l∑
i=−l

Yi
l (r)Y

i
l (h) = Pl (〈h, r〉).

25

Lemma 2.2 states in particular that R̃ defines a ‖·‖L2(SO(3)) → ‖·‖L2(S2×S2) bounded operator on a dense subset of
L2(SO(3)). Therefore, the following definition is valid.27
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Definition 2.4. The unique extension of the operator1

R̃: C(SO(3)) → C(S2 × S2),

(R̃f )(h, r) =
∫

G[h,r]
f (g) dg

to a bounded operator R: L2(SO(3)) → L2(S2 × S2) is called one-dimensional Radon transform on SO(3).3

We define also an averaged version of the Radon transform, known as crystallographic X-ray transform.

Definition 2.5. The operator5

X: L2(SO(3)) → L2(S2 × S2),

(Xf )(h, r) = 1
2 (Rf (h, r) + Rf (−h, r))

is called crystallographic X-ray transform.7

The crystallographic X-ray transform provides the connection of the ODF f and the PDF P of a specimen (cf. [2,
Section 4.2, 10, Section 9.2]), i.e., we have Xf = P .9

From Lemma 2.2 we conclude that the Radon transform as well as the crystallographic X-ray transform has the
following singular value decomposition.11

Corollary 2.6. Let l ∈ N0 and Yl , Tl be defined as in Section 2.1. Then the Radon transform provides the singular

value decomposition (
√

2l + 1T
ij
l ,Yi

lY
j
l , 1/

√
(2l + 1)).13

In particular, the X-ray transform has the singular value decomposition

X
√

2l + 1T
i,j
l (h, r) =

{ 1√
2l + 1

Yi
l (r)Y

j
l (h) if l is even,

0 if l is odd.15

Remark 2.7. The singular value decomposition of X immediately shows that X has a nonempty kernel spanned by
the odd generalized spherical harmonics and therefore is not invertible. Furthermore, we can characterize the image of17
L2(SO(3)) to be

XL2(SO(3)) =
⎧⎨
⎩P(h, r) =

∑
l∈2N0

l∑
i,j=−l

c
i,j
l Yi

l (r)Y
j
l (h)

∣∣∣∣∣∣
∑

l∈2N0

l∑
i,j=−l

(2l + 1)(c
i,j
l )2 < ∞

⎫⎬
⎭ .

19

2.3. The Radon transform as an isometry between Sobolev spaces

So far we have defined the Radon transform on C(SO(3)) and L2(SO(3)). However, in order to characterize the21
Radon transform as an isometry which we can invert later on we have to deal with Sobolev spaces on SO(3) and
S2 × S2. Our constructions are based on Sobolev spaces defined on the two-dimensional sphere S2. For more details23
and further reading we refer to Cheney and Light [3, Section 32] and Freeden et al. [5, Section 5.1].

Definition 2.8. Let A = (Al)
∞
l=0 be a nonnegative sequence. Denote ℵ(A) the set of all indices of nonzero elements of25

a sequence A = (Al) in R. The completion of the set of all functions f ∈ L2(SO(3)) with

f (g) =
∑

l∈ℵ(A)

l∑
i,j=−l

√
2l + 1f̂ (l, i, j)T

i,j
l (g)

27
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satisfying
∑

l∈ℵ(A)

∑l
i,j=−l A

2
l |f̂ (l, i, j)|2 < ∞ with respect to the inner product1

〈f, g〉H(A,SO(3)) =
∞∑
l=0

l∑
i,j=−l

A2
l f̂ (l, i, j)ĝ(l, i, j)

is called Sobolev space H(Al, SO(3)). Here, f̂ (l, i, j) denote the Fourier coefficients of f with respect to the L2-basis3
(
√

2l + 1T
i,j
l ).

Now we are going to define Sobolev spaces on S2 × S2 which are suitable for the PDF interpolation problem. As5
we have mentioned in Remark 2.7, the PDF of a specimen has a Fourier expansion of the form

P(h, r) =
∑
l∈N0

l∑
i,j=−l

P̂ (l, i, j)Yi
l (r)Y

j
l (h) (r, h ∈ S2).

7

Hence, we define a class of Sobolev spaces on S2 × S2 of functions that have this particular Fourier expansion.

Definition 2.9. Let B = (Bl)
∞
l=0 be a nonnegative sequence. The Sobolev space H(Bl, S

2 × S2) is defined as the9
completion of the set of all functions

P(h, r) =
∑

l∈ℵ(B)

l∑
i,j=−l

P̂ (l, i, j)Yi
l (r)Y

j
l (h) (h, r ∈ S2)

11

satisfying
∑

l∈ℵ(B)

∑l
i,j=−l B

2
l |P̂ (l, i, j)|2 < ∞ with respect to the inner product

〈P, Q〉H(Bl,S
2×S2) =

∞∑
l=0

l∑
i,j=−l

B2
l P̂ (l, i, j)Q̂(l, i, j).

13

Here P̂ (l, i, j) denote the Fourier coefficients of P with respect to the L2-basis (Yi
lY

j
l ), l=0, 1, 2, . . . ,, i, j =−l, . . . , l.

Remark 2.10. It is a direct consequence of Definitions 2.8 and 2.9 that the sequences (((
√

2l + 1)/Al)T
i,j
l ) with15

l ∈ ℵ(A), i, j = −l, . . . , l and (B−1
l Yi

lY
j
l ) with l ∈ ℵ(B), i, j = −l, . . . , l define orthonormal bases of the Sobolev

spaces H(Al, SO(3)) and H(Bl, S
2 × S2).17

For a suitable choice of the coefficients (Al) and (Bl) we can extend the Radon transform to an isometry between
the corresponding Sobolev spaces.19

Theorem 2.11. Let A= (Al) be a nonnegative sequence and Bl =
√

2l + 1Al . Then the unique extension of the Radon
transform21

(RT
i,j
l )(h, r) = 1

2l + 1
Yi

l (r)Y
j
l (h) (l ∈ N0, i, j = −l, . . . , l)

to a bounded operator R:H(Al, SO(3)) → H(Bl, S
2 × S2) is an isometry.23

Proof. We have only to show that R preserves the inner product for all basis functions (((
√

2l + 1)/Al)T
i,j
l ) with

l ∈ ℵ(A), i, j = −l, . . . , l of H(Al, SO(3)). For l, k ∈ ℵ(A), i, j = −l, . . . , l and m, n = −k, . . . , k we calculate25 〈
R

√
2l + 1

Al

T
i,j
l ,R

√
2k + 1

Ak

T
m,n
k

〉
H(Bl,S

2×S2)

=
〈

1√
2l + 1Al

Yi
lY

j
l ,

1√
2k + 1Ak

Ym
k Y

n
k

〉
H(Bl,S

2×S2)

=
〈

1

Bl

Yi
lY

j
l ,

1

Bk

Ym
k Y

n
k

〉
H(Bl,S

2×S2)

= �l,k�i,m�j,n. �
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Remark 2.12. Let H(Al, SO(3)) and H(Bl, S
2 × S2) be as in Theorem 2.11 and Al = Bl = 0 for l odd. Then the1

extension of the crystallographic X-ray transform X to H(Al, SO(3)) provides an isometry onto H(Bl, S
2 × S2).

Hence, X−1 exists.3

2.4. The Radon transform as an operator in reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces turn out to be a basic tool for solving approximation problems. We present here5
only the most basic facts. For a more detailed representation, see for example, Freeden et al. [5, Section5.2].

Definition 2.13. A Hilbert space (H, 〈·, ·〉H) is called a reproducing kernel Hilbert space if its elements f ∈ H are7
functions on a set 	 and for each x ∈ 	 the evaluation functional f �→ f (x) is continuous.

Let H be a reproducing kernel Hilbert space. The Riesz representation theorem implies that there is a well-defined9
function K: 	 × 	 → R such that for all f ∈ H and x ∈ 	 we have

f (x) = 〈f, K(x, ·)〉H.11

The function K is called reproducing kernel of H. Since K(x, y) = 〈K(x, ·), K(y, ·)〉H = K(y, x) each reproducing
kernel is a symmetric function. Let X = {xi}Ni=1 be a set of N distinct points in 	 and c = (ci)

N
i=1 some sequence in R.13

Then the nonnegativity of the norm implies

N∑
i,j=1

cicjK(xi, xj ) =
〈

N∑
i=1

ciK(xi, ·),
N∑

i=1

ciK(xi, ·)
〉
H

�0. (2.7)
15

This property of reproducing kernels is called positive definiteness. From Eq. (2.7) it follows in particular that the
matrix (K(xi, xj ))

N
i,j=1 is nonnegative definite.17

We will also need the following lemma concerning isometries between reproducing kernel Hilbert spaces.

Lemma 2.14. Let H1,H2 be two reproducing kernel Hilbert spaces with domains 	1 and 	2, respectively, and19
A:H1 → H2 an isometry. Then the reproducing kernels K1 and K2 fulfill the equation

AAK1 = K2,21

where AAK1 denotes the function on 	2 × 	2 we obtained applying A to both arguments of K1.

Proof. Let f ∈ H1 and �2 ∈ 	2. Then A�2 : f �→ Af (�2) defines a linear functional on H1 and we obtain23

Af (�2) = 〈f, A�2K1〉H1
= 〈Af , AA�2K1〉H2

= 〈Af , (AAK1)(�2, ·)〉H2
.

Hence, AAK1 is the reproducing kernel of H2. �25

The next theorem characterizes all Sobolev spaces on SO(3) which are reproducing kernel Hilbert spaces. An
analogous result for S2 was proved by Freeden et al. [5, Lemma 5.2.2].27

Theorem 2.15. Let A= (Al)
∞
l=0 be a nonnegative sequence. The Sobolev space H(Al, SO(3)) is a reproducing kernel

Hilbert space, if and only if29

∑
l∈ℵ(A)

(2l + 1)2

A2
l

< ∞. (2.8)

Furthermore, its reproducing kernel is given by the radial basis function31

KSO(3)(g1, g2) =
∑

l∈ℵ(A)

2l + 1

A2
l

Tr Tl(g
−1
1 g2).
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Proof. Let A = (Al) be a nonnegative sequence satisfying inequality (2.8). According to Definition 2.13 we have to1
show that the evaluation functionals are bounded. Applying the Cauchy–Schwarz inequality to the Fourier expansion
of an arbitrary function f ∈ H(Al, SO(3)) we obtain3

|f (g)|2 =
∣∣∣∣∣∣

∑
l∈ℵ(A)

l∑
i,j=−l

√
2l + 1f̂ (l, i, j)T

i,j
l (g)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

∑
l∈ℵ(A)

l∑
i,j=−l

Alf̂ (l, i, j)

√
2l + 1

Al

T
i,j
l (g)

∣∣∣∣∣∣
2

�

⎛
⎝ ∑

l∈ℵ(A)

l∑
i,j=−l

A2
l |f̂ (l, i, j)|2

⎞
⎠

⎛
⎝ ∑

l∈ℵ(A)

2l + 1

A2
l

l∑
i,j=−l

|T i,j
l (g)|2

⎞
⎠ . (2.9)

Using the definition (2.3) and Parseval’s relation the last sum reduces to5

l∑
i,j=−l

|T i,j
l (g)|2 =

l∑
i,j=−l

|〈Yi
l ,Y

j
l (g·)〉L2(S2)|2 =

l∑
j=−l

‖Yj
l (g ·)‖2

L2(S2)
= 2l + 1.

Since the first sum in (2.9) is the Sobolev norm of f we obtain the final estimate7

|f (g)|2 �

⎛
⎝ ∑

l∈ℵ(A)

(2l + 1)2

A2
l

⎞
⎠ ‖f ‖2

H(Al,SO(3)).

Hence,H(Al, SO(3)) is a reproducing kernel Hilbert space. Moreover, it follows from the fact that the Cauchy–Schwarz9
inequality is strict that condition (2.8) is necessary for H(Al, SO(3)) to be a reproducing kernel Hilbert space.

Since Tr Tl �Tr Tl(Id) = 2l + 1 the function11

KSO(3)(g1, g2) =
∑

l∈ℵ(A)

2l + 1

A2
l

Tr Tl(g
−1
1 g2)

is well defined for all sequences (Al) satisfying (2.8). In order to show that KSO(3) is a reproducing kernel of13
H(Al, SO(3)) we verify for every f (g) = T

m,n
k (g) with k ∈ ℵ(A) and m, n = −k, . . . , k that

〈f, KSO(3)(g, ·)〉H(Al,SO(3)) =
〈
T

m,n
k ,

∑
l∈ℵ(A)

2l + 1

A2
l

Tr Tl(g)tTl

〉
H(Al,SO(3))

=
∑

l∈ℵ(A)

l∑
i,j=−l

2l + 1

A2
l

T
i,j
l (g)〈T m,n

k , T
i,j
l 〉H(Al,SO(3))

= T
m,n
l (g).15

Hence, KSO(3) possesses the reproducing property on a dense subset of H(Al, SO(3)) and therefore on the whole
Sobolev space. �17

Remark 2.16. Let a = (al)
∞
l=0 be a nonnegative sequence, Al = √

(2l + 1)/al for l ∈ ℵ(a) and Al = 0 otherwise.
Then Theorem 2.15 implies that19

∑
l∈ℵ(a)

(2l + 1)al < ∞
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is equivalent to the condition that H(Al, SO(3)) is a reproducing kernel Hilbert space with the reproducing kernel1

KSO(3)(g1, g2) =
∑

l∈ℵ(a)

al Tr Tl(g
−1
1 g2).

In particular, this implies that KSO(3) is positive definite.3

Analogously to Theorem 2.15 we characterize the reproducing kernel Hilbert spaces on S2 × S2 which correspond
to the Sobolev spaces H(Bl, S

2 × S2).5

Theorem 2.17. Let B = (Bl)
∞
l=0 be a nonnegative sequence. The Sobolev space H(Bl, S

2 × S2) is a reproducing
kernel Hilbert space, if and only if7

∑
l∈ℵ(B)

(2l + 1)2

B2
l

< ∞. (2.10)

Furthermore, its reproducing kernel is given by9

KS2×S2(h1, r1; h2, r2) =
∑

l∈ℵ(B)

(2l + 1)2

B2
l

Pl (h1 · h2)Pl (r1 · r2).

Proof. The proof follows the same ideas as the proof of Theorem 2.15. In order to show that the evaluation functionals11
are bounded we apply the Cauchy–Schwarz inequality and the addition Theorem 2.1 to the Fourier expansion of an
arbitrary function P ∈ H(Bl, S

2 × S2) and obtain13

|P(h, r)|2 =
∣∣∣∣∣∣

∑
l∈ℵ(B)

l∑
i,j=−l

P̂ (l, i, j)Yi
l (r)Y

j
l (h)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

∑
l∈ℵ(B)

l∑
i,j=−l

BlP̂ (l, i, j)B−1
l Yi

l (r)Y
j
l (h)

∣∣∣∣∣∣
2

�

⎛
⎝ ∑

l∈ℵ(B)

l∑
i,j=−l

B2
l |P̂ (l, i, j)|2

⎞
⎠

⎛
⎝ ∞∑

l=0

l∑
i,j=−l

B−2
l |Yi

l (r)|2|Yj
l (h)|2

⎞
⎠

�

⎛
⎝ ∑

l∈ℵ(B)

(2l + 1)2

B2
l

⎞
⎠ ‖P ‖2

H(Bl,S
2×S2)

.

Hence, H(Bl, S
2 × S2) is a reproducing kernel Hilbert space. The necessity of the constraint (2.10) results from the15

strictness of the Cauchy–Schwarz inequality.
It is straightforward to see that for every sequence (Bl) satisfying (2.10) the function17

KS2×S2(h1, r1; h2, r2) =
∑

l∈ℵ(B)

(2l + 1)2

B2
l

Pl (h1 · h2)Pl (r1 · r2)

is well defined. In order to prove that KS2×S2 is the reproducing kernel we verify for every P(h, r)=Yi
l (r)Y

j
l (h) with19

l ∈ ℵ(B) and i, j ∈ −l, . . . , l that

〈P, KS2×S2(h, r; ·)〉H(Bl,S
2×S2) =

〈
Yi

lY
j
l ,

∑
k∈ℵ(B)

k∑
m,n=−k

B−2
k Yn

k(r)Y
n
k Y

m
k (h)Ym

k

〉
H(Bl,S

2×S2)

=Yi
l (r)Y

j
l (h). �21
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Fig. 1. The squared singularity kernel for 
 = 0.7. From the left: K, RK and RRK .

Combining the results of the previous two sections we obtain1

Corollary 2.18. Let A= (Al)
∞
l=0 be some nonnegative sequence such that H(Al, SO(3)) defines a reproducing kernel

Hilbert space and Bl = √
2l + 1Al . Then H(Bl, S

2 × S2) defines a reproducing kernel Hilbert space on S2 × S2.3
Moreover, the restriction of the Radon transform on H(Al, SO(3)) defines an isometry onto H(Bl, S

2 × S2). In
particular, the reproducing kernels satisfy the equality5

KS2×S2 = RRKSO(3). (2.11)

Proof. The space H(Bl, S
2 × S2) defines a reproducing kernel Hilbert space which follows as a direct consequence7

of Theorems 2.15 and 2.17. Theorem 2.11 states that R:H(Al, SO(3)) → H(Bl, S
2 × S2) is an isometry. Eq. (2.11)

was shown in Lemma 2.14 for arbitrary isometries between reproducing kernel Hilbert spaces. �9

2.5. The squared singularity kernel

For the numerical work we are interested in kernel functions K on SO(3) with closed formulas for RK and RRK .11
However, it turns out that it is difficult to find an explicit formula for the double Radon transform RRK of a given
kernel K on SO(3). Since for solving the ODF to PDF inversion problem we will need explicitly only RK and RRK13
we can start with a simple function for RK . Let us consider a kernel function defined as the square of the well-known
singularity kernel (cf. [5, Section 5.6]). This kernel we call squared singularity kernel which is given for 
 ∈ (0, 1) by15

RK(h, r, g) =
(

ln
1 + 


1 − 


)−1 2


1 − 2
〈gh, r〉 + 
2 (h, r ∈ S2, g ∈ SO(3)).

The parameter 
 determines the concentration of the kernel. Note that we do not have an explicit formula for K: SO(3)×17
SO(3) → R. However, by the isomorphismR the kernel K is uniquely defined. In Fig. 1 is plotted the squared singularity
kernel K as a function of � = �(g−1

1 g2), the Radon transformed kernel RK(�) as a function of � = 〈gh, r〉 and the19
double Radon transformed kernel RRK(�h, �r ) as a function of �h = h1h2, �r = r1r2.

Next we show that this kernel serves as a reproducing kernel.21

Theorem 2.19. The Legendre coefficients al of the squared singularity kernel RK satisfy the inequality

0 < al �
l−1 ln
1 + 


1 − 

for l = 0, 1, 2, . . . .23

In particular, K is the reproducing kernel of H(
√

(2l + 1)/al, SO(3)).
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Proof. For abbreviation let � = 〈gh, r〉 and Q(�) = (1 − 2
� + 
2)−1. In order to show the positivity we use the1
Rodriguez’s formula for Legendre polynomials to obtain for l�0

al =
∫

S2
RK(g, h, r)Pl (gh · r) dr =

∫ 1

−1
Q(�)Pl (�) d�

= 1

2l l!
∫ 1

−1
Q(l)(�)(1 − �2)l d�

= 1

2l l!
∫ 1

−1

2l l!
l

(1 + 
2 − 2
�)l+1 (1 − �2)l d� > 0.
3

Using 0�1 − �2 �1 + 
2 − 2
� we conclude

al =
∫ 1

−1

(
1 − �2

(1 + 
2 − 2
�)

)l

l

(1 + 
2 − 2
�)
d��

∫ 1

−1


l

(1 + 
2 − 2
�)
d� = 
l−1 ln

1 + 


1 − 

.

5

According to Remark 2.16 the assertion is proved. �

Finally, we give an explicit formula for the double Radon transform of the squared singularity kernel.7

Theorem 2.20. Let 
 ∈ (0, 1) and RK be the squared singularity kernel. Then its double Radon transform is given by

RRK(h1, r1; h2, r2) = 2
((1 + 
)/(1 − 
))−1

(1 − 2
 cos(�h + �r ) + 
2)1/2(1 + 2
 cos(�h − �r ) + 
2)1/2 ,
9

where we substituted �h = h1h2 and �r = r1r2.

Proof. In order to calculateRRK(h1, r1; h2, r2) forhi, ri ∈ S2 we set for abbreviationA = cos( (h1, h2)) cos( (r1, r2))11
and B = sin( (h1, h2)) sin( (r1, r2)). Since for every fixed h1, r1 ∈ S2 and all g ∈ SO(3) the Radon transformed
kernel RK(h1, r1, g) depends only on 〈gh, r〉 we can apply integration formula (2.5) and obtain13

RRK(h1, r1; h2, r2) = 1

2�

∫ �

−�

C

1 − 2
(A + B cos(�)) + 
2 d�

= C

(1 − 2
(A + B) + 
2)1/2(1 + 2
(A − B) + 
2)1/2 ,

which gives the desired result. �15

3. The zonal basis function method

The zonal basis function method is a widely used method for solving approximation problems based on reproducing17
kernel Hilbert spaces. The idea is to formulate the approximation problem as a minimization problem. Using the theory
of reproducing kernel Hilbert spaces, the solution of the minimization problem can be identified with the solution of19
a system of linear equations. If the zonal basis functions used for approximation are positive definite, the system of
linear equations is regular. A characterization of all positive definite functions on SO(3) is given by Gutzmer (cf. [6]).21
However, in our setting of reproducing kernel Hilbert spaces positive definiteness is automatically guaranteed (cf. Eq.
(2.7)).23

3.1. Approximation of the PDF

In this section we will deal with the PDF approximation problem. Let (Pi, hi, ri)
N
i=1 be a set of pole figure intensities25

of some unknown ODF f : SO(3) → R+, i.e., for all i = 1, . . . , N it yields Xf (hi, ri) ≈ Pi . We are looking for a
function P̃ : S2 × S2 → R that approximates the data and is an admissible PDF, i.e., there is a function f̃ : SO(3) → R27
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with Xf̃ = P̃ . The question how well the function f̃ approximates the true ODF f will be addressed in Section 3.4. It1
should be stressed that the approach presented here does not observe the nonnegativity property neither of the PDF nor
of the ODF.3

Let us fix � > 0 and let some reproducing kernel Hilbert space H(Bl, S
2 × S2) be given with Bl = 0 for all odd l

and with reproducing kernel KS2×S2 . We consider the minimization problem5

J (P ) := 1

N

N∑
i=1

(P (hi, ri) − Pi)
2 + �‖P ‖2

H(Bl,S
2×S2)

→ min

with constraints P ∈ H(Bl, S
2 × S2) and

∫
S2×S2

P(h, r) dh dr = 1. (3.1)

The regularization parameter � determines the balance between smoothness and fitting the measured data points. In7
terms of the reproducing kernel KS2×S2 , the minimization functional can be written as

J (P ) = 1

N

N∑
i=0

(〈P, KS2×S2(hi, ri , ·)〉H(Bl,S
2×S2) − Pi)

2 + �‖P ‖2
H(Bl,S

2×S2)
.

9

In order to observe the constraint
∫
S2×S2 P(h, r) dh dr=1 we introduce the normalized kernel K̂S2×S2 =KS2×S2 −B−2

0
by subtracting the integral over the kernel, i.e., the zeroth Fourier coefficient. It is well known (cf. [17, Theorem 1.3.1])11
that a solution P̃ of the minimization problem (3.1) has the representation

P̃ (h, r) = 1 +
N∑

i=1

ciK̂S2×S2(hi, ri; h, r) with some c = (ci)
N
i=1 ∈ RN . (3.2)

13

Let P = (Pi)
N
i=1, e = (1, . . . , 1)t and let

M = (K̂S2×S2(hi, ri; hj , rj ))
N
i,j=1 (3.3)15

be the Gram matrix of the minimization problem (3.1). Then the minimization functional can be written as

J (c) = 1

N
‖Mc + e − P ‖2 + �(1 + ctMc).17

Since the reproducing kernel KS2×S2 is positive definite the matrix (1/N)M + � Id is regular for all � > 0. Therefore,
the minimization problem has an unique solution P̃ (h, r) given by19

c =
(

1

N
M + � Id

)−1

(P − e) (3.4)

and Eq. (3.2). Since P̃ ∈ H(Bl, SO(3)) and Bl = 0 for l odd there is an even function f̃e ∈ H((2l + 1)−1/2Bl, SO(3))21
such that Xf̃e = P̃ (cf. Remark 2.12). Moreover, we obtain this function fe by applying the inverse Radon transform
(or equivalently the inverse X-ray transform) to P̃23

f̃e(g) = 1 +
N∑

i=1

ciR
−1KS2×S2(hi, ri; g). (3.5)

3.2. Approximation of the ODF25

As in Section 3.1 we consider a set of pole figure intensities (Pi, hi, ri)
N
i=1. But this time we ask for the ODF, i.e.,

for a function f̃ : SO(3) → R satisfying27

Xf (hi, ri) ≈ Pi, i = 1, . . . , N . (3.6)

First of all we recall Corollary 2.6 saying that the crystallographic X-ray transform maps all odd generalized spherical29
harmonics to zero. This implies that beside the nonnegativity property there is no chance to determine the odd part of
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an ODF from its X-ray transform. Therefore, the PDF-to-ODF reconstruction problem on the basis of the pole figure1
intensities (Pi, hi, ri)

N
i=1 can be split into

1. Estimation of the even part f̃e of the true ODF f such that Xf̃e(hi, ri) ≈ Pi for all i = 1, . . . , N .3
2. Estimation of the odd part f̃o of the true ODF f such that f̃e + f̃o �0.

In this paper we will deal only with the first step. For the second step, the reader is referred to e.g., Boehlke [1].5
Let � > 0. In order to find an estimate of the even part of f̃ we fix an arbitrary reproducing kernel Hilbert space

H(Al, SO(3)) defined on SO(3) and consider the minimization problem7

J (f ) := 1

N

N∑
i=1

(Xf (hi, ri) − Pi)
2 + �‖f ‖2

H(Al,SO(3)) → min

with constraints f ∈ H(Al, SO(3)) and
∫

SO(3)

f (g) dg = 1. (3.7)

Let KSO(3) be the reproducing kernel of H(Al, SO(3)) and K̂SO(3) =KSO(3) −A−2
0 its normalization, i.e., for all g0 ∈9

SO(3) the integral
∫

SO(3)
K̂SO(3)(g, g0) dg vanishes. Corollary 2.18 states that for every pair h, r ∈ S2 the functional

f �→ Rf (hi, ri) is bounded on H(Al, SO(3)). Since for every bounded linear functional L on H(Al, SO(3)) we have11
Lf = 〈f, LKSO(3)〉H(Al,SO(3)) the minimization functional J can be expressed as

J (f ) = 1

N

N∑
i=0

(〈f,XK(hi, ri , ·)〉H(Al,SO(3)) − Pi)
2 + �‖f ‖2

H(Al,SO(3)).
13

As in Section 3.1 we conclude that every solution f̃ of the minimization problem (3.7) has the representation

f̃ (g) = 1 +
N∑

i=1

ciXK̂SO(3)(hi, ri , g) with some c = (ci)
N
i=1 ∈ RN .

15

As a consequence we see that the solution of the minimization problem (3.7) is an even function, i.e., all odd order
Fourier coefficients are zero. Let P = (Pi)

N
i=1, e = (1, . . . , 1)t and let17

M = (〈(XK̂SO(3))(hi, ri; ·), (XK̂SO(3))(hj , rj ; ·)〉H(Al,SO(3)))
N
i,j=1

= ((XXK̂SO(3))(hi, ri; hj , rj ))
N
i,j=1 (3.8)

be the Gram matrix of the minimization problem (3.7). Then the penalty functional can be written as19

J (c) = 1

N
‖Mc + e − P ‖2 + �(1 + ctMc)

and the solution of the minimization problem is given by21

c =
(

1

N
M + � Id

)−1

(P − e) (3.9)

and Eq. (3.6).23
Comparing the definitions (3.3) and (3.8) for the Gram matrices we see that for KS2×S2 =XXKSO(3) both minimiza-

tion problems (3.1) and (3.7) lead to the same system of linear equations (3.4) and (3.9) and therefore have the same25
solution f̃e = f̃ . However, in the minimization problem (3.1) we claimed just that H(Bl, S

2 × S2) is a reproducing27
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kernel Hilbert space, i.e.,
∑

l∈ℵ(B) (2l + 1)2/B2
l < ∞, whereas in the minimization problem (3.7) we claimed that1

H(Al, SO(3)) is a reproducing kernel Hilbert space, i.e.,
∑

l∈ℵ(A) (2l + 1)2/A2
l = ∑

l∈ℵ(B) (2l + 1)3/B2
l < ∞.

3.3. Crystal symmetries3

So far we have not considered crystal symmetries at all. However, they are not only necessary to obtain correct
results, but also improve the accuracy of the calculation.5

Let G ⊆ SO(3) be the point group of a crystal and H(Al, SO(3)), H(Bl, S
2 × S2) two reproducing kernel Hilbert

spaces as defined in Section 2.4 such that RH(Al, SO(3)) =H(Bl, S
2 × S2). For both we define the symmetrization7

operator

SG:H(SO(3)) → H(SO(3)) and SG:H(S2 × S2) → H(S2 × S2),

SGf (g) =
∑
gS∈G

f (ggS), SGP (h, r) =
∑
gS∈G

P (gSh, r)
9

and denote its image by HG(SO(3)) and HG(S2 × S2), respectively. Let KSO(3) and KS2×S2 be the reproducing
kernels of H(SO(3)) and H(S2 × S2). It is easy to see that HG(SO(3)) and HG(S2 × S2) are reproducing kernel11
Hilbert spaces and their reproducing kernels are given by SGKSO(3) and SGKS2×S2 . The calculation

(Rf (·g−1
S ))(h, r) =

∫
{g∈SO(3) | gh=r}

f (gg−1
S ) dg

=
∫

{g′∈SO(3) | g′gSh=r}
f (g′) dg′ = (Rf )(gSh, r)

13

shows that SG commutes with the Radon transform. Hence, there exists a restriction RG of R to HG(SO(3)) and
HG(S2 × S2). In particular, the diagram15

H(SO(3))
R−→ H(S2 × S2)

↓ SG ↓ SG

HG(SO(3))
RG−→ HG(S2 × S2)

commutes. It is straightforward to check that we can apply the zonal basis function method from Sections 3.1 and 3.217
to the PDF and ODF reconstruction problem involving the crystal symmetry G just by replacing KSO(3) by SGKSO(3)

and KS2×S2 by SGKS2×S2 .19

3.4. Error estimates

Let throughout this section (Pi, hi, ri)
N
i=1 be a set of pole figure data. Let furthermoreH(Al, SO(3)) andH(Bl, S

2×21
S2) be two reproducing kernel Hilbert spaces with reproducing kernels KS2×S2 and KSO(3) such thatRH(Al, SO(3))=
H(Bl, S

2 × S2). For every pair of directions (h′, r ′) ∈ S2 × S2, the proximity to the data points can be described by23

C(h′, r ′) = min
i=1,...,N

(KS2×S2(0, 0) − KS2×S2( h′hi, r ′ri)). (3.10)

Suppose f is the true ODF and P the true PDF of the specimen. Here, we want to perform an error estimate for the25
reconstructed PDF P̃ and the reconstructed even part of the ODF f̃e, obtained as solutions of the minimization problems
(3.1) and (3.7).27

It is quite natural that we have to postulate additional properties for the true ODF in order to get error bounds.
Following the general framework of interpolation in reproducing kernel Hilbert spaces (cf. [5, Theorem 6.2.1]) we can29
prove the following theorem claiming the ODF to have a bounded Sobolev norm.

Theorem 3.1. Let f ∈ H(Al, SO(3)) be the ODF of a specimen, P ∈ H(Bl, S
2 × S2) the corresponding PDF31

and (Pi, hi, ri)
N
i=1 a set of pole figure intensities. Denote by P̃ the solution of the minimization problem 3.1 and
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by � = maxi=1,...,N ‖P̃ (hi, ri) − Pi‖ the approximation error in the data points. Then for every pair of directions1
(h′, r ′) ∈ S2 × S2 we have

|P(h′, r ′) − P̃ (h′, r ′)|2 � max
i=1,...,N

�2
i + 2C(h′, r ′)‖P ‖2

H(Bl,S
2×S2)

��2 + 2C(h′, r ′)‖f ‖2
H(Al,SO(3)), (3.11)3

where C(h′, r ′) is defined as in Eq. (3.10).

Proof. For every i = 1, . . . , N , the triangle inequality yields5

|P̃ (h′, r ′) − P(h′, r ′)|� |P̃ (h′, r ′) − P̃ (hi, ri)| + |P̃ (hi, ri) − P(hi, ri)| + |P(hi, ri) − P(h′, r ′)|.
Writing7

P̃ (h′, r ′) − P̃ (hi, ri) = 〈K(h′, r ′; ·) − K(hi, ri; ·), P̃ 〉H(Bl,S
2×S2),

P(h′, r ′) − P(hi, ri) = 〈K(h′, r ′; ·) − K(hi, ri; ·), P 〉H(Bl,S
2×S2)

we obtain by the Cauchy–Schwarz inequality9

|P̃ (h′, r ′) − P̃ (hi, ri)|�‖K(h′, r ′; ·) − K(hi, ri; ·)‖H(Bl,S
2×S2)‖P̃ ‖H(Bl,S

2×S2),

|P(h′, r ′) − P(hi, ri)|�‖K(h′, r ′; ·) − K(hi, ri; ·)‖H(Bl,S
2×S2)‖P ‖H(Bl,S

2×S2).

For the first norm in the product we obtain the estimate11

〈K(h′, r ′; ·) − K(hi, ri; ·), K(h′, r ′; ·) − K(hi, ri; ·)〉H(Bl,S
2×S2)

= K(h′, r ′; h′, r ′) + K(hi, ri; hi, ri) − 2K(hi, ri; h′, r ′)
= 2(K(0, 0) − K( h′h; r ′r))
= 2C(h′, r ′).

Since P̃ is the smoothest approximation of the data its Sobolev norm is bounded by‖P̃ ‖H(Bl,S
2×S2) �‖P ‖H(Bl,S

2×S2) �13
‖f ‖H(Al,SO(3)) and Eq. (3.11) follows. �

Remark 3.2. Let G be a point group and SG the symmetrization operator as defined in Section 3.3. Let further P̃ be15
the solution of the interpolation problem (3.1) with respect to the symmetrized kernel SGKS2×S2 . Then Theorem 3.1
remains valid if we replace for all h′, r ′ ∈ S2 the factor C(h′, h′) by the symmetrized version17

CG(h′, r ′) = min
h∈Gh′ C(h, r ′). (3.12)

Defining19

CN = max
r,h∈S2

CG(h, r) (3.13)

we obtain a measure of the tightness of the data points relatively to the reproducing kernel Hilbert spaceH(Bl, S
2×S2).21

With this constant equation, (3.11) rewrites as

‖P − P̃ ‖2∞ ��2 + 2CN‖f ‖2
H(Al,SO(3)). (3.14)23

The Sobolev norm of an ODF f̃ can be interpreted as follows. Let f be the true ODF of a specimen with texture
index ‖f ‖2

L2(SO(3))
= ∫

SO(3)
|f (g)|2 dg. Then the Sobolev norm of the convolution with the reproducing kernel yields25

‖f ∗ K(Id, ·)‖H(Al,SO(3)) = ‖f ‖L2(SO(3)). On the other hand, the measurement of a PDF always involves a smoothing
process, i.e., a convolution with a kernel function. That means we do not reconstruct the true PDF or ODF but a27
smoothed version of it and the Sobolev norm of the smoothed ODF is given by the texture index of the true ODF.
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Fig. 2. The error bounds CN |f |2
H(Al ,SO(3))

corresponding to the Sobolev space H((2l + 1)/2�)
l , SO(3)) as a function in 
 for a fixed ODF and

proximity coefficients �h ∈ {�/4,�/8,�/16,�/32} (from top to bottom).

In order to investigate the dependence of the error estimate from the kernel function we consider the unimodal1
distributed ODF f (g) = (1 − �2)/(1 − 2� cos( g)+ �2)3/2 with �= 0.7. In Fig. 2 the error bound CN‖f ‖2

H(Al,SO(3))

corresponding to the Sobolev space H(Al, SO(3)) with coefficients Al = ((2l + 1)/2�)
l is plotted as a function of 
3
and for proximity coefficients �h ∈ {�/4, �/8, �/16, �/32}.

In the next theorem we prove an error bound for the reconstructed even part f̃e of the ODF f.5

Theorem 3.3. Let fe ∈ H(Al, SO(3)) be the even part of an ODF, P ∈ H(Bl, S
2 ×S2) the corresponding PDF and

(Pi, ri , hi)
N
i=1 a set of pole figure intensities. Denote by CN the constant defined in Eq. (3.13), by f̃e the solution of the7

minimization problem 3.7 and by �i = |Xf̃ (hi, ri) − Pi | the approximation error in the data points. Then we have

‖fe − f̃e‖H(A
1/2
l ,SO(3))

�2(�2 + 2CN‖f ‖2
H(Al,SO(3)))

1/2‖f ‖H(Al,SO(3)). (3.15)9

Proof. For an even function 
 ∈ H(Al, SO(3) and � = X
 ∈ H(Bl, S
2 × S2) we compute

‖
‖2
H(A

1/2
l ,SO(3))

= ‖�‖2
H(B

1/2
l ,S2×S2)

=
∞∑
l=0

l∑
i,j=−l

Bl |�̂(l, i, j)|2

�

⎛
⎝ ∞∑

l=0

l∑
i,j=−l

|�̂(l, i, j)|2
⎞
⎠

⎛
⎝ ∞∑

l=0

l∑
i,j=−l

B2
l |�̂(l, i, j)|2

⎞
⎠

�‖�‖2
L2(S2×S2)

‖�‖2
H(Bl,S

2×S2)
�‖X
‖2∞‖
‖2

H(Al,SO(3)).11

Setting 
= fe − f̃e and applying Eq. (3.14) to ‖X
‖∞ we obtain the first part of the assertion. Since f̃e is the solution
of the minimization problem (3.7) we finish with ‖fe − f̃e‖H(Al,SO(3)) �2‖fe‖H(Al,SO(3)) �2‖f ‖H(Al,SO(3)). �13

Remark 3.4. If additionally to Theorem 3.3 the space H(A
1/2
l , SO(3)) is a reproducing kernel Hilbert space then

there is a constant C > 0 such that ‖g‖∞ �C‖f ‖
H(A

1/2
l ,SO(3))

. In particular, it follows that every even ODF f can be15
approximated arbitrary well, at least if the data are sufficiently dense on S2 × S2.
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Table 1
The relative errors of the estimated PDF and ODF to f with respect to the squared singularity kernel with 
 = 0.7 and different sets of X-ray
intensities

X-ray intensities
‖P − P̃ ‖∞

‖P ‖∞
‖fe − f̃e‖∞

‖fe‖∞
‖f − f̃ ‖∞

‖f ‖∞
5 × 74 0.12 0.17 0.22
5 × 180 0.04 0.11 0.16
5 × 390 0.04 0.08 0.13
5 × 770 0.04 0.03 0.07

4. Numerical results1

In this section we present numerical results we obtained applying the zonal basis function method to generate pole
figure intensities. The de la Vallée Poussin kernel is defined by3

K = B(3/2, 1/2)

B(3/2, 
 + 1/2)
cos2
 �

2
,

where the parameter 
 describes the concentration of K. As a test ODF we choose the superposition of two de la Vallée5
Poussin-shaped components with an uniformly distributed background

f̃ (g) = 0.3 +
2∑

i=1

�iK(gi, g),
7

where the first component is centred in g1 = Id and has the parameter 
1 = 15 and the second component has centre
in g2 = (0, 10, 0) (Euler angles) and parameter 
2 = 76. The coefficients are set to �1 = 0.6 and �2 = 0.1. Hence, the9
ODF f̃ is nearly unimodal distributed with none radial symmetric peak in the identical rotation. Finally, we obtain a
cubic symmetric ODF11

f (g) =
∑
ĝ∈T

f̃ (gĝ)

by summation of f̃ over the cubical point group T. Using the fact that13

(RK)(g, h, r) = (1 + 
) cos2
 (gh, r)

2

the PDF of f can be easily calculated. In order to simulate an X-ray diffraction experiment, we calculate the pole figures15
to the crystal directions (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1) and (2, 2, 1) and a set of approximately equidistant
distributed specimen directions and add to them someN(0, 0.052)-distributed noise. In Table 1 the relationship between17
the number of X-ray intensities and the relative error is presented. In all cases we used the regularization parameter
� = 1.19

5. Conclusions and outlook

We presented a method that allows to reconstruct the PDF and the even part of an ODF from a set of X-ray intensities21
by superposition of fibre ODFs and corresponding PDFs, respectively. The advantage of the method is that it can deal
with X-ray intensities of arbitrary arranged crystal and specimen directions. Moreover, the solution is adapted to this23
arrangement in the sense that in regions where the crystal and specimen directions are dense the solution is effected by
many kernel functions and therefore approximates more exactly than in regions of coarser measurements.25

A second advantage of the zonal basis function method is the simple numerical implementation. The problem reduces
to solve a system of linear equations where the matrix is symmetric positive definite. In the special case that the grid27
(hi, ri) provides for each h a regular structure on S2 the matrix turns out to be of block Toeplitz structure.
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A disadvantage of the presented method is that it does not consider the nonnegativity property of the PDF. However,1
the general approximation theorem of the zonal basis function method implies that the negative minimum of the
estimated PDF is bounded by a constant which converges to the true minimum if more X-ray intensities are measured.3
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