Working towards the 5 parameter model (misorientation \& plane) of grain boundaries: overview \& preliminary results on Ice

MTEX Users workshop
TU Chemnitz, 9 ${ }^{\text {th }}$ February 2017

David Mainprice

(david.mainprice@gm.univ-montp2.fr)

CNRS - Université de Montpellier, 34095 Montpellier, France

Outline of this presentation

- Some conclusions about GBCD
- 5 parameter grain boundary description in MTEX ?
- CMU stereology analysis FORTRAN programs
- Exporting boundary traces from MTEX
- Towards phase boundaries ?
- Coincident Site Lattice (CSL) in Ice ?
- Evolution of Ice with annealing

Low \& high angle boundaries - Motivation

- Boundaries are typically characterized as tilt and twist type with misorientation vector parallel or normal to the boundary plane.
- Tilt boundaries have reported to migrate one or two orders faster the twist in metals.
- Can the grain boundary migration in Ice be also characterized by fast tilt boundary migration?
- What are limits of boundary characterization in 2D EBSD?
- What can they tell us locally (e.g. boundary profile) or globally (e.g. EBSD map scale) about deformation and migration processes ?
- It has been reported despite the complexity of polycrystals that boundaries have same crystallographic (habit = low index hkls) as single crystals grown from a magma or other liquid.

Anisotropy of boundaries properties

- The influence of the boundary plane orientation is greater than misorientation angle between grains.
- The Read-Shockley (dislocation) model (1950) for low misorienations θ is reliable for relative energies \quad __gb=Eo $0[A-\ln \theta]$
- Coincidence Site Lattice (CSL) models are poor predictors of boundary energies.
- There is an inverse correlation of between the grain boundary energy and grain boundary frequency. (i.e. low energy boundaries area the most frequent boundaries).
- Isostructural crystals (e.g. $\mathrm{MgO}, \mathrm{NiO} \& \mathrm{NaCl}$) have similar grain boundary energy anisotropy.

Based on G.S. Rohrer (2011) J. Mater. Sci.

Importance of grain and interphase boundaries

Interface as a place for geodynamics

Schematic illustration of interfacial processes in rocks
Credit : Takehiko HIRAGA

Some conclusions about GBCD

grain boundary character distribution (GBCD)

PF-specimen coordinates
Boundary plane orientation (theta, phi)

(a)

MDF-crystal coordinates

Boundary misorientation (phi1,PHI,phi2)

(b)

MTEX -> Kernel density estimation

Conclusions about GBCD

- The resolution of the EBSD mapping should be at least 10 points per grain diameter.
- When comparing two GBCDs, differences of less than 10% should be considered insignificant.
- At least 5×10^{4} grain boundary traces should be recorded to determine the GBCD. This estimate assumes that they are relatively evenly distributed (i.e.weak texture).
- Note that if too many of the segments arise from a single type of misorientation, then there will be grain boundary configurations that are not sampled.
- For example, if one third of all the boundaries are coherent twins, then 1.7×10^{4} traces will fall in one cell and 3.3×10^{4} will be distributed among the remaining 6560 cells.
- While the grain boundary plane distribution will be well determined for the twin misorientation, it will be underdetermined for all of the other misorientation types.

TSL grain boundary trace construction

Initial construction : triple-point to triple-point

Revised construction : triple-point to mid-point
 segments within tolerance

1. To minimise errors a small EBSD map step size is recommended
2. The segmentation process must aim to reproduce the true boundary trace
3. The tolerance should be $2 x$ the step size
4. Expected error for boundary of length $6 x$ greater than the step size is $\pm 2^{\circ}$ (Wright and Larsen,2002)

The distribution computed from 5×10^{4} traces is not significantly different from that determined from 5×10^{5} traces. (Saylor et al.2004)

5 parameter grain boundary description in MTEX ?

- You can use this description to model individual boundaries
- Study the distribution of random boundaries for a given crystal symmetry
- Alternatively you can used GBtoolbox, Windows, Mac OS and Linux
- You can use the Gbtoolbox to check your own calculations

Application in MTEX

1) Transform symmetry operations to a specific matrix form for proper or rotational point groups

CS_high_cubic_432 = CS_high_cubic_m_3m.properGroup

Symmetry operations in matrix form using proper symmetry elements
$\mathrm{C}_{n}=\left(\begin{array}{cccc}\hline 1 & 0 & 0 & 0 \\ \hline 0 & R_{11} & R_{12} & R_{13} \\ 0 & R_{21} & R_{22} & R_{23} \\ 0 & R_{31} & R_{32} & R_{33}\end{array}\right) \quad \mathrm{C}_{1} 0^{\circ} /[100]=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \mathrm{C}_{2} 180^{\circ} /[100]=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

Application in MTEX

2) Create the B matrix of your grain boundary

Grain boundary B matrix
$B=\left(\begin{array}{c|ccc}0 & \mathrm{n} 2(1) & \mathrm{n} 2(2) & \mathrm{n} 2(3) \\ \hline \mathrm{n} 1(1) & \mathrm{M}(1,1) & \mathrm{M}(1,2) & \mathrm{M}(1,3) \\ \mathrm{n} 1(2) & \mathrm{M}(2,1) & \mathrm{M}(2,2) & \mathrm{M}(2,3) \\ \mathrm{n} 1(3) & \mathrm{M}(3,1) & \mathrm{M}(3,2) & \mathrm{M}(3,3)\end{array}\right)=\left(\begin{array}{cc} & \mathrm{T} \\ & \mathrm{n}_{2} \\ \mathrm{n} & \mathrm{M}\end{array}\right)$
$\mathrm{M}=\mathrm{gB}$ Misorientation matrix defined as O 1 transpose(O2) O 2 wrt O 1 $\mathrm{n} 1=\mathrm{gB}$ Plane normal vector wrt O1
$\mathrm{n} 2=\mathrm{gB}$ Plane normal vector wrt O2

Application in MTEX

2) Create the B matrix of your grain boundary

Grain boundary B matrix
$\mathrm{B}=\left(\begin{array}{c|ccc}0 & \mathrm{n} 2(1) & \mathrm{n} 2(2) & \mathrm{n} 2(3) \\ \hline \mathrm{n} 1(1) & \mathrm{M}(1,1) & \mathrm{M}(1,2) & \mathrm{M}(1,3) \\ \mathrm{n} 1(2) & \mathrm{M}(2,1) & \mathrm{M}(2,2) & \mathrm{M}(2,3) \\ \mathrm{n} 1(3) & \mathrm{M}(3,1) & \mathrm{M}(3,2) & \mathrm{M}(3,3)\end{array}\right)=\left(\begin{array}{cc}0 & \mathrm{~T} \\ & \mathrm{n}_{2} \\ \mathrm{n} & \mathrm{M}\end{array}\right)$

$\mathrm{M}=\mathrm{gB}$ Misorientation matrix defined as O 1 transpose(O 2) O 2 wrt O 1
$\mathrm{n} 1=\mathrm{gB}$ Plane normal vector wrt O1
$\mathrm{n} 2=\mathrm{gB}$ Plane normal vector wrt O 2

Need 2 triangles to represent boundary if not exchange symmetry
3) Create B^{\top} and B^{-}

Three types of B, B^{T} and B^{-}due the presence of exchange symmetry and center of symmetry
$B=\left[\begin{array}{ll}0 & n_{2}^{T} \\ n_{1} & M\end{array}\right] \quad$ exchange symmetry $B^{T}=\left[\begin{array}{cc}0 & n_{1}^{T} \\ n_{2}^{T} & M\end{array}\right]$ center of symmetry $B^{-}=\left[\begin{array}{cc}0 & -n_{2}^{T} \\ -n_{1} & M\end{array}\right]$

Application in MTEX

Generate all symmetrically equivalent forms of \mathbf{B}

For loop over symmetry operations

$$
\begin{aligned}
& \mathrm{B}_{\text {SYMM }}=\mathrm{C}_{1} \quad \mathrm{~B} \mathrm{C}_{2}^{\mathrm{T}} \text { apply crystal proper elements of groups with } \mathrm{C}_{1} \text { and } \mathrm{C}_{2} \\
& \mathrm{~B}_{\text {SYMM }}^{-}=\mathrm{C}_{1} \quad \mathrm{~B}^{-} \mathrm{C}_{2}^{\mathrm{T}} \text { use } \mathrm{B}^{-} \text {due to presence of inversion symmetry } \\
& \text { Remove for phase boundaries: } \mathrm{C}_{1} \neq \mathrm{C}_{2} \\
& \mathrm{~B}_{\text {SYMM }}^{\mathrm{T}}=\mathrm{C}_{1} \mathrm{~B}^{\mathrm{T}} \mathrm{C}_{2}^{\mathrm{T}} \text { use } \mathrm{B}^{\mathrm{T}} \text { due to exchange symmetry of } \mathrm{O} 1 \text { and } \mathrm{O} 2 \\
& \mathrm{~B}_{\text {SYMM }}^{\mathrm{T}}=\mathrm{C}_{1} \mathrm{~B}^{-\mathrm{T}} \mathrm{C}_{2}^{\mathrm{T}} \text { use } \mathrm{B}^{-\mathrm{T}} \text { due to exchange symmetry of } \mathrm{O} 1 \text { and } \mathrm{O} 2
\end{aligned}
$$

Application in MTEX

Generate all symmetrically equivalent forms of \mathbf{B}

For loop over symmetry operations

$$
\begin{array}{ll}
\mathrm{B}_{\mathrm{SYMM}}=\mathrm{C}_{1} \mathrm{~B} \mathrm{C}_{2}^{\mathrm{T}} \text { No exchange symmetry or } \mathrm{B}^{-} & 1 \times 24 \times 24=576 \\
\mathrm{~B}_{\mathrm{SYMM}}^{-}=\mathrm{C}_{1} \mathrm{~B}^{-} \mathrm{C}_{2}^{\mathrm{T}}{\text { With } \mathrm{B}^{-}} & 2 \times 24 \times 24=1152 \\
\mathrm{~B}_{\mathrm{SYMM}}^{\mathrm{T}}=\mathrm{C}_{1} \mathrm{~B}^{\mathrm{T}} \mathrm{C}_{2}^{\mathrm{T}} \text { With } \mathrm{B}^{\mathrm{T}} & 3 \times 24 \times 24=1728 \\
\mathrm{~B}_{\mathrm{SYMM}}^{\mathrm{T}}=\mathrm{C}_{1} \mathrm{~B}^{-\mathrm{T}} \mathrm{C}_{2}^{\mathrm{T}} \text { With } \mathrm{B}^{-\mathrm{T}} & 4 \times 24 \times 24=2304
\end{array}
$$

CMU stereology analysis FORTRAN programs

Greg Rohrer's CMU stereology analysis FORTRAN programs

- http://mimp.materials.cmu.edu/~gr20/ Grain_Boundary_Data_Archive/
- Uses probability of boundary inclination and GB traces to estimate 5-parameter grain boundary characterization from large data sets from 2D EBSD.
- Recently modified additional orthorhombic crystal symmetry.
- A series of programs for the calculations, but graphics produced using free and open source GMT or other alternatives
- Not really user friendly programs...
- The most important part of the package is calc_gbcd_stereo_fd which generates the grain boundary character distribution (gbcd)

(a)

(b)

Disor functionality can be replaced by MTEX calculations \& plots

Disor : calculates a one-dimensional distribution of grain boundaries as a function of disorientation (minimum misorientation) angle.

MTEX dataset forsterite coarse grained ($\sim 813 \mu \mathrm{~m}$) with EBSD stepsize $=50 \mu \mathrm{~m}$ Sample clearly has a texture ! Poor correlation with uniform distribution

Disor functionality can be replaced by MTEX calculations \& plots

Disor : calculates a one-dimensional distribution of grain boundaries as a function of disorientation (minimum misorientation) angle.

MTEX dataset forsterite coarse grained with EBSD stepsize $=50 \mu \mathrm{~m}$
Sample clearly has a texture ! Poor correlation with uniform distribution

MTEX plot without additional toolboxes

Natural forsterite large grained $(813.28 \pm 47.64 \mu \mathrm{~m})$ with EBSD step size $=50 \mu \mathrm{~m}$

Equivalent grain diameter distribution: CL95\%

Disor functionality can be replaced by MTEX calculations \& plots

Disor : calculates a one-dimensional distribution of grain boundaries as a function of disorientation (minimum misorientation) angle.

Sol-gel forsterite fine grained ($\sim 2.6 \mu \mathrm{~m}$) with EBSD step size $=0.4 \mu \mathrm{~m}$
Sample clearly has no texture ! Very good correlation with uniform distribution

Disor functionality can be replaced by MTEX calculations \& plots

Disor : calculates a one-dimensional distribution of grain boundaries as a function of disorientation (minimum misorientation) angle.

Sol-gel forsterite fine grained ($\sim 2.6 \mu \mathrm{~m})$ with EBSD step size $=0.4 \mu \mathrm{~m}$
Sample clearly has no texture! Very good correlation with uniform distribution

Sol-gel forsterite fine grained $(2.58 \pm 0.07 \mu \mathrm{~m})$ with EBSD step size $=0.4 \mu \mathrm{~m}$

[100]

MTEX plot without additional toolboxes

Sol-gel forsterite fine grained ($2.58 \pm 0.07 \mu \mathrm{~m}$) with EBSD step size $=0.4 \mu \mathrm{~m}$
Equivalent grain diameter distribution: CL95\%

Stereology (3.85) versus 3D EBSD (2.21)

Figure 10. The distribution of grain boundary planes for the $\Sigma 3\left(60^{\circ} /[111]\right)$ grain boundary in $\mathrm{Y}_{2} \mathrm{O}_{3}$ computed (a) using the conventional stereology and (b) from 3D data.

Distribution of GB planes and energies in the crystal reference frame

(111) planes have the highest population and the lowest relative energy (computed from dihedral angles)
Li et al., Acta Mater. 57 (2009) 4304

Effect of crystal symmetry on gBs

Energy-Population (Inverse) Relationship

Non-random grain boundary plane distributions, $\lambda(\mathrm{n})$, independent of misorientation $(\Delta \mathrm{g})$, were found for all materials investigated

GB plane populations are inversely correlated to known interfacial energies.
MgO and TiO_{2} distributions: Saylor et al., J. Amer. Ceram. Soc., 87 (2004) 724.
MgO surface energy: Saylor \& Rohrer, Interface Science, 9 (2001) 35.
Titania surface energy: Pang \& Wynblatt, J. Amer. Ceram. Soc., 89 (2006) 666.
Alumina surface energy: Kitayama and Glaeser, J. Amer. Cer. Soc., 85 (2002) 611.

Exporting boundary traces from MTEX

- Function called "Export_gb_traces_CMU"
- Mean grain Orientations left and right of boundary
- Misorientation angle
- Misorientation axis wrt to Orientation left
- Misorientation axis wrt to Orientation right
- Trace lengths
- Trace azimuths
- Trace end-points
- Grain Ids
- Currently single phase (grain) boundaries
- Can be modified for phase boundaries, which are very common in rocks
- \% MTEX export file for grain boundary traces and associated gB parameters
- \% in the format used by CMU stereology analysis programs written and
- \% maintained by Greg Rohrer et al.
- $\%$
- \% You can find the stereology FORTRAN programs and ebsds data sets at
- \quad. http://mimp.materials.cmu.edu/~gr20/Grain_Boundary_Data_Archive/
- $\%$
- \% INPUT
- \%
- \% export_filename = file name like 'CMU_gB_segments.txt'
- $\%$
- \% ebsd = MTEX ebsd object
- $\%$
- \quad \% seg_angle = segmentation angle for grain model e.g. 10 or 15 degrees
- \% may be material dependent.
- $\%$
- $\quad \%$ min_points = minimum number of indexed points per grain e.g. 10 points
- $\%$
- \quad \% n_gB_smooth = Laplacian smoothing of grain boundaries to remove the
- \% stair-case effect of the EBSD grid.
- \% n_gB_smooth $=0$ NO smoothing, a value of 1 to 2 recommended
- $\%$
- $\quad \%$ phase_name = e.g. 'Forsterite' to limited the boundaries
- \% between the same phase e.g. Forsterite-Forsterite
- $\%$
- $\quad \%$ plot_option $=1$ to save plots to graphics file allow checking
- \% saving plots to file may take some time to transfer
- \% graphic file to the hard drive
- $\% \quad$ plot_option $=0$ do NOT save plots to file
- $\%$
- \% Fig_size_maps = 'huge','large','medium' or 'small' recommend 'large'
- $\%$
- $\quad \%$ Fig_size_trace $=$ try 800 or 1500 length and width of the gB trace plot
- \%
- \% plot_file_path = example '/MatLab_Programs/' saves plots in folder
- \% output_format $=12$ for 12 -columns or 21 for 21 -columns

- \% 12-columns format

- \% Column 1-3: o_right right hand average orientation (phi1, PHI, phi2 in radians)
- \% Column 4-6: o_left left hand average orientation (phi1, PHI, phi2 in radians)
- \% Column 7: trace_length length (in microns)
- \% Column 8: trace_azimuth trace angle (in degrees)
- \% Column 9-12: X1, Y1, X2, Y2 x,y coordinates of trace endpoints (in microns)
- \%
- $\%^{*}$
- $\%$ 21-columns format

- \% Column 1-3: o_right right hand average orientation (phi1, PHI, phi2 in radians)
- \% Column 4-6: o_left left hand average orientation (phi1, PHI, phi2 in radians)
- \% Column 7: m_angle misorientation Angle (in degrees)
- \% Column 8-10: m_axis_right misorientation Axis in Right Hand grain
- \% Column 11-13: m_axis_left misorientation Axis in Left Hand grain
- \% Column 14: trace_length length (in microns)
- \% Column 15: trace_azimuth trace angle (in degrees)
- \% Column 16-19: X1, Y1, X2, Y2 x, y coordinates of endpoints (in microns)
- \% Column 20-21: Id_grain_R,Id_grain_L IDs of right hand and left hand grains
- \%
- To do add number of segments : Number_segs = length(gB.segLength)
- To do add EBSD step size : I have written function for this

Grain modelling - segmentation angle

Segmentation angle defines the misorientation limit between low-angle boundaries (sub-grains, innerboundaries) and high-angle boundaries (grain boundaries) using indexed EBSD points

The choice of the angle has strong impact on modelled grain microstructure grains = calcGrains(ebsd('indexed'),'angle',10*degree) grains = calcGrains(ebsd('indexed'),'angle',15*degree) grains = calcGrains(ebsd('indexed')) undefined angle uses default value of 15°
$10^{\circ}->$ smaller grains Mis2mean maps
$15^{\circ}->$ larger grains

GB Laplacian Smoothing = 0

Smoothing=0 Smoothing=1

Smoothing=0 Smoothing=2

mis2mean

GB Smoothing $=0$

Grain Ids N.B. trace map is flipped

Smoothing=0
 Smoothing=1

Smoothing=0
 Smoothing=2

Towards phase boundaries ?

- Phase transitions : olivine-antigorite
- Polyphase rocks : Peridotite (Olivine, Enstatite,Diopside,Garnet,Spinel...).

MTEX data set "forsterite"

Correlated grain and phase boundary misorientation angles

Fo-Fo boundaries misorientation axes

Correlated grain Fo-Fo boundary misorientation axes

Fo-Fo boundary misorientation axes

Fo-Fo boundary misorientation axes

All phases misorientation axes

New global gB analysis : map scale

- Pole figures in specimen coordinates of the orientations in the boundary region.

Plot of boundary orientation locations.
Plotted PFs of habit (low index),
which are potential boundary plans

- Pole figure in specimen coordinates of boundary misorientation axes.
- Misorientation Distribution Function (MDF) of boundary misorientation axes in crystal coordinates.

Coincident Site Lattice (CSL)

- Useful in FCC ? Hexagonal ?
- Lattice, but not atomic structure
- CSLs on the boundary of fundamental region.
- Twins planes on boundary of fundamental region - also more likely to have slip transmission from host to twin
- Probably pure tilt and twist plus special boundaries on boundary of fundamental region.

CSL for a hexagonal lattice with $\mathrm{c} / \mathrm{a}=1.6270$ Ice $\mathrm{lh}=\mathrm{c} / \mathrm{a}=1.6330$

CSLs for c/a ratio of Ice Ih

Quantitative study of fabric \& microstructure development in Ice Ih

Geosciencesmpression, annealing
Montpelier Work in progress

L. G G E

Laboratoire de Glaciologie et Géophysique de I'Environnement

Collaboration Geosciences Montpellier
David Mainprice, Andrea Tommasi, Fabrice Barou, Karoly Hidas
and Le Laboratoire de Glaciologie et Géophysique de l’Environnement Grenoble
Maurine Montagnat, Thomas Chauve, Baptiste Journaux
EBSD Orientation map measured at $-100^{\circ} \mathrm{C}$ and 1 Pa (no post-treatment 98% indexed)

New global gB analysis : map scale Annealing time $=0$ minutes

Pole figures of in the boundary region

Pole figures of orientations in bounday regions

Pole figure of Boundary misorientation axes

Z6 Deformed Sample : T=0
Pole figures misorientation axes in specimen ref

MDF of grain boundaries in crystal coordinates

MDF Misorientations of orientations along grain boundaries

Line = 100-70\% Probability
Colour dots on MDF sections are hexagonal Ice CSL boundary misorientation axes Note all PF misorientation axes and MDF IPF of axes are data, except MDF section at $\omega=30^{\circ}$

Z6 T = 4680 minutes
 Note many PF misorientation axes and MDF IPF of misorientation axes are empty

Z6 Deformed Sample: T=4680m

Pole figures misorientation axes in specimen ref
MDF Misorientations of orientations along grain boundaries

Planes with d-spacing greater than 1.5 Angstroms - should be habit planes

Z6 : PFs of potential boundary planes

1.Very little evolution of the potential boundary planes;
except c(0001) m(10-10), a(11-20),... ?
2.Little evolution of boundary planes during annealing, a common observation

$$
\mathrm{T}=0 \text { minutes }
$$

Pole figures of orientations in bounday regions
$\mathrm{T}=4680$ minutes
Pole figures of orientations in bounday regions

(1013)

(2023)

(11 23)

The most common boundary planes in hexagonal symmetry are $m(10-10), c(0001), a(11-20)$ In this sample likely grain boundary planes are have pole normal to Z on edge of pole plots.

Z6 : PFs of boundary misorientation axes

1. The misorientation axes parallel to surface normal Z often preserved
2. Only 3 out 7 axes parallel Z are not preserved at 4680 minutes.
3. Preseved axes parallel to Z have misorientations of $40^{\circ}, 50^{\circ}, 60^{\circ}$ or 90°
4. All axes normal to Z are elminated.
5. Last pole figure for all misorientation angles gives summary plot
$\mathrm{T}=0$ minutes
Pole figures misorientation axes in specimen ref
$\mathrm{T}=4680$ minutes
Pole figures misorientation axes in specimen ref N.B. 'Pole figures' correspond to different misorientation angles

Last PF For all angles

Z6 : MDF of boundary misorientation axes

1. At $\mathrm{T}=0$ Misorientation angles are present for all angles except 30°
2. At $T=4680$ only angles of $40^{\circ} 50^{\circ} 60^{\circ}$ and 90°
3. At $\mathrm{T}=4680$ misorientation axes $\mathrm{m}[10-10] / 40^{\circ}$; a intermediate direction near $\mathrm{m}[10-10]$ and $\mathrm{r}(10-11)$ with 50° and 60°, and spread of orientations near the basal plane with 90°.
$\mathrm{T}=0$ minutes
MDF Misorientations of orientations along grain boundaries
$\mathrm{T}=4680$ minutes
MDF Misorientations of orientations along grain boundaries

Planes with d-spacing greater than 1.5 Angstroms - should be habit planes

Red box misorientations present at $T=4680$
4.Preserved misorientation axes are near the basal plane c(0001)
5.So misoreintation axes are near directions [m] and [a]
6. Common in hexagonal are $[\mathrm{m}] / 90^{\circ}$ \& lesser for $[\mathrm{a}] / 90^{\circ}$

Summary of global analysis

- Specimen coordinates : Potential grain boundary planes do not evolve significantly with annealing. (c),(m) or (a) are the mostly likely planes.
- Specimen coordinates : The misorientation axes preserved at $\mathrm{T}=4680$ minutes is parallel to Z , which is also perpendicular to likely boundary planes (c),(m) or (a). A misorientation axis (vertical) in the boundary plane (normal horizontal) is called a pure tilt boundary geometry.
- Crystal coordinates: MDF indicates misorientation axes are near the basal plane [m]- or [a]-axes are likely candidates. A twist boundaries [m] 90° with plane (m), which is very common in hexagonal could be present.
- A probably global solution: would be a pure tilt boundaries with a misorientation of [a]/90 and boundary plane of (0001). The (0001) plane is also the plane that displays the most evolution in sample coordinates during annealing.

Burger phase relationships

Number	Olivine	Antigorite	axis/angle
No. 1	(100)ol	(001) atg	$\left[\begin{array}{llll}12 & -6 & 10\end{array}\right] / 119.33^{\circ}$
	[001]ol	[001]atg	[-12 6 0]/120.670
. 2	(010) 01	(001) atg	$\left[\begin{array}{lll}-1 & 0 & 0\end{array}\right] / 90.01^{\circ}$
	[001]ol	[010]atg	*none
No.3**	(100)ol	(010) atg	[$\left.\begin{array}{llll}-12 & -6 & 0\end{array}\right] / 119.33^{\circ}$
	[001]ol	[010]atg	*[$\left.\begin{array}{lll}-12 & -6 & 0\end{array}\right] / 120.67^{\circ}$
No.4**	(010)ol	\{210\}atg	[-5 9 0 ${ }^{-5} / 93.00^{\circ}$
	[100]ol	[001]atg	[5 -9 0]/94.130

*Equivalent by symmetry for orthorhombic-monoclinic symmetry of olivine to antigorite phase transition.
** Not previously reported by Boudier et al. [2009]

Effect of crystal symmetry on geometric characteristics of random grain boundaries

Accurate angles to pure boundaries within tolerence of $\delta=10^{\circ}$

Accurate angles to pure boundaries within tolerence of $\delta=5^{\circ}$

IQS = properly (improperly) quasi-symmetric
Work in progress with Adam Morawiec and Krzysztof Glowinski

Rotation to Coincidence $\sum 5$

Animation by Tony Rollett (CMU)

rotating to the $\sum 5$

 relationship

rotating to the $\sum 5$ relationship

rotating to the $\sum 5$
relationship

rotating to the $\sum 5$

 relationship

rotating to the $\sum 5$

relationship

rotating to the $\sum 5$
relationship

rotating to the $\sum 5$
relationship

rotating to the $\sum 5$
relationship

rotating to the $\sum 5$

relationship

$\sum 5$ relationship STOP!

Red and Green
lattices
coincide after rotation of
$2 \tan ^{-1}$ (1/3)
$=36.9^{\circ}$

