
dMata.co.uk

In-situ Mechanical Testing in the
SEM

T. H. Simma*

A. N. Forseyb**, Y Dasb, R. J. Moatb, S. Gungorb

M. J. Rawsonc, P. Hillc

S. Biroscaa, K. M. Perkinsa

a) Swansea University, UK; b) Open University, UK; c) Rolls Royce Plc, UK;
* T.H.Simm@Swansea.ac.uk / Thomas.Simm@dMata.co.uk EBSD MTEX stuff
** Alex.Forsey@Open.ac.uk / Alex.Forsey@dMata.co.uk DIC stuff

#MTEX2017

mailto:T.H.Simm@Swansea.ac.uk
mailto:Thomas.Simm@dMata.co.uk
mailto:Alex.Forsey@Open.ac.uk
mailto:Alex.Forsey@dMata.co.uk

Content

A. GUIs MTEX Experiment

• dBSD / DICE GUI

• The experiment

B. DIC

• What is DIC

• Combining DIC with EBSD

C. Change in orientation of grains

• Crystal Plasticity models

• Orientation change in grains

D. Martensite

• Identifying variants

• Strain-induced martensite

Cons

 No user interface (but JQdaFonseca ‘I dislike GUIs’)

 Have to learn MTEX/Matlab and write out everything you want

– Can be difficult to get started

 Can be slow

 ‘object orientated approach is a pain to understand algorithm’ Ben Britton

 Need a Matlab license- can be a pain if your license needs internet

Other similar applications options

 Channel 5 (and other EBSD software houses) have their own EBSD analysis software

– Quick, user interface

 Some similar open source packages, e.g. ATOM http://www.atom-software.eu/

 And some open source packages or code in other formats (??)

Pros

 For texture one of the best (‘MTEX is pretty good for texture’ B.B. again)

 Get the most from your EBSD data:

 & do things not possible in other commercial packages
– Or without the hassle and errors if you did it from 1st principles yourself

 Good user community / support & help files

 Always improving code

MTEX

http://www.atom-software.eu/

MTEX new user recommendations

1. Use the help files in Matlab
– I often search ‘MTEX + function’

2. Not an obvious answer there, go to the google user group
https://groups.google.com/forum/?fromgroups=#!forum/mtexmail
• Try a few keywords related to your problem in ‘Search’ of old posts first

• If nothing comes up….

3. Post a question on the group
• Be as detailed as possible

• It may make sense to you, but write it so it would make sense to an Undergrad/ MSc / PhD in a related
Science field

4. If you get no response, but think the question is valid
• Try contacting someone on user group who has answered similar questions- maybe they’ve not checked

the group for a while-> they may ignore you but nothing to lose

5. Be inquisitive, (when necessary or if you’re bored) have a look at the code for a particular function
or even put in code breaks and follow variables to see what it does
• E.g. >>> edit calcGrains (gives Matlab code for this)

6. Be prepared to be frustrated by the simplest of problems.
• It takes time, but the learning curve is worth it from the functionality you get

7. When you get your MTEX skills share your knowledge with your group and the community

A

https://groups.google.com/forum/?fromgroups=#!forum/mtexmail

Modify MTEX code to do what you want

function OUT = plotAngleDistribution_adj(obj,varargin)

% plot axis distribution

%

% Syntax

% plotAngleDistribution(mdf)

% plotAngleDistribution(CS1,CS2)

% plotAngleDistribution(grains.boundary.misorientation)

%

% Input

% CS - @symmetry

%

% Options

% resolution - resolution of the plots

%

% [mtexFig,isNew] = newMtexFigure(varargin{:});

% mtexFig.keepAspectRatio = false;

% compute angles

plotType = 'line';

% if isa(obj,'symmetry')

% maxOmega = maxAngle(obj,varargin{:});

% else

maxOmega = maxAngle(obj.CS,obj.SS);

% if ~isa(obj,'ODF'), plotType = 'bar'; end

% end

% seach for existing bar plots and adjust bar center

% h = findobj(mtexFig.gca,'type','bar','-

or','type','hgGroup');

% h = flipud(h(:));

unit = '%';

% bin size given?

if max(obj.angle) < maxOmega/2, maxOmega =

max(obj.angle);end

nbins =

round(maxOmega/get_option(varargin,'resolution',5*degree));

% compute bins

bins = -eps:varargin{1}*pi/180:65*pi/180;

%linspace(-eps,maxOmega+0.01,nbins);

nbins=length(bins);

density = zeros(nbins-1,1);

lg = {};

% compute angle distribution

d = histcounts(obj.angle,bins).';

midPoints = 0.5*(bins(1:end-1) + bins(2:end));

density(:,end) = d(1:end) ;

OUT=[midPoints'/degree,density];

A

dBSD – digital back-scattered diffraction
A

dice – digital image correlation e-
A

GUIs

>>guide

GUIs: Graphical User Interfaces

GUIs can make working with data easier but can cause problems

 Cross-platform capabilities
– Problems with different versions of Matlab (or PC type)

– And even different screen resolutions

– In theory within Matlab it is possible to create an executable of a GUI?

 Treatment of variables
– MTEX uses some calculations that are slow, so good to store variables

– Global variables

• make life easy for simple GUIs

• But cause problems with increased complexity, both memory issues and code confusion

– getappdata

• makes getting variables more explicit so less code confusion- but still memory issues

– Saving larger variables as a file

• Good solution for larger datasets (e.g. ebsd, grains, IPF color)

• Issues with ‘/’ vs ‘\’

• I use local variables (saved in a folder ‘variables’) which can then be saved and loaded later-
– but better options?

 Make GUIs that can be used without the GUI
– Use the GUI to get input data and then call external functions

A

GUIs: Graphical User Interfaces

 Plot to a GUI can be problematic
handa=handles.axes6;

menuPlot(choi,handa,h);

 And within function menuPlot

plot(grains.boundary,'parent',hhan,'edgecolor','k','linewidth',1)

ylabel('Boundaries per \mum^2','parent',hhan);

 A change we had to make to plot.m

try axis(mP.ax,'tight'); end

% mP.micronBar.setOnTop <- had to get rid of this to enable plot

within GUI

 Or just plot externally

A

The Experiment

Transformation-Induced Plasticity (TRIP) Steel

• High energy absorption capacity & fatigue strength

• Due to a combination of the hard martensite phase (BCC) in the soft austenite
matrix (FCC), analogous to a hard-particle-reinforced composite

• well suited for automotive structural and safety parts

Start After Applied strain

A

How DIC works

REF: J.Q. Da Fonseca, P.M. Mummery, P.J. Withers, J.
Microsc. 218 (2005) 9–21

Features

Displacement
Field

Get maps of strain tensor

B

Example: Tensile test of a Weld

Exx Eyy
Exy

REF: http://www.ncorr.com/index.php/sem-s-dic-challenge-weld

Weld in centre

B

DIC Software Packages

We are using La Vision’s da Vis (http://www.lavision.com/en/products/davis-software/index.php)

– Probably the best

– But License is Expensive

Other Options

 Ncorr – http://www.ncorr.com/

– J Blaber, B Adair, and A Antoniou, "Ncorr: Open-Source 2D Digital Image
Correlation Matlab Software." Experimental Mechanics (2015)

– Open source and runs with Matlab

 VIC-2D by Correlated solutions http://correlatedsolutions.com/vic-2d/

– Commercial software

– Cheaper than da Vis

– Quicker and easier to use than Ncorr

 ARAMIS GOM http://www.gom.com/3d-software/download.html
– Open source software

– I don’t know a lot about this

B

http://www.lavision.com/en/products/davis-software/index.php
http://www.ncorr.com/
http://correlatedsolutions.com/vic-2d/
http://www.gom.com/3d-software/download.html

Macro-Meso Scales

Y. Sakanashi, S. Gungor, A.N. Forsey, P.J. Bouchard- Exp

Mechanics 2016

Creep across a weld

B

Sample etched

Y. Sakanashi, S. Gungor, A.N. Forsey, P.J.

Bouchard- Exp Mechanics 2016

35 mm

B

DIC as a strain gauge

Other applications: - Young’s Modulus or Flow Stress at
different positions on a sample

Sub-micron resolution

 Sputter gold coating

 Remodel using water vapour or styrene at 100-150ºC

 Speckle pattern image using a FEG SEM, BSE mode:
– Speckles are 10-100 nm, with equal spacing

Di Gioacchino, Quinta da Fonseca, Exp. Mech., 2012

Y.B. Das, A.N. Forsey, T.H. Simm, K.M. Perkins, M.E.
Fitzpatrick, S. Gungor, R.J. Moat, JMADE. 112
(2016) 107–116.

B

Di Gioacchino, Quinta da Fonseca,
International Journal of Plasticity 74 2015

B

Smaller Scale

 Fine speckle patterns can be
made using either electron
beam or focused ion beam
(FIB) assisted deposition

REF: Di Gioacchino & Clegg
Acta Materialia 78 (2014)

B

Comparison of rotations

REF: Di Gioacchino & Clegg
Acta Materialia 78 (2014)

Copper
single crystal

EBSD DIC

B

Practical Issues of in-situ DIC + EBSD

• Need features on surface
• Three-stage procedure: EBSD -> DIC -> EBSD
• Problems for transmission

• SEM can produce raster errors-
• reduce by taking more than one image and summing

• Higher Mag. and combining multiple maps best for resolution
• SEM with automated focus change helps (Manchester 80 maps overnight)
• Normally better to do DIC on each map then combine vector maps

• Correction may be needed for drift
• Ex-situ can get closer WD and resolution but may lose some details (e.g. martensite)

Y.B. Das, et al. 2016 Di Gioacchino, Quinta da Fonseca, 2015Di Gioacchino, Clegg, 2014

B

How we do DIC

 Do image analysis with DIC software

 Input vector maps

 Strain is calculated from a number of
adjoining vectors (see next)

 Can change different parameters to suit
the situation (next slide)

 EBSD data matched to DIC data visually
– Then DIC data interpolated so for each

EBSD point we have strain components

• E.g. ebsd.Exx

– Displacement vectors rather than strain
is used

B

Getting the strain tensor
B

Separa on	of	vectors	
within	strain	window	

Separa on	of	y	vectors	

Separa on	of	x	vectors	

Ini al	fit	of	y	vectors	and	
outlier	iden fica on	

Ini al	fit	of	x	vectors	and	
outlier	iden fica on	

Second	fit	of	y	vectors	
with	outliers	removed	

Second	fit	of	x	vectors	
with	outliers	removed	

Strain	calcula on	from	
plane	gradient	

Strain	calcula on	from	
plane	gradient	

Exy	 Exx	

Eyy	

Eyx	

Exx			Exy	
Eyx			Eyy	

Surface	strain	
tensor	

Local strains

 Example for a 3x3 strain window >>>>

 Strain is calculated by fitting a plane to
the displacement vectors, values greater
than a threshold std from mean
displacement are removed and the fit
performed again

 Increasing the strain window size
increases the differentiation length of
the strain calculation

 Rectangular strain windows can be used
for highly directional strain fields

 Strain is calculated for each vector
position

 This is then interpolated onto the ebsd
grid
– E.g. ebsd.Exx

Y. Sakanashi, S. Gungor, A.N. Forsey, P.J. Bouchard- Exp Mechanics 2016

Getting the strain tensor
B

Separa on	of	vectors	
within	strain	window	

Separa on	of	y	vectors	

Separa on	of	x	vectors	

Ini al	fit	of	y	vectors	and	
outlier	iden fica on	

Ini al	fit	of	x	vectors	and	
outlier	iden fica on	

Second	fit	of	y	vectors	
with	outliers	removed	

Second	fit	of	x	vectors	
with	outliers	removed	

Strain	calcula on	from	
plane	gradient	

Strain	calcula on	from	
plane	gradient	

Exy	 Exx	

Eyy	

Eyx	

Exx			Exy	
Eyx			Eyy	

Surface	strain	
tensor	

Grain strains

 Grain strains are calculated in the same
way as local strains, but using all
displacement vectors within the grain for
the fit

 It is particularly important to set a
reasonable value for the std filter in this
case as spurious vectors at the grain
boundaries can disproportionately affect
the result unless removed
– Can also be used to remove gb regions

 These strains are saved in ebsd and
grains
– E.g. grains.Exx

• ebsd.Eyx

DICE GUI

(a) Load DIC files = DIC output .txt file
input

 DIC step size and DIC window size are not
used in the calculation, rather they are
stored so the size of the region affecting
the strain calculation can be determined

 SW size = is the number of vectors in each
direction are used to calculate local strain

(b) Load DIC .mat file = saved once (a)
above has run

(c) Load calibration .mat file = created
separately

 Std filter = outlier filter for average grain
strain calculation

(d) Load results .mat file = load result
from step (b)

B

Different Strain Windows

SW = 3 : 3 SW = 5 : 5

B

Experiment: DIC Strain Heterogeneity

2 % 6.5 %

9.5 % 12 % *

* NB each map can use either the final or initial state

B

Average strain within grains at different
applied strain (using low mag. Images)

Local Strain vs Strain in grains

Local strain

Average
grain strain

B

DIC vs EBSD

DIC

EBSD

Uses high mag image and SW = 5, 5

B

grains =grains(grains.area>10);
plot(grains.EpMax, grains.GOS, ‘o’)

DIC vs EBSD

KAM Kernel Average Misorientation

EBSD DIC

GND

Some scratches

B

Rigid Body Rotation

Lattice Rotation

1=x
2=y REF: Dieter

1986

B Strain tensor

EBSD and DIC rotations

Simple Shear (along x-axis)
F12 = Fp

Shear along x-axis + Rotation

𝐹 = 𝑅𝑒𝐹𝑝
F = deformation tensor
Re = lattice rotations & elastic strains
Fp = plastic deformation by dislocations movement
through lattice

DIC
EBSD

𝑆𝑖𝑛𝑔𝑙𝑒 𝑠𝑙𝑖𝑝 𝑓𝑜𝑟 𝑅𝑒 = 0 Wrt our axes

s

s

F12

B

Comparison of rotations

REF: Di Gioacchino & Clegg
Acta Materialia 78 (2014)

Copper
single crystal

EBSD DIC

B

Plastic deformation Fp

REF: Di Gioacchino & Clegg
Acta Materialia 78 (2014)

𝐹 = 𝑅𝑒𝑭𝒑

B

Crystal within a polycrystal

Di Gioacchino, Quinta da Fonseca,
International Journal of Plasticity 74 2015

B

Comparing EBSD and DIC

Di Gioacchino, Quinta da Fonseca,
International Journal of Plasticity 74 2015

NB lines
are along
slip lines
(P1?)

B

EBSD line profile

%% get points along the line

[xx ,yy]=ginput(2);

%% find which grain it is

single_grain = findByLocation(grains,[xx(1) yy(1)]);

%% create a line segment

lineSec = [xx(1) yy(1); xx(2) yy(2)];

%% get spatial orientation details along the lines

ebsd_line = spatialProfile(ebsd(grainSL),lineSec);

oroL=ebsd_line_.orientations;%orientation along line

oro1=ebsd_line_(1).orientations;%orientation at start point

mis2=inv(oroL)*oro1;%misorientation relative to start

mis2q=quaternion(mis2);%in quaternions

m0=real(mis2q);% [m0 m1 m2 m3]

%rotation around z-axis

theta3_(:,:)=(180/pi)*mis2q.d.*(2*(acos(m0)))./sqrt(1-m0.^2);%%fabios

formula

DIC line profile

%% get strain tensor components

Exx(1,1,:) = ebsd_line_{nn}.Exx; Exy(1,1,:) = ebsd_line_{nn}.Exy;

Eyx(1,1,:) = ebsd_line_{nn}.Eyx; Eyy(1,1,:) = ebsd_line_{nn}.Eyy;

Ezeros = zeros(1,1,length(Exx));

%% create strain tensor – assume no volume change and no shear in z

F_DIC_=[Exx, Exy, Ezeros; …

Eyx, Eyy, Ezeros;…

Ezeros , Ezeros, Ezeros-Exx-Eyy];

%% rotate the data so x-direction is parallel to slip direction

F_DIC_Rb = rotate_DIC_data(F_DIC_,slip_angle);

%% put data back into ebsd

ebsd_line.Exx = F_DIC_Rb(1,1,:);

ebsd_line.Eyy = F_DIC_Rb(2,2,:);

ebsd_line.Exy = F_DIC_Rb(1,2,:);

ebsd_line.Eyx = F_DIC_Rb(2,1,:);

DIC rotation to slip plane

function F_DIC_Rb = rotate_DIC_data(F_DIC_,slipangle)

if nargin==1

slipangle=45;

end

%% create rotation about z-axis

r = rotation('axis',vector3d([0 0 1]),'angle',slipangle*pi/180);

%% rotate for each ebsd point within grain using matrix form- other

options exist

rm = r.matrix;

F_DIC_Rb = zeros(size(F_DIC_,1),size(F_DIC_,2),size(F_DIC_,3));

for nj = 1:size(F_DIC_Rb,3)

F_DIC_Rb(:,:,nj) = rm*F_DIC_(:,:,nj)*rm';

end

end

B

B

𝐹 = 𝑅𝑒𝑭𝒑

𝐹 = 𝑅𝑒𝑭𝒑

Image Analysis

[1] Y. Mega, M. Robitaille, R. Zareian, J. Mclean, J.
Ruberti, C. Dimarzio, Second Harmonic Generation
Images, PMC. 37 (2013) 3312–3314.

Slip lines represent an image analysis problem
- Radon transform
- Hough transform
- Fourier transform

Get information on:
- Closeness of slip lines to slip planes
- Number/spacing of lines in different grains
- Pick out certain regions in maps

- E.g. not on slip lines

B

Crystal Plasticity Models

In crystal plasticity models we have two extremes

A. Assume all grains have the same stress state

• Schmid factor / Sachs model

• Best use:

• single crystals

• when we can define stress state of a grain

• HCP (anisotropic alloys)

B. Assume all grains have the same strain state

• Taylor model

• Best use:

• Averaging over many grains

• Predicted texture changes sharper than reality

• For isotropic crystal symmetries (e.g. not great for HCPs)

C

Slip systems

REF: H.J. Bunge, Some applications of the Taylor theory of polycrystal plasticity, Krist.
Und Tech. 5 (1970) 145–175.

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

1 ത1 0
1 ത1 0
1 ത1 0

1 0 0.5
0 ത1 0.5
0.5 0.5 0

0 1 0.5
ത1 0 0.5
0.5 0.5 0

Slip system
deformation
tensor

Pure strain
component

Pure rotation
component

REF: Dieter 1986

C

Sachs model

REF: Dieter 1986

REF: Bjorn Clausen, Characterisation of Polycrystal Deformation by Numerical Modelling
and Poly crystal Deformation by Modelling, Numerical Measurements, Neutron
Diffraction, Riso National Laboratory, 1997.

Only slip system(s) with max Schmid factor are active

Hardening component, slip activity

C

Taylor Model

𝑠=1

12

𝑏𝑠

𝜀11
𝑐′ 𝜀12

𝑐′ 𝜀13
𝑐′

𝜀21
𝑐′ 𝜀22

𝑐′ 𝜀23
𝑐′

𝜀31
𝑐′ 𝜀32

𝑐′ 𝜀33
𝑐′

=

𝐸11
𝑐′ 𝐸12

𝑐′ 𝐸13
𝑐′

𝐸21
𝑐′ 𝐸22

𝑐′ 𝐸23
𝑐′

𝐸31
𝑐′ 𝐸32

𝑐′ 𝐸33
𝑐′

Macroscopic strain tensorSlip system strain tensor

Slip activity min

𝑠=1

12

𝑏𝑠

𝑟𝑘 =

𝑠=1

12

𝑏𝑠

𝜔11
𝑐′ 𝜔12

𝑐′ 𝜔13
𝑐′

𝜔21
𝑐′ 𝜔22

𝑐′ 𝜔23
𝑐′

𝜔31
𝑐′ 𝜔32

𝑐′ 𝜔33
𝑐′

Rotation

e.g. for tension

1 0 0
0 0.5 0
0 0 0.5

C

1 0 0.5
0 ത1 0.5
0.5 0.5 0

Pure strain
component

FCC rolling example Texture Predictions

Jung, K.-H., Kim, D.-K., Im, Y.-T., & Lee, Y.-S. (2013).
Metal. Materials Transactions, 54(5), 769–775.

BCC rolling example Texture Predictions

P.S. Bate, J. Quinta da Fonseca, Texture development in the cold rolling of IF steel,
Mater. Sci. Eng. A. 380 (2004) 365–377. doi:10.1016/j.msea.2004.04.007.

Experimental Models

Taylor Model Variations
RC = Relaxed Constraints
FC = Full Constraints
18x18x18 = CPFEM

enter RR clearance number or meeting detailsenter RR clearance number or meeting details

Extra Parameters

Strain Edge

Percentage

% (k3)

Dislocation

density

variation

% (k1)

Mobile

Dislocation

% (k2)

Stainless

Steel

Fatigue

*

53% 33% 100%

10% 49% 0% 33%

16% 56% 0% 50%

30% 52% 0% 24%

Nickel 10% 100% 33% 23%

30% 94% 24% 15%

SS Nickel

More edge for Ni-

expected

Ni has broadening related to Taylor factor to

account for arrangement changes

Ni has less mobile dislocation e.g. from cross-

slip (e.g. a flatter change of FW) T.H. Simm, P.J. Withers, J. Quinta Da Fonseca, Peak broadening anisotropy in deformed face-

centred cubic and hexagonal close-packed alloys, J. Appl. Crystallogr. 47 (2014) 1535–1551.

REF: H. Lim, J.D. Carroll, C.C.
Battaile, T.E. Buchheit, B.L.
Boyce, C.R. Weinberger, Int.
J. Plast. 60 (2014) 2014.

Crystal Plasticity Modelling

(BCC) tantalum

B

4 mm

A reasonable correlation for this situation.
- Large columnar grains
BUT in most cases it is very difficult to model changes at the grain scale
- We don’t know orientation details below surface
- Chaotic system (small changes big effects)
- Length scale issues- CPFEM often smoother than DIC / EBSD even when we match cell sizes
So currently looking at selected grains / orientations maybe a better idea

Schmid factor & Taylor factor vs DIC

Is there a better variable to compare EBSD with DIC?
- Orientation change from Taylor
- When multiple slip systems have high Schmid factor?
- Find a better way to ignore strain close to grain boundaries?

Uses high mag map and 3 x 3

Steps
C

figure(1)

plot(grains1.boundary)

[x1_ y1_]=ginput(1);

figure(2)

[x2_ y2_]=ginput(1);

plot(grains2.boundary)

x=x+xadj;y=y+yadj;

figure(2)

posmax2=grains2.findByLocation([x,y]);

(may want to add component to grains)

grains2
ebsd2

grains1
ebsd1

Local Orientation changes
C

Taylor orientation predictions of grains

Martensite: identify variants

Identify martensite boundaries by type
MO=gB(phases{2},phases{3}(1:7)).misorientation;%the gb misorientation of boundaries

between bcc and fcc,

ind_5deg{n} =angle(KCO(n)*inv(MO))<5*degree;%find boundaries that are

%define vectors of KS variants then use map to define misorientation

KCO(n)=orientation('map', DFCC(n), DBCC(n), PFCC(n), PBCC(n));

ind_5deg{n} =angle(KCO(n)*inv(MO))<5*degree;%find boundaries that are within 5degrees of a

particular variant - output is logical for boundaries in gB_

Convoluted way to plot colors
indKS=ind_5deg{varno};

% the grain boundaries of the

particular variants

gBKS=gB_(indKS);

% and their grain IDs

id_KS=gBKS.grainId;

idBCC=unique(id_KS(:,2));

% create new grains for each variant

grains2('iron b').color=col{n};

grains3_{n}=grains2(idBCC);

D

Martensite: quantify variants

indKS=ind_5deg{varno};

% the grain boundaries of the particular variants

gBKS=gB_(indKS);

% and their grain IDs

id_KS=gBKS.grainId;

% id of bcc grains for the particular variant

idBCC=unique(id_KS(:,2));

% unique pairs of FCC + BCC

[idFCCBCC, ~, i2]=unique(id_KS,'rows');

% length of each pair so idFCCBCC = [idFCC idBCC lengthofGB]

used to differentiate when martensite has two parents

for nn=1:length(idFCCBCC)

idFCCBCC(nn,3) = sum(i2==nn);

% create a variable idFCC that has parentID of each martensite

xpos = find(idBCC(nn)==idFCCBCC(:,2));

idFCC(nn) = idFCCBCC(xpos(find(idFCCBCC(xpos,3)== max(idFCCBCC(xpos,3)))),1);

end

Martensite grain may be represented by >1 KS variant. So pick one with the longest boundary

D

%% add properties about variants to parent grains

IDss2 =sortrows(IDss_,4);

idfccs = unique(IDss2(:,4));

%IDss=[varID , var no. , length boundary , parentID]

for nn=1:length(idfccs)

posx = find(IDss2(:,4) == idfccs(nn));

varIDsC{ nn } = IDss2(posx,1);

grains(idfccs(nn)).prop.varSum = length(posx);%number of

variants

area1 = sum(grains(varIDsC{ nn }).area);%area of

variants

areaT = area1 + grains(idfccs(nn)).area;%area of FCC grain

+ variants

grains(idfccs(nn)).prop.varAreaPC =100* area1 / areaT;

grains(idfccs(nn)).prop.varArea = area1;

end

if length(varIDsC)<length(grains)

varIDsC(length(grains))={[]};

end

grains.prop.varIDs = varIDsC;

%% add properties about variants to daughter

(variant) grains

idbccs = unique(IDss2(:,1));

for nn=1:length(idbccs)

posx = find(IDss2(:,1) == idbccs(nn));

grains(idbccs(nn)).prop.parentID = IDss2(posx,4);

grains(idbccs(nn)).prop.varNo = IDss2(posx,2);

varColorC{ idbccs(nn) } = col{ IDss2(posx,2) };

end

%%

for nn=1:length(grains)

varArea(nn) = grains(nn).varArea;

varNo(nn) = grains(nn).varNo;

grArea(nn) = grains(nn).area;

end

totArea = sum(grArea);

for n=1:24

pos = n == varNo;

varAreaAll(n) = sum(grArea(pos)) / totArea;

varSumAll(n) = sum((pos));

end

D

[grains_merged,parentId] = merge(grains, gBKS);

hw = waitbar(0,'Updating Variant info. Please wait...');

% scroll through each FCC grain above ECD of 1

% find the position of the grain that matches x,y of merged_grain

% gbM2_ID=[];

% grains_merged2 = grains;

for n=1:length(grains_merged)

if grains_merged(n).phase==2%is BCC

daughters{n} = find(n==parentId);

if length(daughters{n})==1%% BCC phase with no FCC

grains_merged(n).phase = 0;

grains_merged(n).prop.BCCpc = 100;

grains_merged(n).prop.daughterNo = 1;

grains_merged(n).prop.daughterArea = grains_merged(n).area;

grains_merged(n).prop.daughterAreapc = 100;

else %%transformed grains

grains_merged(n).prop.BCCpc = 0;

grains_merged(n).prop.daughterNo = length(daughters{n});

bccBinary =grains(daughters{n}).phase==2;%find which daughters are bcc

fccBinary =grains(daughters{n}).phase==1;%find which daughters are fcc

bCCgrainNo{n} = daughters{n}(bccBinary);%%the bcc grain nos

fCCgrainNo{n} = daughters{n}(fccBinary);%%the fcc grain nos

Can do a similar thing using merge, but we don’t have the variant info

D

grains_merged(n).prop.daughterArea = sum(grains(bCCgrainNo).area);

grains_merged(n).prop.daughterAreapc =100* sum(grains(bCCgrainNo).area) / sum(grains(daughters{n}).area);

grains_merged(n).prop.GOS = mean(grains(fCCgrainNo{n}).GOS);

end

else%not transformed grains

daughters{n} = [];

grains_merged(n).prop.BCCpc = 0;

grains_merged(n).prop.daughterNo = 0;

grains_merged(n).prop.daughterArea = 0;

grains_merged(n).prop.daughterAreapc = 0;

bccBinary =grains(daughters{n}).phase==2;%find which daughters are bcc

fccBinary =grains(daughters{n}).phase==1;%find which daughters are fcc

bCCgrainNo{n} = daughters{n}(bccBinary);%%the bcc grain nos

fCCgrainNo{n} = daughters{n}(fccBinary);%%the fcc grain nos

grains_merged(n).prop.GOS = mean(grains(fCCgrainNo{n}).GOS);

end

end

grains_merged.prop.daughters=daughters;

grains_merged.prop.graindaughters=bCCgrainNo;

grains_merged.prop.grainparent=fCCgrainNo;

close(hw)

D

Martensite

Quantification of martensite types

D

After 10% strain

Red

Green

Blue

Pink

5 %6 %7 %8 %9 %
10 %

D

8% strainBefore test After test

10% strain

Texture of sample- inverse pole figuresD

Orientation of FCC grains by variant transformation

FCC
transformed

FCC, not
transformed

10 % strain

D

KS variants- FCC planes

- The variant with slip system
with max Schmid factor often
form (a->d)
• i.e same {111} plane

- But not always
- Red variants (111)
- Or Smaller grains

A statistical analysis of the
maps is needed

(a)

(b)

(c)C

(d)

D

- The variant often forms
along the (011) plane

- But again not always

KS variants- BCC planes
D

Misorientation

6 % 8 % 10 %

FCC grains with martensite have greater misorientation
- Is this the cause of variant formation?

D

Strain-induced Martensite

Red

Green

Blue

Pink

D

dMata.co.uk Conclude
Collaborators:

Open University:

Alex Forsey**

Yadu Das

Richard Moat

Salih Gungor

Swansea University:

Karen Perkins

Soran Birosca

Thanks to:
University of Cambridge:

Fabio Di Gioacchino

University of Manchester:

João Quinta da Fonseca

Rolls Royce UK plc
EPSRC
Innovate UK
MTEX

* T.H.Simm@Swansea.ac.uk / Thomas.Simm@dMata.co.uk EBSD MTEX stuff
** Alex.Forsey@Open.ac.uk / Alex.Forsey@dMata.co.uk DIC stuff

#MTEX2017

mailto:T.H.Simm@Swansea.ac.uk
mailto:Thomas.Simm@dMata.co.uk
mailto:Alex.Forsey@Open.ac.uk
mailto:Alex.Forsey@dMata.co.uk

