
 Material Behavior: Texture
and Anisotropy
Ralf Hielscher ⋅ David Mainprice ⋅ Helmut Schaeben
Applied Functional Analysis, Technical University Chemnitz, Chemnitz, Germany
Géosciences UMR CNRS , Université Montpellier , Montpellier, France
Geosciences Mathematics and Informatics, Technical University Bergakademie,
Freiberg, Germany

 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Scientific Relevance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Rotations and Crystallographic Orientations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Parametrizations and Embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Kernels and Radially Symmetric Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Crystallographic Symmetries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Geodesics, Hopf Fibres, and Clifford Tori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Totally Geodesic Radon Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Properties of the Spherical Radon Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Texture Analysis with Integral Orientation Measurements: Texture
Goniometry Pole Intensity Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Texture Analysis with Individual Orientation Measurements: Electron
Back Scatter Diffraction Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Anisotropic Physical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Effective Physical Properties of Crystalline Aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Properties of Polycrystalline Aggregates with Texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Properties of Polycrystalline Aggregates—An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W. Freeden, M.Z. Nashed, T. Sonar (Eds.), Handbook of Geomathematics, DOI ./----_,
© Springer-Verlag Berlin Heidelberg 



  Material Behavior: Texture and Anisotropy

Abstract This contribution is an attempt to present a self-contained and comprehensive sur-
vey of the mathematics and physics of material behavior of rocks in terms of texture and
anisotropy. Being generally multi-phase and poly-crystalline, where each single crystallite is
anisotropic with respect to its physical properties, texture, i.e., the statistical and spatial dis-
tribution of crystallographic orientations becomes a constitutive characteristic and determines
the material behavior except for grain boundary effects, i.e., in first order approximation.

This chapter is in particular an account of modern mathematical texture analysis, explic-
itly clarifying terms, providing definitions and justifying their application, and emphasizing
its major insights. Thus, mathematical texture analysis is brought back to the realm of spher-
ical Radon and Fourier transforms, spherical approximation, spherical probability, i.e., to the
mathematics of spherical tomography.

 Introduction

Quantitative analysis of crystal preferred orientation or texture analysis is historically important
in metallurgy and has become increasingly applied to Earth science problems of anisotropy of
physical properties (e.g., seismic anisotropy) and the study of deformation processes (e.g., plas-
ticity). The orientation probability density function f ∶ SO() → R, which is used to model the
volume portion of crystallites dVg realizing a random crystallographic orientation g within a
polycrystalline specimen of volume V is instrumental to the description of preferred crystal-
lographic orientation , i.e., texture , and to the computation of anisotropic material behavior
due to texture. The orientation probability density function can practically be determined (i)
from individual orientation measurements (Electron Back Scatter Diffraction data) by non-
parametric kernel density estimation or (ii) from integral orientation measurements (X-ray,
neutron, synchrotron diffraction data) by resolving the largely ill-posed problem to invert
experimentally accessible “pole figure” intensities interpreted as volume portions of crystal-
lites dV±h∥r having the lattice plane normals ±h ∈ S

 coincide with the specimen direction
r ∈ S

. Mathematically, pole density functions are defined in terms of totally geodesic Radon
transforms.

Mathematical proofs as well as algorithms and their numerics are generally omitted, instead
the reader is referred to original publications or standard text books where they apply, and
the new open source Matlab® toolbox “MTEX” for texture analysis created by Ralf Hielscher
(Hielscher and Schaeben a, see also http://code.google.com/p/mtex/) provides a practical
numerical implementation of the methods described in the chapter.

References are not meant to indicate or assign priorities, they were rather chosen according
to practical reasons such as accessibility.

 Scientific Relevance

Several important physical properties of rocks of geophysical interest are controlled by the sin-
gle crystal properties of the constituent minerals, e.g., thermal conductivity and seismic wave
speed. Many minerals have strongly anisotropic mechanical and physical properties, hence an
accurate statistical description of crystallographic orientation (or texture) of minerals in aggre-
gates of geomaterials are essentially for the prediction of bulk anisotropic properties. Further
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quantitative texture analysis of minerals provides a means of identifying the minerals that con-
trol the anisotropy of rock properties and the deformation mechanisms that generate texture,
e.g., dislocation glide systems. The study of crystallographic orientation in rocks dates back to
the work of Sander () making measurements with petrological microscope and interpre-
tation of textures in terms of rock movement or flow patterns in the s. Hence it has been
recognized for a long time that texture records important information of the history or evolution
of a rock, whichmay reflect on past conditions of temperature, pressure, andmechanical defor-
mation. Recent advances have extended the field of texture analysis from naturally deformed
specimens found on the surface to samples experimentally deformed at the high pressures of
the EarthÂs mantle. (Mainprice et al. ) and core (Mao et al. ), corresponding to depths
of ’s or ,’s of kilometres below the Earth’s surface. Texture analysis is an important
tool for understanding the deformation behavior of experimentally deformed samples. New
diffraction techniques using synchrotron high intensity X-ray radiation on small micron-sized
high-pressure samples (Raterron and Merkel ), and the now widespread application of
EBSD to diverse range of geological samples (Prior et al. ) require a modern texture analy-
sis that can be coherently applied to volume diffraction data , single orientation measurements,
and plasticity modeling schemes involving both types of data. The texture analysis proposed
in this chapter constitutes a reply to these new requirements within a rigorous mathematical
framework.

 Rotations and Crystallographic Orientations

The special orthogonal group SO() is initially defined as the group of rotations g ∈ R
× with

det(g) = +. It may be characterized as a differentiable manifold, and endowed with a metric
and a distance as a Riemannian manifold (Morawiec ).

An orientation is defined to mean an instantaneous rotational configuration. Let KS =
{x, y, z} be a right-handed orthonormal specimen coordinate system, and let KC = {a, b, c} be
a right–handed orthonormal crystal coordinate system .Then we call the rotation g ∈ SO() of
the coordinate systemKC with respect to the coordinate systemKS if it rotates the latter onto
the former system, i.e., if g x = a, g y = b, g z = c. Let r = (u, v,w)T be a unit coordinate vector
with respect to the specimen coordinate system KS , and let h = (h, k, l)T be the correspond-
ing unit coordinate vector with respect to the crystallographic coordinate systemKC , i.e., both
coordinate vectors represent the same direction, such that

ux + vy +wz = ha + kb + lc.

Then the orientation g ∈ SO() identified with a matrix M(g) ∈ R
× realizes the basis trans-

formation between the coordinate systems, and we have

M(g)h = r.

Casually, h ∈ S
 is referred to as crystallographic direction, while r ∈ S

 is referred to as
specimen direction.

Initially, a crystallographic orientation should be thought of as an element g ∈ O(), the
orthogonal group. Considering crystallographic symmetries, mathematically different orienta-
tions of a crystal may be physically equivalent. The set of all orientations which are equivalent
to the identical orientation g = id is called point group Spoint of the crystal. With this notation
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the set of all orientations crystallographically symmetrically equivalent to an arbitrary orienta-
tion g ∈ O() becomes the left coset gSpoint = { gg ∣ g ∈ Spoint }. The set of all these cosets
is denotedO()/Spoint and called quotient orientation space, i.e., the orientation space modulo
crystallographic symmetry Spoint .

In case of diffraction experiments not only this crystallographic equivalence but also equiv-
alence imposed by diffraction itself has to be considered. Due to Friedel’s law (Friedel )
equivalence of orientations with respect to diffraction is described by the Laue group SLaue
which is the point group of the crystal augmented by inversion, i.e., SLaue = Spoint ⊗ {id,−id}.
Since O()/SLaue ≅ SO()/(SLaue ∩ SO()) the cosets of equivalent orientations with respect
to diffraction are completely represented by proper rotations.

Likewise, when analysing diffraction data for preferred crystallographic orientation it is suf-
ficient to consider the restriction of the Laue group GLaue ⊂ O() to its purely rotational part
G̃Laue = GLaue ∩ SO(). Then two orientations g, g′ ∈ SO() are called crystallographically
symmetrically equivalent with respect to G̃Laue if there is a symmetry element q ∈ G̃Laue such
that gq = g′. The left cosets gG̃Laue define the classes of crystallographically symmetrically
equivalent orientations. Thus, a crystallographic orientation is a left coset. These cosets define
a partition of SO(). A set of class representatives, which contains exactly one element of each
left coset or class, is called a left transversal. It is not unique. If it is easily tractable with respect
to a parametrization, it will be denoted G.

Analogously, two crystallographic directions h,h′ ∈ S
 are called crystallographically sym-

metrically equivalent if there is a symmetry element q ∈ G̃Laue such that qh = h′.
The orientation probability density function f of a polycrystalline specimen is defined as

f ∶ SO() → R which models the relative frequencies of crystallographic orientations within
the specimen by volume, i.e., f (g)dg = dVg

V , and is normalized to

∫
SO()

f (g)dg = π, ()

where dg denotes the rotational invariant measure on SO(). The orientation probability
density function possesses the symmetry property

f (g) = f (gq), g ∈ SO(), q ∈ G̃Laue, ()

i.e., it is essentially defined on the quotient space SO()/G̃Laue.
Crystallographic preferred orientationmay also be represented by the pole density function

P∶S × S
 → R , where P(h, r) models the relative frequencies that a given crystallographic

direction or any crystallographically symmetrically equivalent direction or their antipodally
symmetric directions ±h ∈ S

 coincides with a given specimen direction r ∈ S
, i.e.,

P(h, r)dh = P(h, r)dr = dV±h∥r
V , and is normalized to

∫
S
P(h, r)dh = ∫

S
P(h, r)dr = π.

Thus it satisfies the symmetry relationships

P(h, r) = P(−h, r) and P(h, r) = P(qh, r), h, r ∈ S
, q ∈ G̃Laue,

i.e., it is essentially defined on S
/SLaue × S

. Pole density functions are experimentally acces-
sible as “pole figures” by X-ray, neutron, or synchrotron diffraction for some crystallographic
forms h, i.e., crystallographic directions and their crystallographically symmetrically equiva-
lents. Orientation probability density and pole density function are related to each other by the
totally geodesic Radon transform.
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. Parametrizations and Embeddings

Parametrizations are a way of describing rotations in a quantitative manner. The two major
parametrizations we shall consider are the intuitively most appealing parametrization of a rota-
tion in terms of its angle ω ∈ [, π] and axis n ∈ S

 of rotation, and the parametrization in terms
of Euler angles (α, β, γ)with α, γ ∈ [, π) and β ∈ [, π].

Of particular interest are the embeddings of rotations inR
× or in S

 ⊂ H, the skew field of
real quaternions (Altmann ; Guerlebeck and Sproessig ; Kuipers ; Hanson ).

The eigenvalues of a rotation matrixM(g) ∈ R
× are given by λ =  and λ, = e±iω , where

 ≤ ω ≤ π. The argument ω of the eigenvalues λ, of a rotation matrix M(g) can be uniquely
determined by

trace(M(g)) =  +  cosω,

which defines the angle of rotation ω. Furthermore, the axis n ∈ S
 of an arbitrary rotation

given as a matrix with entries M(g) = (mi , j)i , j=,..., ∈ R
× with M(g) ≠ I is defined to be

n = 
 sinω

(m −m,m −m,m − g)T,

where  < ω ≤ π is the rotation angle. If we explicitly refer to the angle–axis parametrization
of a rotation we use the notation g = g(ω;n); accordingly ω(g) and n(g) denote the angle and
axis of rotation g, respectively.

The unit quaternion q = cos ω
 + n sin ω

 associated with the rotation g = g(ω;n) provides
an embedding of the group SO() in the sphere S

 ⊂ H of unit quaternions.
Euler’s Theorem states that any two right-handed orthonormal coordinate systems can be

related by a sequence of rotations (not more than three) about coordinate axes, where two suc-
cessive rotations must not be about the same axis. Then any rotation g can be represented
as a sequence of three successive rotations about conventionally specified coordinate axes by
three corresponding “Euler” angles , where the rotation axes of two successive rotations must
be orthonormal.

There exist  different choices of sets of axes of rotations (in terms of the coordinate axes
of the initial coordinate system) to define corresponding Euler angles, and they are all in use,
somewhere.

Euler angles (α, β, γ) usually define a rotation g in terms of a sequence g(α, β, γ) of three
successive rotations about conventionally fixed axes of the initial coordinate system, e.g., the
first rotation by γ ∈ [, π) about the z-axis, the second by β ∈ [, π] about the y-axis, and the
third by α ∈ [, π) about the z-axis of the initial coordinate system such that

g(α, β, γ) = g(α; z) g(β; y) g(γ; z). ()

In texture analysis Bunge’s definition of Euler angles (φ, ϕ, φ) (Bunge ) of three
successive rotations about conventionally fixed axes of rotations refer to the first rotation by
φ ∈ [, π) about the z-axis, the second by ϕ ∈ [, π] about the rotated x-axis, i.e., about
x′ = g(φ; z)x, and the third by φ ∈ [, π) about the rotated z-axis, i.e., about z′′ = g(ϕ; x′)z,
such that

gBunge(φ, ϕ, φ) = g(φ; z′′) g(ϕ; x′) g(φ; z).

Roe’s or Matthies’ Euler angles (α, β, γ) (Roe ; Matthies et al. ) of three successive
rotations about conventionally fixed axes of rotations replace Bunge’s second rotation about



  Material Behavior: Texture and Anisotropy

x′ by a rotation about the y′-axis, i.e., they refer to the first rotation by α ∈ [, π) about the
z-axis, the second by β ∈ [, π] about the rotated y-axis, i.e., about y′ = g(α; z)x, and the third
by γ ∈ [, π) about the rotated z-axis, i.e., about z′′ = g(β; y′)z such that

gRM(α, β, γ) = g(γ, z′′) g(β, y′) g(α; z).

As can be shown by conjugation of rotations the differently defined Euler angles are related
by

g(α, β, γ) = gRM(α, β, γ).

Then the Roe–Matthies notation has the simple advantage that (α, β) are the spherical
coordinates of the crystallographic direction c with respect toKS .

. Harmonics

Representation of rotations in terms of harmonics is a subject of representation theory as
exposed in (Gel’fand et al. ; Varshalovich et al. ; Vilenkin Klimyk ). Satisfying
the representation property is the single most important characteristic of any useful system of
functions for SO().

An important tool for the mathematical analysis of orientation probability and pole density
functions are harmonic functions on the rotation group SO() and on the two-dimensional
sphere S

, respectively. In fact, an orientation probability density function and its totally
geodesic Radon transform share the same harmonic coefficients, which gives rise to an “har-
monic approach” to the resolution of the inverse problem of texture analysis (Bunge , ,
; Roe ). Furthermore, these harmonic coefficients are instrumental to compute the
anisotropic macroscopic properties of a specimen, e.g., its thermal expansion, optical refrac-
tion index, electrical conductivity, or elastic properties, given the corresponding anisotropic
properties of its single crystals.

Closely following the exposition in Hielscher () and Hielscher and Schaeben (a)
we render an explicit definition of harmonics as there are many slightly different ways to define
them, e.g., with respect to normalization, which reveal their disastrous impact only in the course
of writing and checking software code.

Harmonic analysis on the sphere is based on the Legendre polynomials Pℓ ∶ [−, ] → R,
ℓ ∈ N, where

Pℓ(t) =


ℓ ℓ!
dℓ

dtℓ
((t − )ℓ),

and on the associated Legendre functions , P k
ℓ ∶ [−, ] → R, ℓ ∈ N, k = , . . . , ℓ,

P k
ℓ (t) = (

(ℓ − k)!
(ℓ + k)!)

/

( − t)k/ d
k

dtk
Pℓ(t).

In terms of the associated Legendre functions we define the spherical harmonicsY k
ℓ (r), ℓ ∈ N,

k = −ℓ, . . . , ℓ, by

Y k
ℓ (r) =

√
ℓ + 
π

P ∣k∣
ℓ (cos θ)eikρ ,

where θ, ρ ∈ R are the polar coordinates ρ ∈ [, π), θ ∈ [, π] of the vector

r = (cos ρ sin θ, sin ρ sin θ, cos θ)T ∈ S
.
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By this definition the spherical harmonics are normed to

∫
S
Y k
ℓ (r)Y k′

ℓ′ (r)dr = ∫
S
Y k
ℓ (θ, ρ)Y k′

ℓ′ (θ, ρ) sin θ dθ dρ = δℓℓ′δkk′

and, hence, provide an orthonormal basis in L(S).
In order to define harmonic functions on SO() we use the parameterization of a rotation

g ∈ SO() in terms of Euler angles, Eq. (). Now we follow Nikiforov and Uvarov (), see
also Varshalovich et al. (); Kostelec and Rockmore (); Vollrath (), and define for
ℓ ∈ N, k, k′ = −ℓ, . . . , ℓ, the generalized spherical harmonics or Wigner–D functions as

Dkk′
ℓ (α, β, γ) = e−ikαdkk

′

ℓ (cos β)e−ik
′γ ,

where

dkk
′

ℓ (t) = skk′ (−)
ℓ−k′

ℓ

√
(ℓ+k′)!

(ℓ−k′)!(ℓ+k)!(ℓ−k)!

√
(−t)k−k

′

(+t)k+k′
dℓ−k

′

dtℓ−k′
( − t)ℓ−k( + t)ℓ+k

and

skk′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

 k, k′ ≥ ,
(−)k k′ ≥ , k < ,
(−)k

′
k ≥ , k′ < ,

(−)k+k
′

k, k′ < .

The last term skk′ corrects for the normalization of the spherical harmonics, which is slightly
different from those in Nikiforov and Uvarov (). The Wigner–D functions satisfy the
representation property

Dkk′
ℓ (gq) =

ℓ
∑
j=−ℓ

Dk j
ℓ (g)D

jk′

ℓ (q), ()

and by virtue of the Peter–Weyl theorem (cf. Vilenkin ), they are orthogonal in L(SO()),
i.e.,

∫
π


∫

π


∫

π


Dmn
ℓ (α, β, γ)Dm′n′

ℓ′ (α, β, γ)dα sin β dβ dγ = π

ℓ + 
δℓℓ′δmm′ δnn′ .

Furthermore, they are related to the spherical harmonics by the representation property

ℓ

∑
k′=−ℓ

Dkk′
ℓ (g)Y k′

ℓ (h) = Y k
ℓ (gh), g ∈ SO(),h ∈ S

.

Moreover, any (orientation density) function f ∈ L(SO()) has an associated harmonic or
Fourier series expansion of the form

f ∼
∞
∑
ℓ=

ℓ

∑
k ,k′=−ℓ

(ℓ + 
 )




π
f̂ (ℓ, k, k′)Dkk′

ℓ ,

with harmonic or Fourier coefficients

f̂ (ℓ, k, k′) =
(ℓ + 

)



π ∫
SO()

f (g)Dkk′
ℓ (g)dg, ℓ ∈ N, k, k′ = −ℓ, . . . , ℓ.
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Defined in this way, the classical Parseval’s identity

∥ f̂ ∥
ℓ
= ∥ f ∥L

is fulfilled; otherwise, e.g., for Bunge’s C–coefficients, it is not.

. Kernels and Radially Symmetric Functions

In texture analysis radially symmetric functions appear as unimodal bell–shaped model ori-
entation density functions. Mathematically they are defined as functions ψ∶ SO() → R or
ϕ∶S → R that depend only on the distance to a center rotation g ∈ SO() or a center direction
r ∈ S

, respectively, i.e., we have

ψ(g) = ψ(g′) and ϕ(r) = ϕ(r′)

for all rotations g, g′ ∈ SO() with ω (gg− ) = ω (g′g− ) and all directions r, r′ ∈ S
 with

η(r, r) = η(r′, r), where ω (gg− ) denotes the rotational angle of the rotation g, g− , and
cos η(r, r) = r ⋅ r.

Both radially symmetric functions on the rotation group as well as on the sphere have char-
acteristic Fourier series expansions. More precisely, there exist Chebyshev coefficients ψ̂(l) and
Legendre coefficients ϕ̂(l), l ∈ N, respectively,

ψ̂(ℓ, k, k′) = ψ̂(ℓ)Dkk′
ℓ (g) and ϕ̂(ℓ, k) = ϕ̂(l) π

l + 
Y k
l (r),

such that

ψ(g) ∼
∞
∑
ℓ=

ψ̂(l)
ℓ

∑
k ,k′=−ℓ

Dkk′
ℓ (g)Dkk′

ℓ (g) ∼
∞
∑
ℓ=

ψ̂(l)Uℓ(cos
ω (gg− )


) ()

and

ϕ(r) ∼
∞
∑
l=

ϕ̂(l) π
l + 

l
∑
k=−l

Y k
l (r)Y k

l (r) ∼
∞
∑
l=

ϕ̂(l)Pl(r ⋅ r). ()

Here Ul , l ∈ N, denote the Chebyshev polynomials of second kind

Uℓ(cosω) =
sin(ℓ + )ω

sinω
, ℓ ∈ N,ω ∈ (, π) ()

with Uℓ() = ℓ +  and Uℓ(−) = (−)ℓℓ + .

. Crystallographic Symmetries

Considering crystallographic symmetries, Eq. (), requires special provision. If the harmon-
ics should be explicitly symmetrized such that they are properly defined on a left transversal
G ⊂ SO() only, then special attention should be paid to the preservation of the representation
property, Eq. ().

Here, a different approach is pursued in terms of radially symmetric functionsψ with known
Chebyshev coefficients . Then symmetrization is actually done by summation

ψcs(ω (gg− )) = 
#G̃Laue

∑
q∈G̃Laue

ψ(ω (gqg− )), g, g ∈ SO(), q ∈ G̃Laue. ()
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It is emphasized that ψcs like ψ is properly defined on SO(), where numerical methods of fast
summation are known (cf. Hielscher et al. ), which are however unknown for any subset
of SO() such as G. Moreover, the Fourier coefficients of ψcs can easily be computed from the
Chebychev coefficients of ψ

ψ̂cs(ℓ, k, k′) =
ψ̂(ℓ)
#G̃Laue

∑
q∈G̃Laue

ℓ
∑
j=−ℓ

Dk j
ℓ (q)D

jk′

ℓ (g).

. Geodesics, Hopf Fibres, and Clifford Tori

Then some sets of rotations which are instrumental for texture analysis as the (Hopf) fiber and
the (Clifford) torus are defined and characterized in terms of pairs (of sets) of unit vectors com-
prising an initial set of unit vectors and its image with respect to the elements of the set of
rotation.

The distance of two rotations g, g is defined as the angle ω(gg−) of the composition of
the rotation g− followed by the rotation g.

The distance of a rotation g from a set of rotationsG is the infimumof all distances between
the rotation and any element of the set of rotations, i.e., d(g,G) = inf g∈G ω(gg−).

A one-dimensional submanifold of a Riemannian manifold is called geodesic if it is locally
the shortest path between any two of its points. Any geodesic G ∈ SO() can be parametrized
by two unit vectors and is defined as fiber

G = G(h, r) = { g ∈ SO() ∣ gh = r}, ()

where the vectors h, r ∈ S
 are well defined up to the symmetry G(h, r) = G(−h,−r) (Meister

and Schaeben ; Hielscher ). The geodesics induce a double fibration of SO(), and
may be referred to as a Hopf fibers (Vajk ; Kreminski ; Chisholm, ).

In terms of unit quaternions q, q ∈ S
 associated with rotations g, g ∈ SO() their

geodesicG(h, r) obviously corresponds to the great circle C(q, q) ⊂ S
 with pure quaternions

h = q∗ q, r = qq∗ .

Given a pair of unit vectors (h, r) ∈ S
×S

 with h×r ≠ , the geodesicG(h, r) is associated
with the great circle C(q, q) of unit quaternions spanned by orthonormal quaternions

q =


∥ − rh∥ ( − rh) = cos
η

+ h × r
∥h × r ∥ sin

η

, ()

q =


∥h + r∥ (h + r) =  + h + r
∥h + r ∥ , ()

where η = η(h, r) denotes the angle between h and r, i.e., cos η = h ⋅ r.
Since r and h are pure unit quaternions, we get

r( − rh) = ( − rh)h = h + r,

and obviously, ∥ − rh∥ = ∥h + r∥. Then with Eq. () and Eq. ()

rq = qh = q, ()
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i.e., rq and qh also represent rotations mapping h onto r. Moreover, it should be noted that
Eq. () implies

q∗ rq = , qhq∗ = ,

which may be interpreted as a remarkable “factorization” of  (Meister and Schaeben ).
The distance of an arbitrary rotation g from the fiber G(h, r), or referring to the quater-

nionic embedding the distance of q ∈ S
 from the circle C(q, q) is given by

d(g,G(h, r)) = 

arccos(gh ⋅ r), d(q,C(q, q)) =



arccos(qhq∗ ⋅ r)

(Kunze ; Meister and Schaeben ).
Let q, q, q, q denote four mutually orthonormal, quaternions. Then the Clifford torus

T(q, q, q, q; Θ) ⊂ S
 (Chisholm, ) defined as the set of quaternions

q(s, t; Θ) = (q cos s + q sin s) cos Θ + (q cos t + q sin t) sinΘ,

s, t ∈ [, π), Θ ∈ [, π/] ()

consists of all great circles with distance cosΘ from the geodesic C(q, q) ≅ G(h, r), i.e.,
T(q, q, q, q; Θ) = T(G(h, r); Θ). It is associated with all rotations mapping h on the small
circle c(r, Θ) ⊂ S

 and mapping the small circle c(h, Θ) ⊂ S
 on r, respectively (Meister

and Schaeben ). It should be noted that Eq. () can be suitably factorized (Meister and
Schaeben ).

 Totally Geodesic Radon Transforms

For any function f integrable on each fiber G(h, r) the totally geodesic Radon transform R f
assigns the mean values along any fiber to f , i.e.,

R f (h, r) = 
π ∫G(h,r)

f (g)dg. ()

It provides the density of the probability that the random crystal direction gh coincides with the
specimen direction r given the random rotation g. Accounting for Friedel’s law (Friedel )
that diffraction cannot distinguish between the positive and negative normal vector of a lattice
plane, it is

P(h, r) = 

(R f (h, r) +R f (−h, r)) = X f (h, r), ()

whereX f (h, r) is also referred to as the basic crystallographicX-ray transform (Nikolayev and
Schaeben ; Schaeben et al. ). While the totally geodesic Radon transform possess a
unique inverse (Helgason , ) the crystallographic X-ray transform does not.The kernel
of the latter are the harmonics of odd order (Matthies ), see below.

Further following Helgason () and Helgason (), the generalized totally geodesic
Radon transform and the respective dual is well defined.The generalized totally geodesic Radon
transform of a real function f ∶ SO() → R is defined as

R(ρ) f (h, r) = 
π sin ρ ∫

d(g ,G(h,r))=ρ
f (g)dg.
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It associates with f its mean values over the torus T(G(h, r); ρ) with core G(h, r) and radius
ρ (Eq. ()). For ρ = , the generalized totally geodesic Radon transform converges toward the
totally geodesic Radon transform.

Then, we may state the following theorem. The generalized totally geodesic Radon trans-
form is equal to the spherically translated totally geodesic Radon transform and it can be
identified with the angle density function

(T (ρ)[R f ])(h, r) = 
π sin ρ ∫c(h;ρ)

R f (h′, r)dh′

= 
π sin ρ ∫c(r;ρ)

R f (h, r′)dr′ ()

= 
π sin ρ ∫c(r;ρ)

∫
G(h,r′)

f (g)dg dr′ ()

= 
π sin ρ ∫T(G(h,r); ρ )

f (g)dg ()

= 
π sin ρ ∫d( g , G(h,r) )= ρ



f (q)dq

= R(ρ/) f (Ch,r). ()

Thus,

(T (ρ)[R f ])(h, r) = R(ρ/) f (h, r) = A f (h, r; ρ) ()

(Bernstein et al. ).The angle density functionA f (h, r; ρ) has been introduced into texture
analysis by Bunge, e.g., (Bunge , p. ; , p. ) (with a false normalization). According to
its definition it is themean value of the pole density function over a small circle c(h; ρ) centered
at r, a construct known as spherical translation (T (ρ)[R f ])(h, r) in spherical approximation.
Thus, it is the density that the crystallographic direction h encloses the angle ρ,  ≤ ρ ≤ π, with
the specimen direction r given the orientation probability density function f . Equation (),
i.e., the commutation of the order of integration, has been observed without reference to Radon
transforms nor Ásgeirsson means and stated without proof (cf. Bunge , p. ; , p. ),
not to mention purely geometric arguments. Nevertheless, its central role for the inverse Radon
transform was recognized in (Muller et al. ) by “rewriting” Matthies’ inversion formula
(Matthies ).

It should be noted that

A f (h, r; ) = R f (h, r), A f (h, r; π) = R f (h,−r).

They key to the analytical inverse of the totally geodesic Radon transform is provided by the
dual Radon transforms (Helgason ).

. Properties of the Spherical Radon Transform

In this section we compile the properties of the totally geodesic Radon transform which are
fundamental to understand the mathematics of texture analysis.
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Antipodal Symmetry
On its domain of definition the one-dimensional Radon transform R f of any function
f ∶ SO() → R has the symmetry property R f (−h, r) = R f (h,−r). The crystallographic
X-ray transform satisfies the additional symmetry property X f (h, r) = X f (−h, r) =
X f (h,−r). Thus, pole figures correspond to the crystallographic transform which is even in
both arguments.

Effect of Crystallographic Symmetry
If for a symmetry group G̃Laue ⊂ SO() a function f satisfies f (gq) = f (g) for all g ∈ SO(),
q ∈ G̃Laue, its corresponding Radon transformR f satisfies

R f (qh, r) = R[ f (○ q−)](h, r) = R[ f (○)](h, r) = R f (h, r)

for all q ∈ G̃Laue.

Radial Symmetry

If the orientation probability density function is radially symmetric with respect to g ∈ SO(),
i.e., if it depends on the angle of rotation only, the Radon transform is radially symmetric, too.
More specifically and formally, let f be of the form

f (g) = f (ω (gg− )) , g ∈ SO().

Then the Radon transform R f (h, r) defined on S
 × S

 is radially symmetric with respect to
r = gh, i.e., R f (h, ○) is radially symmetric with respect to gh, and R f (○, r) is radially
symmetric with respect to g− r. Thus the Radon transform reduces to a function R f (gh ⋅ r)
defined on [−, ] andmay be thought of as depending on the angle η = arccos(gh ⋅r) ∈ [, π].

In particular, the Chebyshev coefficients ψ̂(l) of a radially symmetric orientation density
function ψ coincide with the Legendre coefficients of its Radon transformRψ(h, ⋅), i.e.,

Rψ(h, r) ∼
∞
∑
l=

ψ̂(l)Pl(gh ⋅ r), h, r ∈ S
. ()

It should be noted that the radial symmetry of f with respect to g ∈ SO() is necessary and
sufficient for the radial symmetry of the transformR f (h, r)with respect to r = gh (Schaeben
).

If the orientation probability density function is a fiber symmetric function, i.e., if f is of
the form

f (g) = f (gh ⋅ r), (h, r) ∈ S
 × S

,

thenR f (h, ○) is radially symmetric with respect to r, andR f (○, r) is radially symmetric with
respect to h (Hielscher ).

Special cases of the even Bingham quaternion distribution on S
 or eqivalently of the Fisher

vonMises matrix distribution on SO() comprise a bimodal “bipolar”, a circular “fiber”, and an
often overlooked spherical “surface” distribution (Kunze and Schaeben ).

Darboux Differential Equation
The Radon transform satisfies a Darboux–type differential equation

(Δh − Δr)R f (h, r) = , ()
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where Δh denotes the Laplace–Beltrami operator applied with respect to h ∈ S
 (Savy-

olova ). Its general solution has been derived in terms of harmonics and in terms of
characteristics, respectively (Nikolayev and Schaeben ).

Fourier Slice Theorem

The following well-known theorem dating back to the origin of texture analysis characterizes
the relationship between the Fourier expansion of an orientation density function and its cor-
responding pole density function. Let f ∈ L(SO()) be an orientation density function with
Fourier expansion

f ∼
∞
∑
ℓ=

ℓ

∑
k ,k′=−ℓ

(ℓ + 
 )




π
f̂ (ℓ, k, k′)Dkk′

ℓ .

Then the corresponding pole density function P ∈ L(S × S
), P(h, r) = 

 (R f (h, r) +
R f (−h, r)) possesses the associated Fourier expansion

P(h, r) = X f (h, r) ∼ ∑
ℓ∈N

ℓ
∑

k ,k′=−ℓ



(ℓ + 
 )




f̂ (ℓ, k, k′)Y k′
ℓ (h)Y k

ℓ (r). ()

The theorem states that the Radon transform preserves the order of harmonics

RDkk′
ℓ (h, r) = π

ℓ + 


Y k′
ℓ (h)Y k

ℓ (r), ()

andmoreover that a function f ∶ SO() → R and its Radon transformR f ∶S×S
 → R have the

same harmonic coefficients up to scaling. In particular, it states that the crystallographic X-ray
transform, Eq. (), of any odd-order harmonic vanishes, i.e.,

XDkk′
ℓ ≡  for all odd ℓ. ()

Thus, the crystallographic X-ray transform has a non-empty kernel comprising the harmonics
of odd order.

For a modern account of the Fourier slice theorem the reader is referred to Hielscher et al.
().

Range
The range of an operator A∶D → Y is defined as the subspace of all functions P ∈ Y such that
there is a function f ∈ D with Af = P. In the case of the Radon transform a characterization
of the range can be derived directly from Eq. (). More specifically, the image of L(SO())
with respect to the Radon transform can be derived by comparison of Eq. () with

u(h, r) ∼ ∑
ℓ∈N

ℓ
∑

k ,k′=−ℓ
û(ℓ, k, k′)Y k′

ℓ (h)Y k
ℓ (r)

resulting in

RL(SO()) = {u(h, r) = ∑


(ℓ + 
 )




f̂ (ℓ, k, k′)Ym
ℓ (h)Yn

ℓ (r) ∣ ∑( f̂ (ℓ, k, k′)) < ∞}

= {u(h, r) = ∑ û(ℓ, k, k′)Ym
ℓ (h)Yn

ℓ (r) ∣ ∑(ℓ + 
 ) (û(ℓ, k, k

′)) < ∞}
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(Hielscher ) indicating the smoothing effect of the Radon transform as already to be rec-
ognized by the Darboux differential equation. For an equivalent characterization of the range
of the Radon transform directly bymeans of the differential equation we refer to Nikolayev and
Schaeben (). In particular, the characteristics of the differential equation lead to the fol-
lowing representation of a Radon transformed function as superposition of radially symmetric
functions

R f (h, r) = ∑
ℓ
∑
k
uℓ (h ⋅ g−k r) , ()

where gk ∈ SO() are arbitrary orientations and uℓ ∈ C(R) are some appropriately chosen
real twice differentiable functions (Nikolayev and Schaeben ).The functions uℓ are radially
symmetric with respect to g−k r, or gk h, k = , . . . ,K , respectively.

Inverse Radon Transform

In texture analysis, i.e., in material science and engineering, the best-known inversion formula
dates back right to the beginning of “quantitative” texture analysis (Bunge ; Roe ). The
formula may be rewritten in a rather abstract way as

f = F−
SO() S FS×S R f , ()

whereS denotes a scalingmatrixwith entries
√
ℓ +  indicating the ill–posedness of the inverse

problem. It applies the Fourier slice theorem. In the context of texture analysis and experi-
mentally accessible “pole figures,” the former statement is true only for even-order coefficients
because of Eq. ().

There are more inversion formulae (cf. Helgason ; Helgason ), involving the Lapla-
cian operator for S

 and SO().They are equivalent to the formula byMatthies () rewritten
in terms of the angle probability density function (Muller et al. ). For a comprehensive
exposition the reader is referred to Bernstein and Schaeben ().

Loss of Non-Negativity
Obviously, if f ≥ , thenR f ≥ . However, the non-negativity ofR f does not imply the non-
negativity of f . This loss of non-negativity causes essential problems of the harmonic method
for inversion of the crystallographic X-ray transform, as it is unknown how the non-negativity
constraint f ≥  could be turned into a constructive elementof the harmonic approach (Watson
). Moreover, once an approximation f ∗ is found in terms of its Fourier coefficients such
that its X-ray transform X f ∗ is non-negative, the non-negativity of f ∗ is not guaranteed. Even
worse, if f ∗ happens to be not non-negative, then it is not at all clear if an odd “complement”
exists to correct f ∗ such that the resulting new approximation is non-negative.

Finite Support Property
If f vanishes outside the spherical cap B(g; ε) = { g ∈ SO() ∣ ω(g, g) ≤ ε }, then its
Radon transform R f vanishes outside the corresponding spherical capRB(g, ε) = { (h, r) ∈
S
 × S

 ∣ ω(gh, r) < ε }; here RB(g, ε) denotes the set of all fibers intersecting B(g, ε)
(Hielscher ).

Localization
The inversion of the Radon transform would be local, if for any open subset U ⊂ SO() the
condition R f (h, r) =  for all (h, r) ∈ S

 × S
 with G(h, r) ∩ U ≠ / implies f ∣U =  for
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any function f ∈ C(SO()). Unfortunately, the inversion of the Radon transform on SO() is
not local. An explicit counter–example is given in Hielscher (). Thus, in order to recover
the value of a function f ∈ C(SO()) for an individual g ∈ SO() the integrals along all
one-dimensional geodesics of SO() have to be known.The missing localization of the inverse
Radon transform may be seen as a strong motivation to apply corresponding multi-scale repre-
sentations (Hielscher and Schaeben b) of both the orientation probability density function
and its totally geodesic Radon transform as “second–best” approach to recover an orientation
probability density function in a small subset of SO() only. With radially symmetric ker-
nels multi–scale representation is mimiced by arbitrarily irregular grids and a “zero–domain”
approach (Hielscher ; Hielscher and Schaeben a; Schaeben et al. ).

 Texture Analysis with Integral Orientation Measurements:
Texture Goniometry Pole Intensity Data

A detailed introduction to diffraction at a single crystal can be found in Forsyth () and
Randle and Engler (). For diffraction of polycrystalline materials we refer also to Ran-
dle and Engler (). Here, we only give the basic facts necessary for a simple, yet effective
mathematical model.

An initially deterministic normalized model for the diffraction intensity Inorm(λ, θ, r) orig-
inating from a polycrystalline specimen for a wavelength λ, a Bragg angle θ, and a specimen
direction r controlled by the texture goniometer, is provided by

Inorm(λ, θ, r) =
⎛
⎝ ∑
h∈H(λ,θ)

ρ(h)
⎞
⎠

−

∑
h∈H(λ,θ)

ρ(h)R f (h, r),

whereH(λ, θ) ⊂ S
 denotes the set of vectors normal to lattice planes responsible for diffraction

given the specific combination of a wavelength λ and a Bragg angle θ, and where ρ(h) denotes
the structure coefficients of the diffracting lattice planes h ∈ H(λ, θ) (Randle and Engler ).
The setH(λ, θ) is symmetric with respect to the restricted Laue group G̃Laue ⊂ SO(), i.e., with
h ∈ H(λ, θ)we have qh ∈ H(λ, θ) for any symmetry element q ∈ G̃Laue. Additionally, Friedel’s
law (Friedel ) implies −h ∈ H(λ, θ) for any h ∈ H(λ, θ).

In practice normalized diffraction intensities are not accessible but only absolute particle
counts are measured which are affected by background radiation Ib(λ, θ, r) and measurement
errors and differ from the normalized intensities by an unknown normalization factor ν(λ, θ).
Then we have for the absolute intensity

Iabs(λ, θ, r) = ν(λ, θ) ∑
h∈H(λ,θ)

ρ(h)R f (h, r) + Ib(λ, θ, r).

Since particle counts can generally be modeled with a Poisson distribution with its mean
value set to the absolute intensity (Randle and Engler ), we obtain for an individual
diffraction measurement the statistical model

I(λ, θ, r) ∼ Pois(ν(λ, θ) ∑
h∈H(λ,θ)

ρ(h)R f (h, r) + Ib(λ, θ, r)) ()
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characterizing it as a one-element random sample of a parameterized Poisson process. This
model implies that the standard deviation of diffraction counts is approximately

σI(λ,θ ,r) =
√
Iabs(λ, θ, r) ≈

√
I(λ, θ, r), ()

(cf. Wenk , p. ).
It should be noted that equation Eq. () is only a very simple model for experimental

diffraction counts. First of all Bragg’s law itself is only a rough simplification of much more
sophisticated models explaining diffraction, e.g., (Cowley ). Second, the diffraction counts
commonly used for texture determination are obtained by processing a spectrum of diffraction
counts for varying Bragg angles θ or wavelengths λ (Hammond ; Randle and Engler ).

The inverse problem to determine f fromEq. () can be interpreted as a classical parameter
estimation problem, with the orientation density function f and the normalization coefficients
ν as the unknown parameters given the diffraction pole density functions.

In a diffraction experiment with a texture goniometer, diffraction counts with respect to
several diffraction parameters and several specimen directions are measured. We enumerate
the sequence of diffraction parameters (λ, θ)i and the corresponding sequence of lattice planes
Hi = H((λ, θ)i) ⊂ S

 by the index i = , . . . ,N . If superposition of pole figures does not
occur the sequence Hi , i = , . . . ,N , corresponds simply to the sequence of measured lattice
planes. For each pair (λ, θ)i , i = , . . . ,N , of a wavelength and a Bragg angle, we enumerate
the specimen directions ri j i ∈ S

 with respect to which diffraction intensities are measured
by the indices ji = , . . . ,Ni . Correspondingly, we abbreviate the diffraction counts by Ii j i =
I(λi , θi , ri j i ) and the background intensities by Ibi j i = Ib(λi , θi , ri j i ). The indexing i ji , i =
, . . . ,N , ji = , . . . ,Ni applies to arbitrarily scattered specimen directions of each pole density
function individually.

Then we may consider the least squares estimator

( fLS, νLS) = argmin
N
∑
i=

Ni

∑
j i=

(νiR f (Hi , ri j i) + Ibi j i − Ii j i)


Ii j i
, ()

subject to the constraints

ν ≥ , f ≥  and ∫
SO()

f (g)dg = π.

This estimator may be regularized by adding a Sobolev norm λ ∥ f ∥H(SO()) of the orienta-
tion density function f as a penalty term. This penalty term can be interpreted as the prior
information on the unknown orientation density function to be smooth.

Due to the unknown normalization coefficients ν = (ν, . . . , νN)T the functional Eq. ()
is neither linear nor convex and hence the minimization problem may have several solutions
(Hielscher ). Another problem inherent in the minimization problem (Eq. ()) is that
common algorithms result in solutions tending to be unstable and largely dependent on the
initial guess of the unknown parameters f and ν (Hielscher ). A more robust estimator is
obtained when the unknown normalization coefficients νi , i = , . . . ,N , in the LS–estimator
are replaced by their quadrature rule estimators

ν̃i( f ) =
∑Ni

j i= Ii j i − I
b
i j i

∑Ni
j i= R f (Hi , ri j i )

.
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We call the resulting estimator

fMLS = argmin
N

∑
i=

Ni

∑
j i=

(ν̃i( f )R f (Hi, ri j i ) + Ibi j i − Ii j i)


Ii j i
+ λ ∥ f ∥H(SO()) ()

modified least squares estimator.
The representation of the orientation density function estimation problem as a least squares

problem, which includes the unknown normalization coefficients as unknown variables, dates
back to Van Houtte (, ). Weighting the least squares functionals Eq. () and Eq. ()
with the inverse expected variance I−i j of the measurement error Eq. () we ensure the
homoscedasticity of the underlying regression problem.The regularization term λ ∥ f ∥H(SO())
was first suggested in Bernier et al. () and Van den Boogaart et al. (), and can be inter-
preted as a model assumption on the true orientation density function that biases the estimator
toward smoother orientation density functions.

In a final discretization step we apply the modeling assumption that the unknown orienta-
tion probability density function f can be approximated by a non-negative linear combination

f (g) =
M
∑
m=

cmψcs (gg−m ) =
M
∑
m=

∑
q∈G̃Laue

cmψ (ω (gqg−m ))

of non-negative symmetrized kernel functionsψcs , Eq. (), centered at nodes g, . . . , gM ∈ SO()
with non-negative unknown coefficients cm ≥ ,m = , . . . ,M. Since the Radon transform is
linear we get

R f (h, r) = 
#G̃Laue

M
∑
m=

∑
q∈G̃Laue

cmRψ(qgmh ⋅ r) =


#G̃Laue

M
∑
m=

∑
q∈G̃Laue

cmϕ(qgmh ⋅ r)

to yield

cMLS = argmin
N

∑
i=

Ni

∑
j i=

(ν̃i( f )


#G̃Laue
∑M

m= ∑q∈G̃Laue
cmϕ(qgmHi ⋅ ri j i ) + Ibi j i − Ii j i)



Ii j i

+ λ ∥ f ∥H(SO()) . ()

An example of a well localized, non-negative, radially symmetric function on SO() is the
de la Vallée Poussin kernel (Schaeben , Schaeben ; Hielscher ). It is given for any
κ ∈ N by

ψ(g) =
B ( 

 ,

 )

B ( 
 , κ +


 )

cosκ
ω(g)


.

Its Radon transform calculates to

Rψ(h, r) =  + κ
κ

( + h ⋅ r)κ = ( + κ) cosκ η(h, r).

The parameter κ controls the halfwidth of the kernel. For illustration the de la Vallée Poussin
kernel ψ, its Radon transformRψ, and its Chebyshev coefficients ψ̂ are plotted in > Fig. .
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The de la Vallée Poussin kernel ψ for κ =  its Radon transformRψ and its Chebyshev coefficients

 Texture Analysis with Individual Orientation Measurements:
Electron Back Scatter Diffraction Data

Electron back scatter diffraction (EBSD) with a scanning electron microscope (SEM) yields
Kikuchi patterns (Schwartz et al. ), which are “indexed” by advanced image analysis
applying Radon and Hough transforms, respectively, to result in individual orientation mea-
surements assigned to locations within the surface of the specimen, i.e., gi = g(xi , yi), g ∈
SO(), (xi , yi) ∈ D ⊂ R

, i = , . . . , n. A survey of its application in materials science is given
by Schwartz et al. (). Usually the step size of the scanning grid is much smaller than the
size of crystallites. Thus EBSD data are not independent. Since independent and identical dis-
tribution are the fundamental assumptions of all classic statistics, proper statistical analysis of
EBSD data requires models of spatially induced dependence and methods for dependent data
as developed in Van den Boogaart ().

Since density estimation by harmonic series expansion with directly estimated coefficients

f̂ ∗(ℓ, k, k′) = 
n
(ℓ + 

 )



π

n
∑
i=

Dkk′
ℓ (gi), ℓ ∈ N, k, k′ = −ℓ, . . . , ℓ ()

is affected by the problem of how to impose non-negativity (Watson ), non-parametric
kernel density estimation on SO() is developed analogously to spherical density estimation
(Schaeben ; Hall et al. ). It may be seen as a convolution of a kernel chosen by the
user and the discrete uniform measure assigning to each observation the probability 

n , where
n denotes the sample size. Any kernel density estimation inevitably involves some smoothing,
the extent of the smoothing depending on the width of the kernel controlled by its parameter
κ, or its maximum bandwidth, respectively. In fact, choosing the proper kernel width is criti-
cal, muchmore critical than the choice of the kernel itself (Scott , p. ). Proceeding from
kernel density estimation to estimating the harmonic coefficientsmay be casually interpreted as
smoothing first, then computing harmonic coefficients. Thus, the harmonic coefficients deter-
mined in this way are generally biased. Only the special case of density estimation with the
otherwise unfavorable Dirichlet kernel will yield unbiased estimators of the first L harmonic
coefficients.

Let gi ∈ SO(), i = , . . . , n, be a sample of individual orientation measurements of sam-
ple size n. Should the measurements initially be spatially referenced, this reference is neglected
here. In fact, the sample is modeled as realization of a mathematical sample of random orien-
tations Gi ∶ (Ω,A, P) → (SO(),B(SO())), i = , . . . , n, which are assumed to be identical
independent distributed with finite expectation and finite variance.
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Then the basic kernel density estimator is defined as

f ∗κ (g;G, . . . ,Gn) =

n

n
∑
i=

ψκ (ω (g G−
i )) , κ ∈ A,

where (ψκ , κ ∈ A) is a family of non-negative radially symmetric functions, actually an approx-
imate identity for κ → κ. It should be noted that the estimator is a random variable itself. An
actual estimate is given by

f ∗κ (g; g, . . . , gn) =

n

n
∑
i=

ψκ (ω (g g−i )) , κ ∈ A.

Since it will be clear by the context if the random estimator or its corresponding estimate is
meant, they are not distinguished but both denoted f ∗κ .

Considering crystallographic symmetry, the basic kernel density estimator is generalized to

f ∗κ (g;GG̃Laue, . . . ,GnG̃Laue) =

n

n
∑
i=

ψκ (ω (gG̃LaueG−
i )) , κ ∈ A

= 
n

n
∑
i=


#G̃Laue

∑
q∈G̃Laue

ψκ (ω (gqG−
i )) , κ ∈ A.

As usually, the Radon transform of f ∗κ (g;GG̃Laue, . . . ,GnG̃Laue) is given by

R[ f ∗κ (○;GG̃Laue, . . . ,GnG̃Laue)] (h, r) =

n

n
∑
i=

Rψκ(GiG̃Laueh ⋅ r)

= 
n


#G̃Laue

n
∑
i=

Rψκ(Gih ⋅ r),

and is itself again a random variable.
Defined as a sum of identical radially symmetric functions, the Fourier coefficients of

f ∗κ (g;G, . . . ,Gn) degenerate to the coefficients of the kernel with respect to Chebyshev
polynomials of second kind, Eq. (), and are given by

∗ f̂ (ℓ, k, k′) =
(ℓ + 

 )



π ∫
SO()

f ∗κ (g;G, . . . ,Gn)Dkk′
ℓ (g)dg = ψ̂κ(ℓ)


n

n
∑
i=

Dkk′
ℓ (Gi).

Since smoothing is generally involved in kernel density estimation, the derived estimators of
the Radon transform and the harmonic coefficients, respectively, are biased (Van den Boogaart
).With respect to the latter, it becomes obvious that the extent of the smoothing (and bias)
is captured by the Chebyshev coefficients ψ̂κ(ℓ) of the kernel being used for estimation when
the special case of the Dirichlet kernel is being considered.

The Dirichlet kernelDL is parametrized by its maximum bandwidth L and defined as

DL (ω (g g− )) =
L
∑
ℓ=

ℓ
∑

k ,k′=−ℓ
(ℓ + )Dkk′

ℓ (g)Dkk′
ℓ (g)

=
L
∑
ℓ=

(ℓ + )Uℓ(cos
ω (g g− )


).

Its Chebyshev coefficients are simply

D̂L(ℓ) = {
ℓ + , if ℓ ≤ L,
, otherwise. ()
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Then the harmonic coefficients of the Dirichlet kernel density estimator

f ∗DL(g;G, . . . ,Gn) =

n

n
∑
i=
(ℓ + )DL (ω (g G−

i ))

are given by

∗ f̂DL(ℓ, k, k
′) = { f̂ ∗(ℓ, k, k′), if ℓ ≤ L,

, otherwise,

where f̂ ∗(ℓ, k, k′) are the estimators, Eq. (), directly based on themathematical sampleGi , i =
, . . . , n, which have been shown to be unbiased (Van den Boogaart ). Here, smoothing of
the orientation density function occurs by way of truncation of the harmonic series expansion
at the maximum bandwidth L. It could be referred to as computing harmonic coefficients first,
then smoothing the orientation density function by truncation.

Thus, in the special case of non-parametric kernel density estimation with the Dirichlet
kernel band-limited by L the two estimations of the harmonic coefficients coincide for the
first L coefficients. Informally, for this special instance the order of estimation and smooth-
ing is irrelevant. In this way it is constructively confirmed that the extent of smoothing which
generally accompanies non-parametric kernel density estimation and affects the harmonic coef-
ficients is obviously captured by the Chebyshev coefficients ψ̂κ(ℓ) of the kernel being used for
estimation.

Pursuing the discussion in Watson (, ), it should be noted that the Dirichlet ker-
nel is not non-negative, cf. > Fig. , and, thus, the corresponding estimated density could be
negative. That is, whatever the size of L, the first L unbiased estimates of the harmonic coeffi-
cients do not generally represent a non-negative function. Generally, for non-negative kernels,
the estimators of the harmonic coefficients are biased. Asymptotically, there is a non-negative
density function corresponding to these biased harmonic coefficients. Only for the de la Vallée
Poussin kernel the latter is true for a finite order L, cf. Fengler et al. ().

Another quantity of interest is the norm of the estimate or even more interesting the
expected norm of the estimator. More precisely, the focus is on the asymptotic behavior of the
(expected) norm of f ∗κ − f for increasingly large sample sizes n →∞. In particular, the question
is how to relate κ → κ and n →∞.
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The Dirichlet kernelDL for L =  and its Chebyshev coefficients
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Thus, the entity of major interest is the “mean integrated squared error”

E [∫
SO()

( f ∗κ (g;G, . . . ,Gn)− f (g))

dg] = ∫

SO()
E [ f ∗κ (g;G, . . . ,Gn) − f (g)] dg, ()

which is also the “integrated mean squared error” thanks to Fubini. Thus, it is a measure of
both the average global error and the accumulated pointwise error (Scott , p. ). It is
well known that a uniformly minimum variance unbiased estimator does not exist (Rosenblatt
). Therefore, there will always be a trade off

∫
SO()

E [ f ∗κ (g;G, . . . ,Gn) − f (g)] dg

= ∫
SO()

(bias [ f ∗κ (g;G, . . . ,Gn)])

dg + ∫

SO()
Var [ f ∗κ (g;G, . . . ,Gn)] dg ()

with respect to variance and bias, respectively.
Then it can be shown that

E ∥ f − f ∗κ (○;G, . . . ,Gn)∥L(SO()) = ∥ f − f ∗ ψκ∥L(SO()) +

n
∥ψκ∥L(SO())

+ 
n
∥ f ∗ ψκ∥L(SO()) . ()

While the first term converges for any fixed n to  as the kernel ψκ approximates identity as
κ → κ, κ ∈ A, the sumof the other two terms essentially depends on the L–norm of the kernel
and vanishes like /n for any fixed κ. However, as the kernel approximates identity, its L–norm
may become arbitrarily large. Thus, a compromise between spatial localization of the kernel
controlling the bias term and its L–norm is required, and will eventually lead to an optimum
halfwidth for a given kernel and optimum kernels, respectively, analogously to Epanechnikov
().

 Anisotropic Physical Properties

. Effective Physical Properties of Crystalline Aggregates

The calculation of the physical properties from microstructural information (crystal orienta-
tion , volume fraction , grain shape, etc.) is important for materials because it gives insight into
the role of microstructure in determining the bulk properties . Calculation of the effective prop-
erties is essential for anisotropic properties as experimental measurements in many directions
necessary to fully characterize anisotropy is not currently feasible for many applications, e.g., at
the temperature and pressure conditions found in the deep Earth.

In the following sections, wewill only discuss the elastic properties needed for seismic veloc-
ities, but the methods apply to all tensorial properties where the bulk property is governed by
the volume fraction of the constituent minerals. Many properties of geophysical interest are of
this type, e.g., thermal conductivity , thermal expansion, elasticity, and seismic velocities. How-
ever, these methods do not apply to properties determined by the connectivity of a phase, such
as the electrical conductivity of rocks with conductive films on the grain boundaries (e.g., car-
bon). We will assume that the sample may be microscopically heterogeneous due to grain size,
shape, orientation, or phase distribution, but will be considered macroscopically uniform. The
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complete structural details of the sample are in general never known, but a “statistically uni-
form” sample contains many regions, which are compositionally and structurally similar, each
fairly representative of the entire sample. The local stress and strain fields at every point r in a
linear elastic polycrystal which are completely determined by Hooke’s law as follows

σi j(r) = Ci jk l(r)єkl(r),
єi j(r) = Si jk l(r)σkl(r),

where σi j(r) is the stress tensor , єkl(r) the strain tensor , Ci jk l(r) is the elastic stiffness tensor ,
and Si jk l(r) is the elastic compliance tensor at point r. The evaluation of the effective constants
of a polycrystal would be the summation of all components as a function of position, if we
know the spatial functions of stress and strain. The average stress < σi j > and strain < єi j >
of a statistically uniform sample are linked by an effective macroscopic moduli C∗ and S∗ that
obeys Hookes’s law of linear elasticity,

C∗i jk l = < σi j >< єkl >−,
S∗i jk l = < єi j >< σkl >−,

where < єi j >= 
V ∫ єi j(r)dr and < σi j >= 

V ∫ σi j(r)dr and V is the volume, the notation
< . > denotes an ensemble average. The stress σ(r) and strain є(r) distribution in a real poly-
crystal varies discontinuously at the surface of grains. By replacing the real polycrystal with a
“statistically uniform” sample we are assuming that σ(r) and strain є(r) are varying slowly and
continuously with position r.

A number of methods are available for determining the effective macroscopic effective
modulus of an aggregate.We make simplifying assumption that there is no significant interac-
tion between grains, which for fully dense polycrystalline aggregates is justified by agreement
between theory and experiments for the methods we present here. However these methods are
not appropriate for aggregates that contain voids, cracks, or pores filled with liquid or gasses, as
the elastic contrast between the different microstructural elements will be too high and we can-
not ignore elastic interactions in such cases.The classical method that takes into account grain
interaction is the self-consistent method based on the Eshelby inclusion model (e.g., Eshelby
; Hill ), which can also account for the shape of the microstructural elements. The
simplest and best-known averaging techniques for obtaining estimates of the effective elastic
constants of polycrystals are the Voigt () and Reuss () averages. These averages only
use the volume fraction of each phase, the orientation and the elastic constants of the single
crystals or grains. In terms of statistical probability functions, these are first-order bounds as
only the first-order correlation function is used, which is the volume fraction. Note, no infor-
mation about the shape or position of neighboring grains is used. The Voigt average is found
by simply assuming that the strain field is everywhere constant (i.e. ε(r) is independent of r)
and hence the strain is equal to its mean value in each grain. The strain at every position is set
equal to the macroscopic strain of the sample. C∗ is then estimated by a volume average of local
stiffnesses C(gi) with orientation gi , and volume fraction Vi ,

C∗ ≈ CVoigt = [∑
i
ViC(gi)].
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Reuss average is found by assuming that the stress field is everywhere constant. The stress
at every position is set equal to the macroscopic stress of the sample. C∗ or S∗ is then estimated
by the volume average of local compliances S(gi),

C∗ ≈ CReuss = [∑
i
Vi S(gi)]

−

S∗ ≈ SReuss = [∑
i
Vi S(gi)]

and
CVoigt ≠ CReuss and CVoigt ≠ [SReuss]−.

These two estimates are not equal for anisotropic solids with the Voigt being an upper bound
and the Reuss a lower bound. A physical estimate of the moduli should lie between the Voigt
and Reuss average bounds as the stress and strain distributions are expected to be somewhere
between uniform strain (Voigt bound) and uniform stress (Reuss bound). Hill () observed
that arithmetic mean (and the geometric mean) of the Voigt and Reuss bounds, sometimes
called the Hill or Voigt–Reuss–Hill (VRH) average, is often close to experimental values. The
VRH average has no theoretical justification. As it is much easier to calculate the arithmetic
mean of the Voigt and Reuss elastic tensors all authors have tended to apply the Hill average as
an arithmetic mean. In Earth sciences the Voigt, Reuss, andHill averages have beenwidely used
for averages of oriented polyphase rocks (e.g., Crosson and Lin ). Although the Voigt and
Reuss bounds are often far apart for anisotropic materials, they still provide the limits within
which the experimental data should be found.

Several authors have searched for a geometric mean of oriented polycrystals using the expo-
nent of the average of the natural logarithm of the eigenvalues of the stiffness matrix (Matthies
and Humbert ). Their choice of this averaging procedure was guided by the fact that the
ensemble average elastic stiffness < C > should equal the inverse of the ensemble average elastic
compliances < S >−, which is not true, for example, of the Voigt and Reuss estimates.Amethod
of determining the geometric mean for arbitrary orientation distributions has been developed
(Matthies and Humbert ). The method derives from the fact that a stable elastic solid must
have an elastic strain energy that is positive. It follows from this that the eigenvalues of the elastic
matrixmust all be positive. Comparison betweenVoigt, Reuss,Hill and self-consistent estimates
show that the geometricmean provides estimates very close to the self-consistentmethod, but at
considerably reduced computational complexity (Matthies and Humbert ). The condition
that the macroscopic polycrystal elastic stiffness < C >must equal the inverse of the aggregate
elastic compliance < S >− would appear to be a powerful physical constraint on the averaging
method (Matthies and Humbert ). However, the arithmetic (Hill) and geometric means are
also very similar (Mainprice andHumbert ), which tends to suggest that they are just mean
estimates with no additional physical significance.

The fact that there is a wide separation in the Voigt and Reuss bounds for anisotropic
materials is caused by the fact that the microstructure is not fully described by such averages.
However, despite the fact that these methods do not take into account such basic informa-
tion as the position or the shape of the grains, several studies have shown that the Voigt or
the Hill average are within –% of experimental values for crystalline rocks. For example,
Barroul Kern () showed for several anisotropic lower crust and upper mantle rocks from
the Ivrea zone in Italy that the Voigt average is within % of the experimentally measured
velocity.
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. Properties of Polycrystalline Aggregates with Texture

Orientation of crystals in a polycrystal can be measured by volume diffraction techniques (e.g.,
X-ray or neutron diffraction ) or individual orientation measurements (e.g., U-stage and Opti-
cal microscope, electron channeling, or electron back-scattered diffraction EBSD ). In addition
numerical simulations of polycrystalline plasticity also produce populations of crystal orienta-
tions atmantle conditions, (e.g., Tommasi et al. ). Anorientation, often given the letter g, of
a grain or crystal in sample co-ordinates can be described by the rotationmatrix between crystal
and sample co-ordinates. In practice it is convenient to describe the rotation by a triplet of Euler
angles, e.g., g = (φ, ϕ, φ) by Bunge (). One should be aware that there are many different
definitions of Euler angles that are used in the physical sciences. The orientation distribution
function (O.D.F.) f (g) is defined as the volume fraction of orientations with an orientation in
the interval between g and g + dg in a space containing all possible orientations given by

ΔV
V

= ∫ f (g)dg,

where ΔV/V is the volume fraction of crystals with orientation g, f (g) is the texture function
and dg = /π sin ϕ dφdϕdφ the volume of the region of integration in orientation space.

To calculate the seismic properties of a polycrystal, one must evaluate the elastic properties
of the aggregate. In the case of an aggregatewith a crystallographic texture, the anisotropy of the
elastic properties of the single crystal must be taken into account. A potential complication is
the fact that the Cartesian frame defined by orthogonal crystallographic directions used report
elastic tensor of the single crystal, many not be the same as those used for Euler angle reference
frame used in texture analysis (e.g., MTEX) or measurement (e.g., EBSD) packages. To account
for this difference a rotation may be required to bring the crystallographic frame of tensor into
coincidence with the Euler angle frame,

Ci jk l (gE) = Tip.Tjq .Tkr .Tl tCpqr t(gT),

where Ci jk l (gE) is the elastic property in the Euler reference and Cpqr t(gT) is the elastic
property in the original tensor reference frame, both frames are in crystal co-ordinates. The
transformation matrix Ti j is constructed from the angles between the two sets perpendicular
to the crystallographic axes, forming rows and columns of the orthogonal transformation or
rotation matrix (see Nye ()). For each orientation g the single crystal properties have to be
rotated into the specimen co-ordinate frame using the orientation or rotation matrix gi j ,

Ci jk l(g) = gi p .g jq .gkr .gl t .Cpqr t(gE),

where Ci jk l (g) is the elastic property in sample co-ordinates, gi j = g(φ, ϕ, φ) the measured
orientation in sample co-ordinates and Cpqr t(gE) is the elastic property in crystal co-ordinates
of the Euler frame. We can re-write the above equation as

Ci jk l (g) = Ti jk l pqr t(g)Cpqr t(gE)

with
Ti jk l pqr t(g) = ∂xi/∂xp ∂x j/∂xq ∂xk/∂xr ∂xl /∂xt = gi p .g jq .gkr .gl t .

The elastic properties of the polycrystal may be calculated by integration over all possible
orientations of the ODF. Bunge () has shown that integration is given as:

< Ci jk l >= ∫ gi p .g jq .gkr .gl t .Cpqr t(gE). f (g) dg = ∫ Ci jk l(g). f (g) dg,
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where <Ci jk l> is the elastic properties of the aggregate and ∫ f (g)dg = .The integral on SO()
can be calculated efficiently using the numerical methods available in MTEX.

We can also regroup the texture dependent part of integral as < Ti jk l pqr t >

< Ti jk l pqr t > ⋅Cpqr t(gE) = [∫ Ti jk l pqr t(g) ⋅ f (g)dg] ⋅ Cpqr t(gE).

We can evaluate < Ti jk l pqr t > analytically in terms of generalized spherical harmonics coeffi-
cients for specific crystal and sample symmetries, (e.g., Ganster and Geiss ; Johnson and
Wenk ; Zuo et al. ; Morris ). The minimum texture information required to cal-
cluate the elastic properties are the even order coefficients and series expansion to , which
drives from centosymmetric symmetry and fourth rank tensor of elasticity, respectively. The
direct consequence of this is that only a limited number of pole figures are required to define
the ODF, e.g.,  for cubic and hexagonal and  for tetragonal and trigonal crystal symmetries.

Alternatively elastic properties may be determined by simple summation of individual
orientation measurements,

< Ci jk l >=∑ gi p .g jq .gkr .gl t .Cpqr t(gE).V(g) = ∑Ci jk l (g).V(g),

where V(g) is the volume fraction of the grain in orientation g. For example, the Voigt average
of the rock for mmineral phases of volume fraction V(m) is given as

< Ci jk l >Voigt=∑V(m) < Ci jk l >m .

The final step is the calculation of the three seismic phase velocities by the solution of the
Christoffel tensor (Tik). The Christoffel tensor is symmetric because of the symmetry of the
elastic constants, and hence

Tik = Ci jk l n jnl = Cjik l n jnl = Ci jl k n jnl = Ckl i jn jnl = Tki .

The Christoffel tensor is also invariant upon the change of sign of the propagation direction n
as the elastic tensor is not sensitive to the presence or absence of a center of symmetry, being a
centro-symmetric physical property. Because the elastic strain energy ( 

Ci jk l єi jєk l) of a stable
crystal is always positive and real (e.g., Nye ), the eigenvalues of the ×  Christoffel tensor
(being a Hermitian matrix) are three positive real values of the wave moduliM corresponding
to ρVp, ρVs , ρVs of the plane waves propagating in the direction n. The three eigenvectors
of the Christoffel tensor are the polarization directions (also called vibration, particle move-
ment, or displacement vectors) of the three waves, as the Christoffel tensor is symmetric to the
three eigenvectors, and polarization vectors are mutually perpendicular. In the most general
case there are no particular angular relationships between polarization directions p and the
propagation direction n, however, typically the P-wave polarization direction is nearly paral-
lel and the two S-wave polarizations are nearly perpendicular to the propagation direction and
they are termed quasi-P or quasi-Swaves. If the P-wave and twoS-wave polarizations are parallel
and perpendicular to the propagation direction, which may happen along a symmetry direc-
tion, then the waves are termed pure P and pure S or pure modes. In general, the three waves
have polarizations that are perpendicular to one another and propagate in the same direction
with different velocities, with Vp > Vs > Vs.
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. Properties of Polycrystalline Aggregates—An Example

Metamorphic reactions and phase transformations often result in specific crystallographic rela-
tions between minerals. A specific orientation relationship between two minerals is defined by
choosing any orientation descriptor that is convenient, e.g., a pair of parallel crystallographic
features, Euler angle triplet, rotation matrix, or rotation axis and angle. The two minerals may
have the same or different crystal symmetry. The composition may be the same as in polymor-
phic phase transitions or different as in dehydration or oxidization reactions. Recently Boudier
et al. () described the orientation relationship between olivine and antigorite serpentine
crystal structures by two pairs of planes and directions that are parallel in both minerals:

relation : ()Olivine ∣∣ ()Antigorite and []Olivine ∣∣ []Antigorite
relation : ()Olivine ∣∣ ()Antigorite and []Olivine ∣∣ []Antigorite

Such relationships are called Burgers orientation relationships in metallurgy.The relation is
used in the present study to calculate the Euler angle triplet, which characterizes the rotation of
the crystal axes of antigorite into coincidence with those of olivine. Olivine is hydrated to form
antigorite and in the present case the rotational point group symmetry of olivine (orthorhom-
bic) and the antigorite (monoclinic) results in four symmetrically equivalent new mineral
orientations, seeMainprice et al. () for details, because of the symmetry of the olivine that is
transformed. The orientation of the n symmetrically equivalent antigorite minerals is given by

gAntigoriten=,. . . , = ΔgOlivine – Antigorite.SOlivine
n .gOlivine,

where ΔgOlivine – Antigorite is rotation between the olivine and newly formed antigorite, SOlivine
n are the

rotational point group symmetry operations of olivine and gOlivine is the orientation of an olivine
crystal. Δg is defined by the Burgers relationships given above, where relation  is Δg = φ, ϕ,
φ = (., ., .) and relation  is Δg = (., ., .). Note that the values of the Euler
angles of Δg will depend on right-handed orthonormal crystal coordinate system chosen for the
orthorhombic olivine and the monoclinic antigorite. In this example for olivineKC = {a,b, c}
and for antigorite KC = {a∗,b, c}.

The measurement of the texture of antigorite is often unreliable using EBSD because of
sample preparation problems. We will use Δg which may be expressed as mineral or phase
misorientation function (Bunge andWeiland ) as

FOlivine-Antigorite(Δg) = ∫ f Olivine(g). f Antigorite(Δg.g)dg

to predict texture of antigorite from the measured texture of olivine. We will only use relation
 of Boudier et al. (), because this relation was found to have a much higher frequency in
their samples.We used the olivine texture database of Ben Ismaïl andMainprice () consist-
ing of  samples and over ,  individual measurementsmade with an optical microscope
equipped with -axis universal stage as our model olivine texture illustrated in > Fig. . The
olivine model texture has the [] aligned with the lineation and the [] axes normal to
the foliation. The texture of the antigorite calculated using phase misorientation function and
the pole figures (> Fig. ) clearly show that Burgers orientation relationships between olivine
and antigorite are statistically respected in the aggregates. The seismic properties of the %
olivine and antigorite aggregates were calculated using the methods described in > Sect. .
for individual orientations using the elastic single crystal tensors for olivine (Abramson et al.
) and antigorite (Pellenq et al. ), respectively. The numerical methods for the seismic
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Olivine CPOof the Ben Ismaïl andMainprice () database and the corresponding antigorite CPO
calculated using phasemisorientation function described in the text. Horizontal black lines on the
pole figures marks the foliation (XY) plane of the olivine aggregates and the lineation (X) is East–
West. Contours in times uniform. Lower hemisphere equal area projection

calculations are described by Mainprice (). The seismic velocities for a given propagation
direction on -degree grid in the lower hemisphere. The percentage anisotropy (A) is defined
here as A = (Vmax − Vmin)/(Vmax + Vmin) . The V p anisotropy is found by searching the
hemisphere for all possible propagation directions for maximum and minimum values of V p.
There are in general two orthogonally polarized S-waves for each propagation direction with
different velocities in an anisotropic medium.The anisotropy AVs can then be defined for each
direction with one S-wave having the maximum velocity and the other the minimum veloc-
ity. Contoured lower hemisphere stereograms of P-wave velocity (Vp), percentage shear wave
anisotropy (AVs), also called shear wave splitting, as well as polarization (Vs) of the fastest
S-wave are shown in > Fig. . The seismic properties show a major change in the orientation
of the fast direction of compressional wave propagation from parallel to the lineation (X) in the
olivine aggregate to normal to the foliation (Z) in the antigorite aggregate. In addition, there is a
dramatic change of orientation of the polarization (or vibration) of the fastest S-wave (S) from
parallel to the (XY) foliation plane in olivine perpenticular to the foliation (Z) in the antigorite
aggregate. The remarkable changes in seismic properties associated with hydration of olivine
and its transformation to antigorite have been envoked to explain the changes in orientation
of S-wave polarization of the upper mantle between back-arc and mantle wedge in subduction
zones (Faccenda et al. ; Kneller et al. ; Katayama et al. ).

 Future Directions

Although quantitative texture analysis have been formally available since the publication of
the H.-J. Bunge’s classical book (), many of the original concepts only applied to single-
phase aggregates of metals. Extension of these methods was rapidly made to lower crystal
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The calculated seismic properties of theolivine andantigoritepolycrystalswithpolefigures shown
in > Fig. .Vp is compressionwavevelocity,AVs is shear-wave splittingorbirefringence anisotropy
as percentage as defined in the text and Vs polarization is the vibration direction of the fastest
S-wave. Horizontal black lines on the pole figures marks the foliation (XY) plane of the olivine
aggregates and the lineation (X) is East-West. Lower hemisphere equal area projection

symmetry typical of rock forming minerals and lower sample symmetry corresponding to
naturally deformed rocks.The relationship of neighboring crystal orientations called misorien-
tation has also now been widely studied. However, most rocks are poly-mineral or poly-phase,
and the extension of quantitative texture analysis to poly-phase materials has been slow to
develop because a universal mathematical framework is missing. A coherent framework will
encompass misorientation between crystals of the same phase and between crystals of differ-
ent phases. Future research in this area based on mathematical framework of this chapter will
provide a coherent and efficient theoretical and numerical methodology. Other future develop-
ments will include methods to quantify the statistical sampling of orientation space of different
types of data.

 Conclusions

Fourty years after Bunge’s pioneering “Mathematische Methoden der Texturanalyse” (Bunge
), which is most likely the single most influential textbook besides its English translation
(Bunge ), this contribution to the “Handbook of Geomathematics” presents elements of a
mathematical texture analysis as part of mathematical tomography.The “fundamental relation-
ship” of an orientation distribution and its corresponding “pole figures” was identified as totally
geodesic Radon transform on SO() or S

 ⊂ H. Being a Radon transform, pole figures are gov-
erned by an ultrahyperbolic or Darboux-type differential equation, the meaning of which was
furiously denied at its first appearance. In fact, this differential equation opened a new dimen-
sion and its general solution both in terms of harmonics and characteristics suggested a novel
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approach by radial basis functions featuring a compromise of sufficiently good localization in
spatial and frequency domain. Availability of fast Fourier methods for spheres and SO() was
the necessary prerequiste to put the mathematics of texture analysis into practice as provided
by the free and open source toolbox MTEX.
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